Properties

Label 1218.2.m.a.307.9
Level $1218$
Weight $2$
Character 1218.307
Analytic conductor $9.726$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(307,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.72577896619\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.9
Character \(\chi\) \(=\) 1218.307
Dual form 1218.2.m.a.853.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(0.707107 + 0.707107i) q^{3} -1.00000i q^{4} +1.75408 q^{5} -1.00000 q^{6} +(-1.92667 - 1.81327i) q^{7} +(0.707107 + 0.707107i) q^{8} +1.00000i q^{9} +(-1.24032 + 1.24032i) q^{10} +(-0.974388 + 0.974388i) q^{11} +(0.707107 - 0.707107i) q^{12} +2.81222 q^{13} +(2.64454 - 0.0801852i) q^{14} +(1.24032 + 1.24032i) q^{15} -1.00000 q^{16} +(0.797609 + 0.797609i) q^{17} +(-0.707107 - 0.707107i) q^{18} +(-1.41596 - 1.41596i) q^{19} -1.75408i q^{20} +(-0.0801852 - 2.64454i) q^{21} -1.37799i q^{22} +8.03078 q^{23} +1.00000i q^{24} -1.92322 q^{25} +(-1.98854 + 1.98854i) q^{26} +(-0.707107 + 0.707107i) q^{27} +(-1.81327 + 1.92667i) q^{28} +(1.61984 + 5.13577i) q^{29} -1.75408 q^{30} +(7.15468 + 7.15468i) q^{31} +(0.707107 - 0.707107i) q^{32} -1.37799 q^{33} -1.12799 q^{34} +(-3.37952 - 3.18061i) q^{35} +1.00000 q^{36} +(-0.0852589 - 0.0852589i) q^{37} +2.00246 q^{38} +(1.98854 + 1.98854i) q^{39} +(1.24032 + 1.24032i) q^{40} +(-2.43786 + 2.43786i) q^{41} +(1.92667 + 1.81327i) q^{42} +(6.66860 - 6.66860i) q^{43} +(0.974388 + 0.974388i) q^{44} +1.75408i q^{45} +(-5.67862 + 5.67862i) q^{46} +(7.23024 - 7.23024i) q^{47} +(-0.707107 - 0.707107i) q^{48} +(0.424105 + 6.98714i) q^{49} +(1.35992 - 1.35992i) q^{50} +1.12799i q^{51} -2.81222i q^{52} +11.0778 q^{53} -1.00000i q^{54} +(-1.70915 + 1.70915i) q^{55} +(-0.0801852 - 2.64454i) q^{56} -2.00246i q^{57} +(-4.77694 - 2.48613i) q^{58} -2.61946i q^{59} +(1.24032 - 1.24032i) q^{60} +(5.33534 + 5.33534i) q^{61} -10.1182 q^{62} +(1.81327 - 1.92667i) q^{63} +1.00000i q^{64} +4.93286 q^{65} +(0.974388 - 0.974388i) q^{66} -6.79023i q^{67} +(0.797609 - 0.797609i) q^{68} +(5.67862 + 5.67862i) q^{69} +(4.63872 - 0.140651i) q^{70} -14.6504i q^{71} +(-0.707107 + 0.707107i) q^{72} +(-8.50374 + 8.50374i) q^{73} +0.120574 q^{74} +(-1.35992 - 1.35992i) q^{75} +(-1.41596 + 1.41596i) q^{76} +(3.64415 - 0.110495i) q^{77} -2.81222 q^{78} +(-0.362059 + 0.362059i) q^{79} -1.75408 q^{80} -1.00000 q^{81} -3.44766i q^{82} +14.4683i q^{83} +(-2.64454 + 0.0801852i) q^{84} +(1.39907 + 1.39907i) q^{85} +9.43083i q^{86} +(-2.48613 + 4.77694i) q^{87} -1.37799 q^{88} +(-6.61641 - 6.61641i) q^{89} +(-1.24032 - 1.24032i) q^{90} +(-5.41823 - 5.09932i) q^{91} -8.03078i q^{92} +10.1182i q^{93} +10.2251i q^{94} +(-2.48369 - 2.48369i) q^{95} +1.00000 q^{96} +(-6.73439 + 6.73439i) q^{97} +(-5.24054 - 4.64077i) q^{98} +(-0.974388 - 0.974388i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 40 q^{6} + 4 q^{10} + 4 q^{14} - 4 q^{15} - 40 q^{16} + 8 q^{19} - 4 q^{21} + 24 q^{25} - 12 q^{28} + 8 q^{29} - 24 q^{31} - 12 q^{35} + 40 q^{36} - 16 q^{37} - 4 q^{40} + 16 q^{41} - 20 q^{43} + 4 q^{46}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1218\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(871\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) 1.75408 0.784447 0.392223 0.919870i \(-0.371706\pi\)
0.392223 + 0.919870i \(0.371706\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.92667 1.81327i −0.728212 0.685352i
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) −1.24032 + 1.24032i −0.392223 + 0.392223i
\(11\) −0.974388 + 0.974388i −0.293789 + 0.293789i −0.838575 0.544786i \(-0.816611\pi\)
0.544786 + 0.838575i \(0.316611\pi\)
\(12\) 0.707107 0.707107i 0.204124 0.204124i
\(13\) 2.81222 0.779971 0.389985 0.920821i \(-0.372480\pi\)
0.389985 + 0.920821i \(0.372480\pi\)
\(14\) 2.64454 0.0801852i 0.706782 0.0214304i
\(15\) 1.24032 + 1.24032i 0.320249 + 0.320249i
\(16\) −1.00000 −0.250000
\(17\) 0.797609 + 0.797609i 0.193449 + 0.193449i 0.797184 0.603736i \(-0.206322\pi\)
−0.603736 + 0.797184i \(0.706322\pi\)
\(18\) −0.707107 0.707107i −0.166667 0.166667i
\(19\) −1.41596 1.41596i −0.324842 0.324842i 0.525779 0.850621i \(-0.323774\pi\)
−0.850621 + 0.525779i \(0.823774\pi\)
\(20\) 1.75408i 0.392223i
\(21\) −0.0801852 2.64454i −0.0174978 0.577085i
\(22\) 1.37799i 0.293789i
\(23\) 8.03078 1.67453 0.837267 0.546795i \(-0.184152\pi\)
0.837267 + 0.546795i \(0.184152\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −1.92322 −0.384643
\(26\) −1.98854 + 1.98854i −0.389985 + 0.389985i
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) −1.81327 + 1.92667i −0.342676 + 0.364106i
\(29\) 1.61984 + 5.13577i 0.300797 + 0.953688i
\(30\) −1.75408 −0.320249
\(31\) 7.15468 + 7.15468i 1.28502 + 1.28502i 0.937775 + 0.347243i \(0.112882\pi\)
0.347243 + 0.937775i \(0.387118\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) −1.37799 −0.239878
\(34\) −1.12799 −0.193449
\(35\) −3.37952 3.18061i −0.571244 0.537622i
\(36\) 1.00000 0.166667
\(37\) −0.0852589 0.0852589i −0.0140165 0.0140165i 0.700064 0.714080i \(-0.253155\pi\)
−0.714080 + 0.700064i \(0.753155\pi\)
\(38\) 2.00246 0.324842
\(39\) 1.98854 + 1.98854i 0.318422 + 0.318422i
\(40\) 1.24032 + 1.24032i 0.196112 + 0.196112i
\(41\) −2.43786 + 2.43786i −0.380730 + 0.380730i −0.871365 0.490635i \(-0.836765\pi\)
0.490635 + 0.871365i \(0.336765\pi\)
\(42\) 1.92667 + 1.81327i 0.297291 + 0.279794i
\(43\) 6.66860 6.66860i 1.01695 1.01695i 0.0170987 0.999854i \(-0.494557\pi\)
0.999854 0.0170987i \(-0.00544295\pi\)
\(44\) 0.974388 + 0.974388i 0.146895 + 0.146895i
\(45\) 1.75408i 0.261482i
\(46\) −5.67862 + 5.67862i −0.837267 + 0.837267i
\(47\) 7.23024 7.23024i 1.05464 1.05464i 0.0562211 0.998418i \(-0.482095\pi\)
0.998418 0.0562211i \(-0.0179052\pi\)
\(48\) −0.707107 0.707107i −0.102062 0.102062i
\(49\) 0.424105 + 6.98714i 0.0605865 + 0.998163i
\(50\) 1.35992 1.35992i 0.192322 0.192322i
\(51\) 1.12799i 0.157950i
\(52\) 2.81222i 0.389985i
\(53\) 11.0778 1.52165 0.760825 0.648957i \(-0.224794\pi\)
0.760825 + 0.648957i \(0.224794\pi\)
\(54\) 1.00000i 0.136083i
\(55\) −1.70915 + 1.70915i −0.230462 + 0.230462i
\(56\) −0.0801852 2.64454i −0.0107152 0.353391i
\(57\) 2.00246i 0.265233i
\(58\) −4.77694 2.48613i −0.627243 0.326445i
\(59\) 2.61946i 0.341024i −0.985356 0.170512i \(-0.945458\pi\)
0.985356 0.170512i \(-0.0545422\pi\)
\(60\) 1.24032 1.24032i 0.160125 0.160125i
\(61\) 5.33534 + 5.33534i 0.683120 + 0.683120i 0.960702 0.277582i \(-0.0895331\pi\)
−0.277582 + 0.960702i \(0.589533\pi\)
\(62\) −10.1182 −1.28502
\(63\) 1.81327 1.92667i 0.228451 0.242737i
\(64\) 1.00000i 0.125000i
\(65\) 4.93286 0.611846
\(66\) 0.974388 0.974388i 0.119939 0.119939i
\(67\) 6.79023i 0.829559i −0.909922 0.414779i \(-0.863859\pi\)
0.909922 0.414779i \(-0.136141\pi\)
\(68\) 0.797609 0.797609i 0.0967243 0.0967243i
\(69\) 5.67862 + 5.67862i 0.683625 + 0.683625i
\(70\) 4.63872 0.140651i 0.554433 0.0168110i
\(71\) 14.6504i 1.73868i −0.494215 0.869340i \(-0.664544\pi\)
0.494215 0.869340i \(-0.335456\pi\)
\(72\) −0.707107 + 0.707107i −0.0833333 + 0.0833333i
\(73\) −8.50374 + 8.50374i −0.995288 + 0.995288i −0.999989 0.00470093i \(-0.998504\pi\)
0.00470093 + 0.999989i \(0.498504\pi\)
\(74\) 0.120574 0.0140165
\(75\) −1.35992 1.35992i −0.157030 0.157030i
\(76\) −1.41596 + 1.41596i −0.162421 + 0.162421i
\(77\) 3.64415 0.110495i 0.415290 0.0125920i
\(78\) −2.81222 −0.318422
\(79\) −0.362059 + 0.362059i −0.0407349 + 0.0407349i −0.727181 0.686446i \(-0.759170\pi\)
0.686446 + 0.727181i \(0.259170\pi\)
\(80\) −1.75408 −0.196112
\(81\) −1.00000 −0.111111
\(82\) 3.44766i 0.380730i
\(83\) 14.4683i 1.58811i 0.607848 + 0.794053i \(0.292033\pi\)
−0.607848 + 0.794053i \(0.707967\pi\)
\(84\) −2.64454 + 0.0801852i −0.288543 + 0.00874892i
\(85\) 1.39907 + 1.39907i 0.151750 + 0.151750i
\(86\) 9.43083i 1.01695i
\(87\) −2.48613 + 4.77694i −0.266541 + 0.512142i
\(88\) −1.37799 −0.146895
\(89\) −6.61641 6.61641i −0.701338 0.701338i 0.263359 0.964698i \(-0.415169\pi\)
−0.964698 + 0.263359i \(0.915169\pi\)
\(90\) −1.24032 1.24032i −0.130741 0.130741i
\(91\) −5.41823 5.09932i −0.567984 0.534554i
\(92\) 8.03078i 0.837267i
\(93\) 10.1182i 1.04921i
\(94\) 10.2251i 1.05464i
\(95\) −2.48369 2.48369i −0.254822 0.254822i
\(96\) 1.00000 0.102062
\(97\) −6.73439 + 6.73439i −0.683774 + 0.683774i −0.960848 0.277074i \(-0.910635\pi\)
0.277074 + 0.960848i \(0.410635\pi\)
\(98\) −5.24054 4.64077i −0.529375 0.468788i
\(99\) −0.974388 0.974388i −0.0979297 0.0979297i
\(100\) 1.92322i 0.192322i
\(101\) −2.18785 2.18785i −0.217699 0.217699i 0.589829 0.807528i \(-0.299195\pi\)
−0.807528 + 0.589829i \(0.799195\pi\)
\(102\) −0.797609 0.797609i −0.0789750 0.0789750i
\(103\) 0.531996i 0.0524191i −0.999656 0.0262095i \(-0.991656\pi\)
0.999656 0.0262095i \(-0.00834371\pi\)
\(104\) 1.98854 + 1.98854i 0.194993 + 0.194993i
\(105\) −0.140651 4.63872i −0.0137261 0.452693i
\(106\) −7.83318 + 7.83318i −0.760825 + 0.760825i
\(107\) −4.67199 −0.451658 −0.225829 0.974167i \(-0.572509\pi\)
−0.225829 + 0.974167i \(0.572509\pi\)
\(108\) 0.707107 + 0.707107i 0.0680414 + 0.0680414i
\(109\) 7.44268i 0.712880i −0.934318 0.356440i \(-0.883990\pi\)
0.934318 0.356440i \(-0.116010\pi\)
\(110\) 2.41711i 0.230462i
\(111\) 0.120574i 0.0114444i
\(112\) 1.92667 + 1.81327i 0.182053 + 0.171338i
\(113\) 12.7560 + 12.7560i 1.19998 + 1.19998i 0.974172 + 0.225807i \(0.0725019\pi\)
0.225807 + 0.974172i \(0.427498\pi\)
\(114\) 1.41596 + 1.41596i 0.132616 + 0.132616i
\(115\) 14.0866 1.31358
\(116\) 5.13577 1.61984i 0.476844 0.150399i
\(117\) 2.81222i 0.259990i
\(118\) 1.85223 + 1.85223i 0.170512 + 0.170512i
\(119\) −0.0904480 2.98301i −0.00829136 0.273452i
\(120\) 1.75408i 0.160125i
\(121\) 9.10113i 0.827376i
\(122\) −7.54530 −0.683120
\(123\) −3.44766 −0.310865
\(124\) 7.15468 7.15468i 0.642509 0.642509i
\(125\) −12.1438 −1.08618
\(126\) 0.0801852 + 2.64454i 0.00714347 + 0.235594i
\(127\) −9.17944 + 9.17944i −0.814543 + 0.814543i −0.985311 0.170768i \(-0.945375\pi\)
0.170768 + 0.985311i \(0.445375\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 9.43083 0.830338
\(130\) −3.48806 + 3.48806i −0.305923 + 0.305923i
\(131\) 10.7880 10.7880i 0.942550 0.942550i −0.0558868 0.998437i \(-0.517799\pi\)
0.998437 + 0.0558868i \(0.0177986\pi\)
\(132\) 1.37799i 0.119939i
\(133\) 0.160568 + 5.29559i 0.0139230 + 0.459185i
\(134\) 4.80142 + 4.80142i 0.414779 + 0.414779i
\(135\) −1.24032 + 1.24032i −0.106750 + 0.106750i
\(136\) 1.12799i 0.0967243i
\(137\) 9.82765 9.82765i 0.839633 0.839633i −0.149178 0.988810i \(-0.547663\pi\)
0.988810 + 0.149178i \(0.0476626\pi\)
\(138\) −8.03078 −0.683625
\(139\) 0.140812i 0.0119435i −0.999982 0.00597174i \(-0.998099\pi\)
0.999982 0.00597174i \(-0.00190088\pi\)
\(140\) −3.18061 + 3.37952i −0.268811 + 0.285622i
\(141\) 10.2251 0.861109
\(142\) 10.3594 + 10.3594i 0.869340 + 0.869340i
\(143\) −2.74020 + 2.74020i −0.229147 + 0.229147i
\(144\) 1.00000i 0.0833333i
\(145\) 2.84133 + 9.00853i 0.235960 + 0.748118i
\(146\) 12.0261i 0.995288i
\(147\) −4.64077 + 5.24054i −0.382764 + 0.432233i
\(148\) −0.0852589 + 0.0852589i −0.00700824 + 0.00700824i
\(149\) 19.3666i 1.58657i −0.608850 0.793285i \(-0.708369\pi\)
0.608850 0.793285i \(-0.291631\pi\)
\(150\) 1.92322 0.157030
\(151\) 16.9550i 1.37978i 0.723917 + 0.689888i \(0.242340\pi\)
−0.723917 + 0.689888i \(0.757660\pi\)
\(152\) 2.00246i 0.162421i
\(153\) −0.797609 + 0.797609i −0.0644828 + 0.0644828i
\(154\) −2.49867 + 2.65494i −0.201349 + 0.213941i
\(155\) 12.5498 + 12.5498i 1.00803 + 1.00803i
\(156\) 1.98854 1.98854i 0.159211 0.159211i
\(157\) −15.8986 + 15.8986i −1.26885 + 1.26885i −0.322165 + 0.946684i \(0.604411\pi\)
−0.946684 + 0.322165i \(0.895589\pi\)
\(158\) 0.512029i 0.0407349i
\(159\) 7.83318 + 7.83318i 0.621211 + 0.621211i
\(160\) 1.24032 1.24032i 0.0980558 0.0980558i
\(161\) −15.4727 14.5620i −1.21942 1.14764i
\(162\) 0.707107 0.707107i 0.0555556 0.0555556i
\(163\) 3.57404 + 3.57404i 0.279941 + 0.279941i 0.833085 0.553145i \(-0.186572\pi\)
−0.553145 + 0.833085i \(0.686572\pi\)
\(164\) 2.43786 + 2.43786i 0.190365 + 0.190365i
\(165\) −2.41711 −0.188171
\(166\) −10.2307 10.2307i −0.794053 0.794053i
\(167\) −11.0130 −0.852213 −0.426107 0.904673i \(-0.640115\pi\)
−0.426107 + 0.904673i \(0.640115\pi\)
\(168\) 1.81327 1.92667i 0.139897 0.148646i
\(169\) −5.09139 −0.391646
\(170\) −1.97858 −0.151750
\(171\) 1.41596 1.41596i 0.108281 0.108281i
\(172\) −6.66860 6.66860i −0.508476 0.508476i
\(173\) −8.86813 −0.674232 −0.337116 0.941463i \(-0.609451\pi\)
−0.337116 + 0.941463i \(0.609451\pi\)
\(174\) −1.61984 5.13577i −0.122800 0.389342i
\(175\) 3.70540 + 3.48731i 0.280102 + 0.263616i
\(176\) 0.974388 0.974388i 0.0734473 0.0734473i
\(177\) 1.85223 1.85223i 0.139222 0.139222i
\(178\) 9.35702 0.701338
\(179\) 0.00698063i 0.000521757i −1.00000 0.000260878i \(-0.999917\pi\)
1.00000 0.000260878i \(-8.30402e-5\pi\)
\(180\) 1.75408 0.130741
\(181\) 10.6830i 0.794059i 0.917806 + 0.397030i \(0.129959\pi\)
−0.917806 + 0.397030i \(0.870041\pi\)
\(182\) 7.43703 0.225499i 0.551269 0.0167151i
\(183\) 7.54530i 0.557765i
\(184\) 5.67862 + 5.67862i 0.418633 + 0.418633i
\(185\) −0.149551 0.149551i −0.0109952 0.0109952i
\(186\) −7.15468 7.15468i −0.524606 0.524606i
\(187\) −1.55436 −0.113666
\(188\) −7.23024 7.23024i −0.527320 0.527320i
\(189\) 2.64454 0.0801852i 0.192362 0.00583262i
\(190\) 3.51247 0.254822
\(191\) 2.81779 2.81779i 0.203888 0.203888i −0.597776 0.801664i \(-0.703949\pi\)
0.801664 + 0.597776i \(0.203949\pi\)
\(192\) −0.707107 + 0.707107i −0.0510310 + 0.0510310i
\(193\) 4.23504 4.23504i 0.304845 0.304845i −0.538061 0.842906i \(-0.680843\pi\)
0.842906 + 0.538061i \(0.180843\pi\)
\(194\) 9.52387i 0.683774i
\(195\) 3.48806 + 3.48806i 0.249785 + 0.249785i
\(196\) 6.98714 0.424105i 0.499081 0.0302932i
\(197\) −25.1299 −1.79043 −0.895215 0.445635i \(-0.852978\pi\)
−0.895215 + 0.445635i \(0.852978\pi\)
\(198\) 1.37799 0.0979297
\(199\) 17.3537i 1.23017i −0.788461 0.615085i \(-0.789122\pi\)
0.788461 0.615085i \(-0.210878\pi\)
\(200\) −1.35992 1.35992i −0.0961608 0.0961608i
\(201\) 4.80142 4.80142i 0.338666 0.338666i
\(202\) 3.09409 0.217699
\(203\) 6.19163 12.8321i 0.434567 0.900639i
\(204\) 1.12799 0.0789750
\(205\) −4.27619 + 4.27619i −0.298662 + 0.298662i
\(206\) 0.376178 + 0.376178i 0.0262095 + 0.0262095i
\(207\) 8.03078i 0.558178i
\(208\) −2.81222 −0.194993
\(209\) 2.75938 0.190870
\(210\) 3.37952 + 3.18061i 0.233209 + 0.219483i
\(211\) −17.2024 17.2024i −1.18426 1.18426i −0.978629 0.205632i \(-0.934075\pi\)
−0.205632 0.978629i \(-0.565925\pi\)
\(212\) 11.0778i 0.760825i
\(213\) 10.3594 10.3594i 0.709813 0.709813i
\(214\) 3.30359 3.30359i 0.225829 0.225829i
\(215\) 11.6972 11.6972i 0.797745 0.797745i
\(216\) −1.00000 −0.0680414
\(217\) −0.811333 26.7581i −0.0550769 1.81646i
\(218\) 5.26277 + 5.26277i 0.356440 + 0.356440i
\(219\) −12.0261 −0.812649
\(220\) 1.70915 + 1.70915i 0.115231 + 0.115231i
\(221\) 2.24305 + 2.24305i 0.150884 + 0.150884i
\(222\) 0.0852589 + 0.0852589i 0.00572220 + 0.00572220i
\(223\) 20.3314i 1.36149i −0.732520 0.680746i \(-0.761656\pi\)
0.732520 0.680746i \(-0.238344\pi\)
\(224\) −2.64454 + 0.0801852i −0.176695 + 0.00535760i
\(225\) 1.92322i 0.128214i
\(226\) −18.0396 −1.19998
\(227\) 11.5582i 0.767143i 0.923511 + 0.383571i \(0.125306\pi\)
−0.923511 + 0.383571i \(0.874694\pi\)
\(228\) −2.00246 −0.132616
\(229\) −4.13109 + 4.13109i −0.272990 + 0.272990i −0.830303 0.557313i \(-0.811832\pi\)
0.557313 + 0.830303i \(0.311832\pi\)
\(230\) −9.96073 + 9.96073i −0.656791 + 0.656791i
\(231\) 2.65494 + 2.49867i 0.174682 + 0.164401i
\(232\) −2.48613 + 4.77694i −0.163223 + 0.313621i
\(233\) 18.9572 1.24193 0.620965 0.783838i \(-0.286741\pi\)
0.620965 + 0.783838i \(0.286741\pi\)
\(234\) −1.98854 1.98854i −0.129995 0.129995i
\(235\) 12.6824 12.6824i 0.827308 0.827308i
\(236\) −2.61946 −0.170512
\(237\) −0.512029 −0.0332599
\(238\) 2.17326 + 2.04535i 0.140872 + 0.132580i
\(239\) 0.644234 0.0416720 0.0208360 0.999783i \(-0.493367\pi\)
0.0208360 + 0.999783i \(0.493367\pi\)
\(240\) −1.24032 1.24032i −0.0800623 0.0800623i
\(241\) −1.19558 −0.0770140 −0.0385070 0.999258i \(-0.512260\pi\)
−0.0385070 + 0.999258i \(0.512260\pi\)
\(242\) −6.43547 6.43547i −0.413688 0.413688i
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 5.33534 5.33534i 0.341560 0.341560i
\(245\) 0.743913 + 12.2560i 0.0475269 + 0.783006i
\(246\) 2.43786 2.43786i 0.155432 0.155432i
\(247\) −3.98198 3.98198i −0.253368 0.253368i
\(248\) 10.1182i 0.642509i
\(249\) −10.2307 + 10.2307i −0.648342 + 0.648342i
\(250\) 8.58700 8.58700i 0.543089 0.543089i
\(251\) 2.41274 + 2.41274i 0.152291 + 0.152291i 0.779140 0.626849i \(-0.215656\pi\)
−0.626849 + 0.779140i \(0.715656\pi\)
\(252\) −1.92667 1.81327i −0.121369 0.114225i
\(253\) −7.82510 + 7.82510i −0.491960 + 0.491960i
\(254\) 12.9817i 0.814543i
\(255\) 1.97858i 0.123903i
\(256\) 1.00000 0.0625000
\(257\) 17.4543i 1.08877i −0.838836 0.544385i \(-0.816763\pi\)
0.838836 0.544385i \(-0.183237\pi\)
\(258\) −6.66860 + 6.66860i −0.415169 + 0.415169i
\(259\) 0.00966827 + 0.318863i 0.000600757 + 0.0198132i
\(260\) 4.93286i 0.305923i
\(261\) −5.13577 + 1.61984i −0.317896 + 0.100266i
\(262\) 15.2565i 0.942550i
\(263\) −12.2849 + 12.2849i −0.757520 + 0.757520i −0.975870 0.218351i \(-0.929932\pi\)
0.218351 + 0.975870i \(0.429932\pi\)
\(264\) −0.974388 0.974388i −0.0599695 0.0599695i
\(265\) 19.4313 1.19365
\(266\) −3.85808 3.63101i −0.236554 0.222631i
\(267\) 9.35702i 0.572640i
\(268\) −6.79023 −0.414779
\(269\) −3.54778 + 3.54778i −0.216312 + 0.216312i −0.806942 0.590630i \(-0.798879\pi\)
0.590630 + 0.806942i \(0.298879\pi\)
\(270\) 1.75408i 0.106750i
\(271\) 20.9376 20.9376i 1.27187 1.27187i 0.326766 0.945105i \(-0.394041\pi\)
0.945105 0.326766i \(-0.105959\pi\)
\(272\) −0.797609 0.797609i −0.0483621 0.0483621i
\(273\) −0.225499 7.43703i −0.0136478 0.450109i
\(274\) 13.8984i 0.839633i
\(275\) 1.87396 1.87396i 0.113004 0.113004i
\(276\) 5.67862 5.67862i 0.341813 0.341813i
\(277\) −9.79679 −0.588632 −0.294316 0.955708i \(-0.595092\pi\)
−0.294316 + 0.955708i \(0.595092\pi\)
\(278\) 0.0995688 + 0.0995688i 0.00597174 + 0.00597174i
\(279\) −7.15468 + 7.15468i −0.428339 + 0.428339i
\(280\) −0.140651 4.63872i −0.00840550 0.277216i
\(281\) 2.35918 0.140737 0.0703684 0.997521i \(-0.477583\pi\)
0.0703684 + 0.997521i \(0.477583\pi\)
\(282\) −7.23024 + 7.23024i −0.430555 + 0.430555i
\(283\) −30.8600 −1.83444 −0.917219 0.398383i \(-0.869571\pi\)
−0.917219 + 0.398383i \(0.869571\pi\)
\(284\) −14.6504 −0.869340
\(285\) 3.51247i 0.208061i
\(286\) 3.87523i 0.229147i
\(287\) 9.11745 0.276451i 0.538186 0.0163184i
\(288\) 0.707107 + 0.707107i 0.0416667 + 0.0416667i
\(289\) 15.7276i 0.925155i
\(290\) −8.37911 4.36087i −0.492039 0.256079i
\(291\) −9.52387 −0.558299
\(292\) 8.50374 + 8.50374i 0.497644 + 0.497644i
\(293\) 11.8321 + 11.8321i 0.691241 + 0.691241i 0.962505 0.271264i \(-0.0874416\pi\)
−0.271264 + 0.962505i \(0.587442\pi\)
\(294\) −0.424105 6.98714i −0.0247343 0.407498i
\(295\) 4.59472i 0.267515i
\(296\) 0.120574i 0.00700824i
\(297\) 1.37799i 0.0799593i
\(298\) 13.6942 + 13.6942i 0.793285 + 0.793285i
\(299\) 22.5844 1.30609
\(300\) −1.35992 + 1.35992i −0.0785150 + 0.0785150i
\(301\) −24.9402 + 0.756213i −1.43753 + 0.0435874i
\(302\) −11.9890 11.9890i −0.689888 0.689888i
\(303\) 3.09409i 0.177751i
\(304\) 1.41596 + 1.41596i 0.0812106 + 0.0812106i
\(305\) 9.35859 + 9.35859i 0.535871 + 0.535871i
\(306\) 1.12799i 0.0644828i
\(307\) 14.2537 + 14.2537i 0.813501 + 0.813501i 0.985157 0.171656i \(-0.0549117\pi\)
−0.171656 + 0.985157i \(0.554912\pi\)
\(308\) −0.110495 3.64415i −0.00629602 0.207645i
\(309\) 0.376178 0.376178i 0.0214000 0.0214000i
\(310\) −17.7482 −1.00803
\(311\) 8.29685 + 8.29685i 0.470471 + 0.470471i 0.902067 0.431596i \(-0.142049\pi\)
−0.431596 + 0.902067i \(0.642049\pi\)
\(312\) 2.81222i 0.159211i
\(313\) 32.7075i 1.84874i −0.381499 0.924369i \(-0.624592\pi\)
0.381499 0.924369i \(-0.375408\pi\)
\(314\) 22.4841i 1.26885i
\(315\) 3.18061 3.37952i 0.179207 0.190415i
\(316\) 0.362059 + 0.362059i 0.0203674 + 0.0203674i
\(317\) −15.3036 15.3036i −0.859539 0.859539i 0.131745 0.991284i \(-0.457942\pi\)
−0.991284 + 0.131745i \(0.957942\pi\)
\(318\) −11.0778 −0.621211
\(319\) −6.58259 3.42587i −0.368554 0.191812i
\(320\) 1.75408i 0.0980558i
\(321\) −3.30359 3.30359i −0.184389 0.184389i
\(322\) 21.2377 0.643950i 1.18353 0.0358859i
\(323\) 2.25876i 0.125681i
\(324\) 1.00000i 0.0555556i
\(325\) −5.40852 −0.300010
\(326\) −5.05446 −0.279941
\(327\) 5.26277 5.26277i 0.291032 0.291032i
\(328\) −3.44766 −0.190365
\(329\) −27.0407 + 0.819902i −1.49080 + 0.0452027i
\(330\) 1.70915 1.70915i 0.0940857 0.0940857i
\(331\) −19.8350 19.8350i −1.09023 1.09023i −0.995504 0.0947245i \(-0.969803\pi\)
−0.0947245 0.995504i \(-0.530197\pi\)
\(332\) 14.4683 0.794053
\(333\) 0.0852589 0.0852589i 0.00467216 0.00467216i
\(334\) 7.78738 7.78738i 0.426107 0.426107i
\(335\) 11.9106i 0.650745i
\(336\) 0.0801852 + 2.64454i 0.00437446 + 0.144271i
\(337\) −0.424044 0.424044i −0.0230991 0.0230991i 0.695463 0.718562i \(-0.255199\pi\)
−0.718562 + 0.695463i \(0.755199\pi\)
\(338\) 3.60016 3.60016i 0.195823 0.195823i
\(339\) 18.0396i 0.979779i
\(340\) 1.39907 1.39907i 0.0758750 0.0758750i
\(341\) −13.9429 −0.755049
\(342\) 2.00246i 0.108281i
\(343\) 11.8525 14.2309i 0.639973 0.768398i
\(344\) 9.43083 0.508476
\(345\) 9.96073 + 9.96073i 0.536268 + 0.536268i
\(346\) 6.27072 6.27072i 0.337116 0.337116i
\(347\) 10.5269i 0.565111i −0.959251 0.282556i \(-0.908818\pi\)
0.959251 0.282556i \(-0.0911821\pi\)
\(348\) 4.77694 + 2.48613i 0.256071 + 0.133271i
\(349\) 8.52015i 0.456073i −0.973653 0.228036i \(-0.926769\pi\)
0.973653 0.228036i \(-0.0732305\pi\)
\(350\) −5.08601 + 0.154213i −0.271859 + 0.00824306i
\(351\) −1.98854 + 1.98854i −0.106141 + 0.106141i
\(352\) 1.37799i 0.0734473i
\(353\) 11.8004 0.628075 0.314037 0.949411i \(-0.398318\pi\)
0.314037 + 0.949411i \(0.398318\pi\)
\(354\) 2.61946i 0.139222i
\(355\) 25.6979i 1.36390i
\(356\) −6.61641 + 6.61641i −0.350669 + 0.350669i
\(357\) 2.04535 2.17326i 0.108251 0.115021i
\(358\) 0.00493605 + 0.00493605i 0.000260878 + 0.000260878i
\(359\) 11.5953 11.5953i 0.611975 0.611975i −0.331485 0.943460i \(-0.607550\pi\)
0.943460 + 0.331485i \(0.107550\pi\)
\(360\) −1.24032 + 1.24032i −0.0653706 + 0.0653706i
\(361\) 14.9901i 0.788955i
\(362\) −7.55400 7.55400i −0.397030 0.397030i
\(363\) −6.43547 + 6.43547i −0.337775 + 0.337775i
\(364\) −5.09932 + 5.41823i −0.267277 + 0.283992i
\(365\) −14.9162 + 14.9162i −0.780750 + 0.780750i
\(366\) −5.33534 5.33534i −0.278882 0.278882i
\(367\) −4.64135 4.64135i −0.242277 0.242277i 0.575515 0.817791i \(-0.304802\pi\)
−0.817791 + 0.575515i \(0.804802\pi\)
\(368\) −8.03078 −0.418633
\(369\) −2.43786 2.43786i −0.126910 0.126910i
\(370\) 0.211496 0.0109952
\(371\) −21.3432 20.0870i −1.10808 1.04287i
\(372\) 10.1182 0.524606
\(373\) 5.39543 0.279365 0.139682 0.990196i \(-0.455392\pi\)
0.139682 + 0.990196i \(0.455392\pi\)
\(374\) 1.09910 1.09910i 0.0568331 0.0568331i
\(375\) −8.58700 8.58700i −0.443431 0.443431i
\(376\) 10.2251 0.527320
\(377\) 4.55537 + 14.4429i 0.234613 + 0.743849i
\(378\) −1.81327 + 1.92667i −0.0932645 + 0.0990971i
\(379\) −4.96063 + 4.96063i −0.254811 + 0.254811i −0.822940 0.568129i \(-0.807667\pi\)
0.568129 + 0.822940i \(0.307667\pi\)
\(380\) −2.48369 + 2.48369i −0.127411 + 0.127411i
\(381\) −12.9817 −0.665072
\(382\) 3.98495i 0.203888i
\(383\) −25.5817 −1.30717 −0.653583 0.756855i \(-0.726735\pi\)
−0.653583 + 0.756855i \(0.726735\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 6.39212 0.193816i 0.325773 0.00987778i
\(386\) 5.98925i 0.304845i
\(387\) 6.66860 + 6.66860i 0.338984 + 0.338984i
\(388\) 6.73439 + 6.73439i 0.341887 + 0.341887i
\(389\) 21.1746 + 21.1746i 1.07360 + 1.07360i 0.997067 + 0.0765299i \(0.0243841\pi\)
0.0765299 + 0.997067i \(0.475616\pi\)
\(390\) −4.93286 −0.249785
\(391\) 6.40542 + 6.40542i 0.323936 + 0.323936i
\(392\) −4.64077 + 5.24054i −0.234394 + 0.264687i
\(393\) 15.2565 0.769589
\(394\) 17.7695 17.7695i 0.895215 0.895215i
\(395\) −0.635080 + 0.635080i −0.0319543 + 0.0319543i
\(396\) −0.974388 + 0.974388i −0.0489649 + 0.0489649i
\(397\) 11.8569i 0.595082i −0.954709 0.297541i \(-0.903834\pi\)
0.954709 0.297541i \(-0.0961664\pi\)
\(398\) 12.2709 + 12.2709i 0.615085 + 0.615085i
\(399\) −3.63101 + 3.85808i −0.181778 + 0.193146i
\(400\) 1.92322 0.0961608
\(401\) 30.3495 1.51558 0.757791 0.652497i \(-0.226279\pi\)
0.757791 + 0.652497i \(0.226279\pi\)
\(402\) 6.79023i 0.338666i
\(403\) 20.1206 + 20.1206i 1.00228 + 1.00228i
\(404\) −2.18785 + 2.18785i −0.108850 + 0.108850i
\(405\) −1.75408 −0.0871608
\(406\) 4.69555 + 13.4518i 0.233036 + 0.667603i
\(407\) 0.166151 0.00823578
\(408\) −0.797609 + 0.797609i −0.0394875 + 0.0394875i
\(409\) 18.7328 + 18.7328i 0.926278 + 0.926278i 0.997463 0.0711847i \(-0.0226780\pi\)
−0.0711847 + 0.997463i \(0.522678\pi\)
\(410\) 6.04745i 0.298662i
\(411\) 13.8984 0.685557
\(412\) −0.531996 −0.0262095
\(413\) −4.74978 + 5.04682i −0.233721 + 0.248338i
\(414\) −5.67862 5.67862i −0.279089 0.279089i
\(415\) 25.3786i 1.24579i
\(416\) 1.98854 1.98854i 0.0974963 0.0974963i
\(417\) 0.0995688 0.0995688i 0.00487591 0.00487591i
\(418\) −1.95118 + 1.95118i −0.0954352 + 0.0954352i
\(419\) 20.5940 1.00608 0.503041 0.864263i \(-0.332215\pi\)
0.503041 + 0.864263i \(0.332215\pi\)
\(420\) −4.63872 + 0.140651i −0.226346 + 0.00686306i
\(421\) −8.18215 8.18215i −0.398774 0.398774i 0.479027 0.877800i \(-0.340990\pi\)
−0.877800 + 0.479027i \(0.840990\pi\)
\(422\) 24.3279 1.18426
\(423\) 7.23024 + 7.23024i 0.351546 + 0.351546i
\(424\) 7.83318 + 7.83318i 0.380413 + 0.380413i
\(425\) −1.53397 1.53397i −0.0744087 0.0744087i
\(426\) 14.6504i 0.709813i
\(427\) −0.605022 19.9538i −0.0292791 0.965634i
\(428\) 4.67199i 0.225829i
\(429\) −3.87523 −0.187098
\(430\) 16.5424i 0.797745i
\(431\) −19.8698 −0.957094 −0.478547 0.878062i \(-0.658836\pi\)
−0.478547 + 0.878062i \(0.658836\pi\)
\(432\) 0.707107 0.707107i 0.0340207 0.0340207i
\(433\) −22.7897 + 22.7897i −1.09520 + 1.09520i −0.100239 + 0.994963i \(0.531961\pi\)
−0.994963 + 0.100239i \(0.968039\pi\)
\(434\) 19.4945 + 18.3471i 0.935766 + 0.880689i
\(435\) −4.36087 + 8.37911i −0.209088 + 0.401748i
\(436\) −7.44268 −0.356440
\(437\) −11.3712 11.3712i −0.543959 0.543959i
\(438\) 8.50374 8.50374i 0.406325 0.406325i
\(439\) −14.5826 −0.695990 −0.347995 0.937496i \(-0.613137\pi\)
−0.347995 + 0.937496i \(0.613137\pi\)
\(440\) −2.41711 −0.115231
\(441\) −6.98714 + 0.424105i −0.332721 + 0.0201955i
\(442\) −3.17216 −0.150884
\(443\) −15.5422 15.5422i −0.738434 0.738434i 0.233841 0.972275i \(-0.424871\pi\)
−0.972275 + 0.233841i \(0.924871\pi\)
\(444\) −0.120574 −0.00572220
\(445\) −11.6057 11.6057i −0.550163 0.550163i
\(446\) 14.3765 + 14.3765i 0.680746 + 0.680746i
\(447\) 13.6942 13.6942i 0.647715 0.647715i
\(448\) 1.81327 1.92667i 0.0856689 0.0910265i
\(449\) 2.40542 2.40542i 0.113519 0.113519i −0.648066 0.761584i \(-0.724422\pi\)
0.761584 + 0.648066i \(0.224422\pi\)
\(450\) 1.35992 + 1.35992i 0.0641072 + 0.0641072i
\(451\) 4.75085i 0.223709i
\(452\) 12.7560 12.7560i 0.599990 0.599990i
\(453\) −11.9890 + 11.9890i −0.563291 + 0.563291i
\(454\) −8.17286 8.17286i −0.383571 0.383571i
\(455\) −9.50398 8.94460i −0.445554 0.419329i
\(456\) 1.41596 1.41596i 0.0663082 0.0663082i
\(457\) 0.681948i 0.0319002i −0.999873 0.0159501i \(-0.994923\pi\)
0.999873 0.0159501i \(-0.00507729\pi\)
\(458\) 5.84224i 0.272990i
\(459\) −1.12799 −0.0526500
\(460\) 14.0866i 0.656791i
\(461\) 2.19456 2.19456i 0.102211 0.102211i −0.654152 0.756363i \(-0.726974\pi\)
0.756363 + 0.654152i \(0.226974\pi\)
\(462\) −3.64415 + 0.110495i −0.169541 + 0.00514068i
\(463\) 13.3416i 0.620036i −0.950731 0.310018i \(-0.899665\pi\)
0.950731 0.310018i \(-0.100335\pi\)
\(464\) −1.61984 5.13577i −0.0751994 0.238422i
\(465\) 17.7482i 0.823052i
\(466\) −13.4048 + 13.4048i −0.620965 + 0.620965i
\(467\) 14.7760 + 14.7760i 0.683750 + 0.683750i 0.960843 0.277093i \(-0.0893710\pi\)
−0.277093 + 0.960843i \(0.589371\pi\)
\(468\) 2.81222 0.129995
\(469\) −12.3125 + 13.0825i −0.568539 + 0.604095i
\(470\) 17.9356i 0.827308i
\(471\) −22.4841 −1.03601
\(472\) 1.85223 1.85223i 0.0852560 0.0852560i
\(473\) 12.9956i 0.597539i
\(474\) 0.362059 0.362059i 0.0166299 0.0166299i
\(475\) 2.72319 + 2.72319i 0.124948 + 0.124948i
\(476\) −2.98301 + 0.0904480i −0.136726 + 0.00414568i
\(477\) 11.0778i 0.507217i
\(478\) −0.455542 + 0.455542i −0.0208360 + 0.0208360i
\(479\) −16.2787 + 16.2787i −0.743791 + 0.743791i −0.973305 0.229514i \(-0.926286\pi\)
0.229514 + 0.973305i \(0.426286\pi\)
\(480\) 1.75408 0.0800623
\(481\) −0.239767 0.239767i −0.0109324 0.0109324i
\(482\) 0.845402 0.845402i 0.0385070 0.0385070i
\(483\) −0.643950 21.2377i −0.0293007 0.966348i
\(484\) 9.10113 0.413688
\(485\) −11.8126 + 11.8126i −0.536384 + 0.536384i
\(486\) 1.00000 0.0453609
\(487\) −9.83563 −0.445695 −0.222848 0.974853i \(-0.571535\pi\)
−0.222848 + 0.974853i \(0.571535\pi\)
\(488\) 7.54530i 0.341560i
\(489\) 5.05446i 0.228570i
\(490\) −9.19231 8.14026i −0.415266 0.367739i
\(491\) 1.57380 + 1.57380i 0.0710244 + 0.0710244i 0.741727 0.670702i \(-0.234007\pi\)
−0.670702 + 0.741727i \(0.734007\pi\)
\(492\) 3.44766i 0.155432i
\(493\) −2.80433 + 5.38833i −0.126301 + 0.242678i
\(494\) 5.63138 0.253368
\(495\) −1.70915 1.70915i −0.0768207 0.0768207i
\(496\) −7.15468 7.15468i −0.321254 0.321254i
\(497\) −26.5651 + 28.2264i −1.19161 + 1.26613i
\(498\) 14.4683i 0.648342i
\(499\) 1.95275i 0.0874172i −0.999044 0.0437086i \(-0.986083\pi\)
0.999044 0.0437086i \(-0.0139173\pi\)
\(500\) 12.1438i 0.543089i
\(501\) −7.78738 7.78738i −0.347915 0.347915i
\(502\) −3.41213 −0.152291
\(503\) −3.73717 + 3.73717i −0.166632 + 0.166632i −0.785497 0.618865i \(-0.787593\pi\)
0.618865 + 0.785497i \(0.287593\pi\)
\(504\) 2.64454 0.0801852i 0.117797 0.00357173i
\(505\) −3.83766 3.83766i −0.170774 0.170774i
\(506\) 11.0664i 0.491960i
\(507\) −3.60016 3.60016i −0.159889 0.159889i
\(508\) 9.17944 + 9.17944i 0.407272 + 0.407272i
\(509\) 7.59158i 0.336491i −0.985745 0.168245i \(-0.946190\pi\)
0.985745 0.168245i \(-0.0538101\pi\)
\(510\) −1.39907 1.39907i −0.0619517 0.0619517i
\(511\) 31.8035 0.964316i 1.40690 0.0426588i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 2.00246 0.0884109
\(514\) 12.3421 + 12.3421i 0.544385 + 0.544385i
\(515\) 0.933161i 0.0411200i
\(516\) 9.43083i 0.415169i
\(517\) 14.0901i 0.619683i
\(518\) −0.232307 0.218634i −0.0102070 0.00960621i
\(519\) −6.27072 6.27072i −0.275254 0.275254i
\(520\) 3.48806 + 3.48806i 0.152961 + 0.152961i
\(521\) −29.0264 −1.27167 −0.635835 0.771825i \(-0.719344\pi\)
−0.635835 + 0.771825i \(0.719344\pi\)
\(522\) 2.48613 4.77694i 0.108815 0.209081i
\(523\) 21.0093i 0.918674i 0.888262 + 0.459337i \(0.151913\pi\)
−0.888262 + 0.459337i \(0.848087\pi\)
\(524\) −10.7880 10.7880i −0.471275 0.471275i
\(525\) 0.154213 + 5.08601i 0.00673043 + 0.221972i
\(526\) 17.3735i 0.757520i
\(527\) 11.4133i 0.497170i
\(528\) 1.37799 0.0599695
\(529\) 41.4934 1.80406
\(530\) −13.7400 + 13.7400i −0.596827 + 0.596827i
\(531\) 2.61946 0.113675
\(532\) 5.29559 0.160568i 0.229593 0.00696150i
\(533\) −6.85581 + 6.85581i −0.296958 + 0.296958i
\(534\) 6.61641 + 6.61641i 0.286320 + 0.286320i
\(535\) −8.19502 −0.354302
\(536\) 4.80142 4.80142i 0.207390 0.207390i
\(537\) 0.00493605 0.00493605i 0.000213006 0.000213006i
\(538\) 5.01732i 0.216312i
\(539\) −7.22143 6.39495i −0.311049 0.275450i
\(540\) 1.24032 + 1.24032i 0.0533748 + 0.0533748i
\(541\) 12.4891 12.4891i 0.536949 0.536949i −0.385682 0.922632i \(-0.626034\pi\)
0.922632 + 0.385682i \(0.126034\pi\)
\(542\) 29.6103i 1.27187i
\(543\) −7.55400 + 7.55400i −0.324173 + 0.324173i
\(544\) 1.12799 0.0483621
\(545\) 13.0550i 0.559216i
\(546\) 5.41823 + 5.09932i 0.231879 + 0.218231i
\(547\) 36.6230 1.56589 0.782943 0.622093i \(-0.213718\pi\)
0.782943 + 0.622093i \(0.213718\pi\)
\(548\) −9.82765 9.82765i −0.419816 0.419816i
\(549\) −5.33534 + 5.33534i −0.227707 + 0.227707i
\(550\) 2.65018i 0.113004i
\(551\) 4.97839 9.56564i 0.212087 0.407510i
\(552\) 8.03078i 0.341813i
\(553\) 1.35408 0.0410572i 0.0575813 0.00174593i
\(554\) 6.92738 6.92738i 0.294316 0.294316i
\(555\) 0.211496i 0.00897753i
\(556\) −0.140812 −0.00597174
\(557\) 26.9864i 1.14345i 0.820446 + 0.571724i \(0.193725\pi\)
−0.820446 + 0.571724i \(0.806275\pi\)
\(558\) 10.1182i 0.428339i
\(559\) 18.7536 18.7536i 0.793193 0.793193i
\(560\) 3.37952 + 3.18061i 0.142811 + 0.134405i
\(561\) −1.09910 1.09910i −0.0464040 0.0464040i
\(562\) −1.66819 + 1.66819i −0.0703684 + 0.0703684i
\(563\) 8.54805 8.54805i 0.360257 0.360257i −0.503650 0.863908i \(-0.668010\pi\)
0.863908 + 0.503650i \(0.168010\pi\)
\(564\) 10.2251i 0.430555i
\(565\) 22.3749 + 22.3749i 0.941320 + 0.941320i
\(566\) 21.8213 21.8213i 0.917219 0.917219i
\(567\) 1.92667 + 1.81327i 0.0809125 + 0.0761502i
\(568\) 10.3594 10.3594i 0.434670 0.434670i
\(569\) 9.68554 + 9.68554i 0.406039 + 0.406039i 0.880355 0.474316i \(-0.157305\pi\)
−0.474316 + 0.880355i \(0.657305\pi\)
\(570\) 2.48369 + 2.48369i 0.104030 + 0.104030i
\(571\) −15.6336 −0.654246 −0.327123 0.944982i \(-0.606079\pi\)
−0.327123 + 0.944982i \(0.606079\pi\)
\(572\) 2.74020 + 2.74020i 0.114573 + 0.114573i
\(573\) 3.98495 0.166474
\(574\) −6.25153 + 6.64249i −0.260934 + 0.277252i
\(575\) −15.4449 −0.644098
\(576\) −1.00000 −0.0416667
\(577\) −30.2982 + 30.2982i −1.26133 + 1.26133i −0.310880 + 0.950449i \(0.600624\pi\)
−0.950449 + 0.310880i \(0.899376\pi\)
\(578\) 11.1211 + 11.1211i 0.462578 + 0.462578i
\(579\) 5.98925 0.248905
\(580\) 9.00853 2.84133i 0.374059 0.117980i
\(581\) 26.2350 27.8757i 1.08841 1.15648i
\(582\) 6.73439 6.73439i 0.279150 0.279150i
\(583\) −10.7941 + 10.7941i −0.447044 + 0.447044i
\(584\) −12.0261 −0.497644
\(585\) 4.93286i 0.203949i
\(586\) −16.7332 −0.691241
\(587\) 43.6940i 1.80344i 0.432316 + 0.901722i \(0.357697\pi\)
−0.432316 + 0.901722i \(0.642303\pi\)
\(588\) 5.24054 + 4.64077i 0.216116 + 0.191382i
\(589\) 20.2614i 0.834857i
\(590\) 3.24896 + 3.24896i 0.133758 + 0.133758i
\(591\) −17.7695 17.7695i −0.730940 0.730940i
\(592\) 0.0852589 + 0.0852589i 0.00350412 + 0.00350412i
\(593\) 0.850948 0.0349442 0.0174721 0.999847i \(-0.494438\pi\)
0.0174721 + 0.999847i \(0.494438\pi\)
\(594\) 0.974388 + 0.974388i 0.0399796 + 0.0399796i
\(595\) −0.158653 5.23242i −0.00650413 0.214508i
\(596\) −19.3666 −0.793285
\(597\) 12.2709 12.2709i 0.502215 0.502215i
\(598\) −15.9696 + 15.9696i −0.653043 + 0.653043i
\(599\) −1.77481 + 1.77481i −0.0725166 + 0.0725166i −0.742435 0.669918i \(-0.766329\pi\)
0.669918 + 0.742435i \(0.266329\pi\)
\(600\) 1.92322i 0.0785150i
\(601\) −7.09714 7.09714i −0.289498 0.289498i 0.547384 0.836882i \(-0.315624\pi\)
−0.836882 + 0.547384i \(0.815624\pi\)
\(602\) 17.1006 18.1701i 0.696970 0.740557i
\(603\) 6.79023 0.276520
\(604\) 16.9550 0.689888
\(605\) 15.9641i 0.649032i
\(606\) 2.18785 + 2.18785i 0.0888754 + 0.0888754i
\(607\) −19.8800 + 19.8800i −0.806906 + 0.806906i −0.984164 0.177259i \(-0.943277\pi\)
0.177259 + 0.984164i \(0.443277\pi\)
\(608\) −2.00246 −0.0812106
\(609\) 13.4518 4.69555i 0.545096 0.190273i
\(610\) −13.2350 −0.535871
\(611\) 20.3331 20.3331i 0.822588 0.822588i
\(612\) 0.797609 + 0.797609i 0.0322414 + 0.0322414i
\(613\) 1.15003i 0.0464494i 0.999730 + 0.0232247i \(0.00739332\pi\)
−0.999730 + 0.0232247i \(0.992607\pi\)
\(614\) −20.1578 −0.813501
\(615\) −6.04745 −0.243857
\(616\) 2.65494 + 2.49867i 0.106970 + 0.100674i
\(617\) 6.24774 + 6.24774i 0.251525 + 0.251525i 0.821596 0.570071i \(-0.193084\pi\)
−0.570071 + 0.821596i \(0.693084\pi\)
\(618\) 0.531996i 0.0214000i
\(619\) −16.9109 + 16.9109i −0.679707 + 0.679707i −0.959934 0.280227i \(-0.909590\pi\)
0.280227 + 0.959934i \(0.409590\pi\)
\(620\) 12.5498 12.5498i 0.504014 0.504014i
\(621\) −5.67862 + 5.67862i −0.227875 + 0.227875i
\(622\) −11.7335 −0.470471
\(623\) 0.750295 + 24.7450i 0.0300599 + 0.991387i
\(624\) −1.98854 1.98854i −0.0796054 0.0796054i
\(625\) −11.6852 −0.467406
\(626\) 23.1277 + 23.1277i 0.924369 + 0.924369i
\(627\) 1.95118 + 1.95118i 0.0779225 + 0.0779225i
\(628\) 15.8986 + 15.8986i 0.634424 + 0.634424i
\(629\) 0.136006i 0.00542293i
\(630\) 0.140651 + 4.63872i 0.00560367 + 0.184811i
\(631\) 28.9630i 1.15300i −0.817098 0.576499i \(-0.804419\pi\)
0.817098 0.576499i \(-0.195581\pi\)
\(632\) −0.512029 −0.0203674
\(633\) 24.3279i 0.966945i
\(634\) 21.6426 0.859539
\(635\) −16.1014 + 16.1014i −0.638966 + 0.638966i
\(636\) 7.83318 7.83318i 0.310606 0.310606i
\(637\) 1.19268 + 19.6494i 0.0472557 + 0.778538i
\(638\) 7.07705 2.23213i 0.280183 0.0883710i
\(639\) 14.6504 0.579560
\(640\) −1.24032 1.24032i −0.0490279 0.0490279i
\(641\) 10.7959 10.7959i 0.426411 0.426411i −0.460993 0.887404i \(-0.652507\pi\)
0.887404 + 0.460993i \(0.152507\pi\)
\(642\) 4.67199 0.184389
\(643\) −29.7180 −1.17196 −0.585982 0.810324i \(-0.699291\pi\)
−0.585982 + 0.810324i \(0.699291\pi\)
\(644\) −14.5620 + 15.4727i −0.573822 + 0.609708i
\(645\) 16.5424 0.651356
\(646\) 1.59718 + 1.59718i 0.0628403 + 0.0628403i
\(647\) −5.96838 −0.234641 −0.117321 0.993094i \(-0.537431\pi\)
−0.117321 + 0.993094i \(0.537431\pi\)
\(648\) −0.707107 0.707107i −0.0277778 0.0277778i
\(649\) 2.55237 + 2.55237i 0.100189 + 0.100189i
\(650\) 3.82440 3.82440i 0.150005 0.150005i
\(651\) 18.3471 19.4945i 0.719080 0.764050i
\(652\) 3.57404 3.57404i 0.139970 0.139970i
\(653\) 18.5939 + 18.5939i 0.727637 + 0.727637i 0.970148 0.242512i \(-0.0779713\pi\)
−0.242512 + 0.970148i \(0.577971\pi\)
\(654\) 7.44268i 0.291032i
\(655\) 18.9229 18.9229i 0.739381 0.739381i
\(656\) 2.43786 2.43786i 0.0951825 0.0951825i
\(657\) −8.50374 8.50374i −0.331763 0.331763i
\(658\) 18.5409 19.7004i 0.722799 0.768001i
\(659\) −14.2598 + 14.2598i −0.555482 + 0.555482i −0.928018 0.372536i \(-0.878488\pi\)
0.372536 + 0.928018i \(0.378488\pi\)
\(660\) 2.41711i 0.0940857i
\(661\) 7.46111i 0.290204i −0.989417 0.145102i \(-0.953649\pi\)
0.989417 0.145102i \(-0.0463510\pi\)
\(662\) 28.0509 1.09023
\(663\) 3.17216i 0.123196i
\(664\) −10.2307 + 10.2307i −0.397027 + 0.397027i
\(665\) 0.281648 + 9.28886i 0.0109219 + 0.360207i
\(666\) 0.120574i 0.00467216i
\(667\) 13.0086 + 41.2442i 0.503695 + 1.59698i
\(668\) 11.0130i 0.426107i
\(669\) 14.3765 14.3765i 0.555827 0.555827i
\(670\) 8.42205 + 8.42205i 0.325372 + 0.325372i
\(671\) −10.3974 −0.401386
\(672\) −1.92667 1.81327i −0.0743229 0.0699484i
\(673\) 11.2747i 0.434609i 0.976104 + 0.217304i \(0.0697264\pi\)
−0.976104 + 0.217304i \(0.930274\pi\)
\(674\) 0.599688 0.0230991
\(675\) 1.35992 1.35992i 0.0523433 0.0523433i
\(676\) 5.09139i 0.195823i
\(677\) 20.3459 20.3459i 0.781957 0.781957i −0.198204 0.980161i \(-0.563511\pi\)
0.980161 + 0.198204i \(0.0635108\pi\)
\(678\) −12.7560 12.7560i −0.489889 0.489889i
\(679\) 25.1862 0.763674i 0.966558 0.0293071i
\(680\) 1.97858i 0.0758750i
\(681\) −8.17286 + 8.17286i −0.313185 + 0.313185i
\(682\) 9.85910 9.85910i 0.377524 0.377524i
\(683\) −29.8656 −1.14277 −0.571387 0.820680i \(-0.693595\pi\)
−0.571387 + 0.820680i \(0.693595\pi\)
\(684\) −1.41596 1.41596i −0.0541404 0.0541404i
\(685\) 17.2384 17.2384i 0.658647 0.658647i
\(686\) 1.68183 + 18.4437i 0.0642125 + 0.704185i
\(687\) −5.84224 −0.222895
\(688\) −6.66860 + 6.66860i −0.254238 + 0.254238i
\(689\) 31.1532 1.18684
\(690\) −14.0866 −0.536268
\(691\) 15.0394i 0.572126i −0.958211 0.286063i \(-0.907653\pi\)
0.958211 0.286063i \(-0.0923467\pi\)
\(692\) 8.86813i 0.337116i
\(693\) 0.110495 + 3.64415i 0.00419735 + 0.138430i
\(694\) 7.44361 + 7.44361i 0.282556 + 0.282556i
\(695\) 0.246994i 0.00936903i
\(696\) −5.13577 + 1.61984i −0.194671 + 0.0614000i
\(697\) −3.88892 −0.147303
\(698\) 6.02465 + 6.02465i 0.228036 + 0.228036i
\(699\) 13.4048 + 13.4048i 0.507016 + 0.507016i
\(700\) 3.48731 3.70540i 0.131808 0.140051i
\(701\) 27.2445i 1.02901i 0.857487 + 0.514505i \(0.172024\pi\)
−0.857487 + 0.514505i \(0.827976\pi\)
\(702\) 2.81222i 0.106141i
\(703\) 0.241446i 0.00910629i
\(704\) −0.974388 0.974388i −0.0367236 0.0367236i
\(705\) 17.9356 0.675495
\(706\) −8.34418 + 8.34418i −0.314037 + 0.314037i
\(707\) 0.248100 + 8.18243i 0.00933076 + 0.307732i
\(708\) −1.85223 1.85223i −0.0696112 0.0696112i
\(709\) 45.8587i 1.72226i 0.508384 + 0.861130i \(0.330243\pi\)
−0.508384 + 0.861130i \(0.669757\pi\)
\(710\) 18.1711 + 18.1711i 0.681951 + 0.681951i
\(711\) −0.362059 0.362059i −0.0135783 0.0135783i
\(712\) 9.35702i 0.350669i
\(713\) 57.4576 + 57.4576i 2.15181 + 2.15181i
\(714\) 0.0904480 + 2.98301i 0.00338493 + 0.111636i
\(715\) −4.80652 + 4.80652i −0.179754 + 0.179754i
\(716\) −0.00698063 −0.000260878
\(717\) 0.455542 + 0.455542i 0.0170125 + 0.0170125i
\(718\) 16.3982i 0.611975i
\(719\) 1.27022i 0.0473713i 0.999719 + 0.0236857i \(0.00754009\pi\)
−0.999719 + 0.0236857i \(0.992460\pi\)
\(720\) 1.75408i 0.0653706i
\(721\) −0.964651 + 1.02498i −0.0359255 + 0.0381722i
\(722\) 10.5996 + 10.5996i 0.394477 + 0.394477i
\(723\) −0.845402 0.845402i −0.0314408 0.0314408i
\(724\) 10.6830 0.397030
\(725\) −3.11531 9.87719i −0.115700 0.366830i
\(726\) 9.10113i 0.337775i
\(727\) 9.96164 + 9.96164i 0.369457 + 0.369457i 0.867279 0.497822i \(-0.165867\pi\)
−0.497822 + 0.867279i \(0.665867\pi\)
\(728\) −0.225499 7.43703i −0.00835754 0.275635i
\(729\) 1.00000i 0.0370370i
\(730\) 21.0947i 0.780750i
\(731\) 10.6379 0.393456
\(732\) 7.54530 0.278882
\(733\) −16.3802 + 16.3802i −0.605016 + 0.605016i −0.941639 0.336623i \(-0.890715\pi\)
0.336623 + 0.941639i \(0.390715\pi\)
\(734\) 6.56386 0.242277
\(735\) −8.14026 + 9.19231i −0.300258 + 0.339064i
\(736\) 5.67862 5.67862i 0.209317 0.209317i
\(737\) 6.61632 + 6.61632i 0.243715 + 0.243715i
\(738\) 3.44766 0.126910
\(739\) 37.0687 37.0687i 1.36359 1.36359i 0.494303 0.869290i \(-0.335423\pi\)
0.869290 0.494303i \(-0.164577\pi\)
\(740\) −0.149551 + 0.149551i −0.00549759 + 0.00549759i
\(741\) 5.63138i 0.206874i
\(742\) 29.2956 0.888274i 1.07548 0.0326096i
\(743\) −10.8389 10.8389i −0.397641 0.397641i 0.479759 0.877400i \(-0.340724\pi\)
−0.877400 + 0.479759i \(0.840724\pi\)
\(744\) −7.15468 + 7.15468i −0.262303 + 0.262303i
\(745\) 33.9704i 1.24458i
\(746\) −3.81515 + 3.81515i −0.139682 + 0.139682i
\(747\) −14.4683 −0.529369
\(748\) 1.55436i 0.0568331i
\(749\) 9.00137 + 8.47158i 0.328903 + 0.309545i
\(750\) 12.1438 0.443431
\(751\) −16.3442 16.3442i −0.596407 0.596407i 0.342948 0.939354i \(-0.388575\pi\)
−0.939354 + 0.342948i \(0.888575\pi\)
\(752\) −7.23024 + 7.23024i −0.263660 + 0.263660i
\(753\) 3.41213i 0.124345i
\(754\) −13.4338 6.99156i −0.489231 0.254618i
\(755\) 29.7403i 1.08236i
\(756\) −0.0801852 2.64454i −0.00291631 0.0961808i
\(757\) 11.3964 11.3964i 0.414210 0.414210i −0.468992 0.883202i \(-0.655383\pi\)
0.883202 + 0.468992i \(0.155383\pi\)
\(758\) 7.01540i 0.254811i
\(759\) −11.0664 −0.401683
\(760\) 3.51247i 0.127411i
\(761\) 20.8510i 0.755848i 0.925837 + 0.377924i \(0.123362\pi\)
−0.925837 + 0.377924i \(0.876638\pi\)
\(762\) 9.17944 9.17944i 0.332536 0.332536i
\(763\) −13.4956 + 14.3396i −0.488573 + 0.519128i
\(764\) −2.81779 2.81779i −0.101944 0.101944i
\(765\) −1.39907 + 1.39907i −0.0505834 + 0.0505834i
\(766\) 18.0890 18.0890i 0.653583 0.653583i
\(767\) 7.36650i 0.265989i
\(768\) 0.707107 + 0.707107i 0.0255155 + 0.0255155i
\(769\) −22.2038 + 22.2038i −0.800691 + 0.800691i −0.983203 0.182513i \(-0.941577\pi\)
0.182513 + 0.983203i \(0.441577\pi\)
\(770\) −4.38286 + 4.65696i −0.157947 + 0.167825i
\(771\) 12.3421 12.3421i 0.444488 0.444488i
\(772\) −4.23504 4.23504i −0.152423 0.152423i
\(773\) 18.2554 + 18.2554i 0.656600 + 0.656600i 0.954574 0.297974i \(-0.0963110\pi\)
−0.297974 + 0.954574i \(0.596311\pi\)
\(774\) −9.43083 −0.338984
\(775\) −13.7600 13.7600i −0.494273 0.494273i
\(776\) −9.52387 −0.341887
\(777\) −0.218634 + 0.232307i −0.00784344 + 0.00833396i
\(778\) −29.9455 −1.07360
\(779\) 6.90380 0.247354
\(780\) 3.48806 3.48806i 0.124892 0.124892i
\(781\) 14.2752 + 14.2752i 0.510805 + 0.510805i
\(782\) −9.05863 −0.323936
\(783\) −4.77694 2.48613i −0.170714 0.0888471i
\(784\) −0.424105 6.98714i −0.0151466 0.249541i
\(785\) −27.8874 + 27.8874i −0.995344 + 0.995344i
\(786\) −10.7880 + 10.7880i −0.384795 + 0.384795i
\(787\) −4.85460 −0.173048 −0.0865240 0.996250i \(-0.527576\pi\)
−0.0865240 + 0.996250i \(0.527576\pi\)
\(788\) 25.1299i 0.895215i
\(789\) −17.3735 −0.618512
\(790\) 0.898139i 0.0319543i
\(791\) −1.44651 47.7065i −0.0514321 1.69625i
\(792\) 1.37799i 0.0489649i
\(793\) 15.0042 + 15.0042i 0.532813 + 0.532813i
\(794\) 8.38411 + 8.38411i 0.297541 + 0.297541i
\(795\) 13.7400 + 13.7400i 0.487307 + 0.487307i
\(796\) −17.3537 −0.615085
\(797\) 21.8979 + 21.8979i 0.775664 + 0.775664i 0.979090 0.203427i \(-0.0652078\pi\)
−0.203427 + 0.979090i \(0.565208\pi\)
\(798\) −0.160568 5.29559i −0.00568404 0.187462i
\(799\) 11.5338 0.408037
\(800\) −1.35992 + 1.35992i −0.0480804 + 0.0480804i
\(801\) 6.61641 6.61641i 0.233779 0.233779i
\(802\) −21.4603 + 21.4603i −0.757791 + 0.757791i
\(803\) 16.5719i 0.584810i
\(804\) −4.80142 4.80142i −0.169333 0.169333i
\(805\) −27.1402 25.5428i −0.956567 0.900266i
\(806\) −28.4548 −1.00228
\(807\) −5.01732 −0.176618
\(808\) 3.09409i 0.108850i
\(809\) −38.1732 38.1732i −1.34210 1.34210i −0.893970 0.448126i \(-0.852092\pi\)
−0.448126 0.893970i \(-0.647908\pi\)
\(810\) 1.24032 1.24032i 0.0435804 0.0435804i
\(811\) 22.3267 0.783996 0.391998 0.919966i \(-0.371784\pi\)
0.391998 + 0.919966i \(0.371784\pi\)
\(812\) −12.8321 6.19163i −0.450320 0.217284i
\(813\) 29.6103 1.03848
\(814\) −0.117486 + 0.117486i −0.00411789 + 0.00411789i
\(815\) 6.26914 + 6.26914i 0.219598 + 0.219598i
\(816\) 1.12799i 0.0394875i
\(817\) −18.8849 −0.660699
\(818\) −26.4922 −0.926278
\(819\) 5.09932 5.41823i 0.178185 0.189328i
\(820\) 4.27619 + 4.27619i 0.149331 + 0.149331i
\(821\) 38.8842i 1.35707i −0.734569 0.678534i \(-0.762616\pi\)
0.734569 0.678534i \(-0.237384\pi\)
\(822\) −9.82765 + 9.82765i −0.342779 + 0.342779i
\(823\) 17.1334 17.1334i 0.597232 0.597232i −0.342343 0.939575i \(-0.611220\pi\)
0.939575 + 0.342343i \(0.111220\pi\)
\(824\) 0.376178 0.376178i 0.0131048 0.0131048i
\(825\) 2.65018 0.0922674
\(826\) −0.210042 6.92724i −0.00730828 0.241030i
\(827\) −27.1714 27.1714i −0.944843 0.944843i 0.0537133 0.998556i \(-0.482894\pi\)
−0.998556 + 0.0537133i \(0.982894\pi\)
\(828\) 8.03078 0.279089
\(829\) 12.2851 + 12.2851i 0.426681 + 0.426681i 0.887496 0.460815i \(-0.152443\pi\)
−0.460815 + 0.887496i \(0.652443\pi\)
\(830\) −17.9454 17.9454i −0.622893 0.622893i
\(831\) −6.92738 6.92738i −0.240308 0.240308i
\(832\) 2.81222i 0.0974963i
\(833\) −5.23473 + 5.91127i −0.181373 + 0.204814i
\(834\) 0.140812i 0.00487591i
\(835\) −19.3177 −0.668516
\(836\) 2.75938i 0.0954352i
\(837\) −10.1182 −0.349738
\(838\) −14.5621 + 14.5621i −0.503041 + 0.503041i
\(839\) 10.4253 10.4253i 0.359920 0.359920i −0.503863 0.863783i \(-0.668088\pi\)
0.863783 + 0.503863i \(0.168088\pi\)
\(840\) 3.18061 3.37952i 0.109742 0.116605i
\(841\) −23.7522 + 16.6383i −0.819042 + 0.573734i
\(842\) 11.5713 0.398774
\(843\) 1.66819 + 1.66819i 0.0574556 + 0.0574556i
\(844\) −17.2024 + 17.2024i −0.592131 + 0.592131i
\(845\) −8.93069 −0.307225
\(846\) −10.2251 −0.351546
\(847\) 16.5028 17.5349i 0.567043 0.602505i
\(848\) −11.0778 −0.380413
\(849\) −21.8213 21.8213i −0.748906 0.748906i
\(850\) 2.16937 0.0744087
\(851\) −0.684695 0.684695i −0.0234711 0.0234711i
\(852\) −10.3594 10.3594i −0.354907 0.354907i
\(853\) −9.04834 + 9.04834i −0.309809 + 0.309809i −0.844835 0.535026i \(-0.820302\pi\)
0.535026 + 0.844835i \(0.320302\pi\)
\(854\) 14.5373 + 13.6817i 0.497456 + 0.468177i
\(855\) 2.48369 2.48369i 0.0849405 0.0849405i
\(856\) −3.30359 3.30359i −0.112915 0.112915i
\(857\) 40.0792i 1.36908i −0.728976 0.684539i \(-0.760003\pi\)
0.728976 0.684539i \(-0.239997\pi\)
\(858\) 2.74020 2.74020i 0.0935489 0.0935489i
\(859\) 26.1486 26.1486i 0.892179 0.892179i −0.102549 0.994728i \(-0.532700\pi\)
0.994728 + 0.102549i \(0.0326998\pi\)
\(860\) −11.6972 11.6972i −0.398873 0.398873i
\(861\) 6.64249 + 6.25153i 0.226376 + 0.213052i
\(862\) 14.0501 14.0501i 0.478547 0.478547i
\(863\) 32.1806i 1.09544i 0.836661 + 0.547721i \(0.184504\pi\)
−0.836661 + 0.547721i \(0.815496\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) −15.5554 −0.528899
\(866\) 32.2295i 1.09520i
\(867\) 11.1211 11.1211i 0.377693 0.377693i
\(868\) −26.7581 + 0.811333i −0.908228 + 0.0275384i
\(869\) 0.705573i 0.0239349i
\(870\) −2.84133 9.00853i −0.0963301 0.305418i
\(871\) 19.0957i 0.647031i
\(872\) 5.26277 5.26277i 0.178220 0.178220i
\(873\) −6.73439 6.73439i −0.227925 0.227925i
\(874\) 16.0813 0.543959
\(875\) 23.3972 + 22.0201i 0.790969 + 0.744414i
\(876\) 12.0261i 0.406325i
\(877\) −31.6495 −1.06873 −0.534364 0.845254i \(-0.679449\pi\)
−0.534364 + 0.845254i \(0.679449\pi\)
\(878\) 10.3115 10.3115i 0.347995 0.347995i
\(879\) 16.7332i 0.564396i
\(880\) 1.70915 1.70915i 0.0576155 0.0576155i
\(881\) −22.1844 22.1844i −0.747412 0.747412i 0.226580 0.973993i \(-0.427246\pi\)
−0.973993 + 0.226580i \(0.927246\pi\)
\(882\) 4.64077 5.24054i 0.156263 0.176458i
\(883\) 44.6781i 1.50354i −0.659427 0.751769i \(-0.729201\pi\)
0.659427 0.751769i \(-0.270799\pi\)
\(884\) 2.24305 2.24305i 0.0754421 0.0754421i
\(885\) 3.24896 3.24896i 0.109213 0.109213i
\(886\) 21.9801 0.738434
\(887\) −4.69607 4.69607i −0.157678 0.157678i 0.623859 0.781537i \(-0.285564\pi\)
−0.781537 + 0.623859i \(0.785564\pi\)
\(888\) 0.0852589 0.0852589i 0.00286110 0.00286110i
\(889\) 34.3305 1.04094i 1.15141 0.0349120i
\(890\) 16.4129 0.550163
\(891\) 0.974388 0.974388i 0.0326432 0.0326432i
\(892\) −20.3314 −0.680746
\(893\) −20.4754 −0.685183
\(894\) 19.3666i 0.647715i
\(895\) 0.0122446i 0.000409290i
\(896\) 0.0801852 + 2.64454i 0.00267880 + 0.0883477i
\(897\) 15.9696 + 15.9696i 0.533208 + 0.533208i
\(898\) 3.40178i 0.113519i
\(899\) −25.1553 + 48.3342i −0.838976 + 1.61204i
\(900\) −1.92322 −0.0641072
\(901\) 8.83574 + 8.83574i 0.294361 + 0.294361i
\(902\) 3.35936 + 3.35936i 0.111854 + 0.111854i
\(903\) −18.1701 17.1006i −0.604663 0.569074i
\(904\) 18.0396i 0.599990i
\(905\) 18.7388i 0.622897i
\(906\) 16.9550i 0.563291i
\(907\) −5.89049 5.89049i −0.195590 0.195590i 0.602516 0.798107i \(-0.294165\pi\)
−0.798107 + 0.602516i \(0.794165\pi\)
\(908\) 11.5582 0.383571
\(909\) 2.18785 2.18785i 0.0725664 0.0725664i
\(910\) 13.0451 0.395542i 0.432441 0.0131121i
\(911\) 13.5248 + 13.5248i 0.448097 + 0.448097i 0.894721 0.446625i \(-0.147374\pi\)
−0.446625 + 0.894721i \(0.647374\pi\)
\(912\) 2.00246i 0.0663082i
\(913\) −14.0978 14.0978i −0.466569 0.466569i
\(914\) 0.482210 + 0.482210i 0.0159501 + 0.0159501i
\(915\) 13.2350i 0.437537i
\(916\) 4.13109 + 4.13109i 0.136495 + 0.136495i
\(917\) −40.3464 + 1.22335i −1.33236 + 0.0403985i
\(918\) 0.797609 0.797609i 0.0263250 0.0263250i
\(919\) −49.7198 −1.64010 −0.820052 0.572289i \(-0.806056\pi\)
−0.820052 + 0.572289i \(0.806056\pi\)
\(920\) 9.96073 + 9.96073i 0.328396 + 0.328396i
\(921\) 20.1578i 0.664221i
\(922\) 3.10357i 0.102211i
\(923\) 41.2002i 1.35612i
\(924\) 2.49867 2.65494i 0.0822003 0.0873410i
\(925\) 0.163971 + 0.163971i 0.00539134 + 0.00539134i
\(926\) 9.43393 + 9.43393i 0.310018 + 0.310018i
\(927\) 0.531996 0.0174730
\(928\) 4.77694 + 2.48613i 0.156811 + 0.0816113i
\(929\) 11.2264i 0.368325i 0.982896 + 0.184163i \(0.0589573\pi\)
−0.982896 + 0.184163i \(0.941043\pi\)
\(930\) −12.5498 12.5498i −0.411526 0.411526i
\(931\) 9.29296 10.4940i 0.304565 0.343927i
\(932\) 18.9572i 0.620965i
\(933\) 11.7335i 0.384138i
\(934\) −20.8964 −0.683750
\(935\) −2.72647 −0.0891651
\(936\) −1.98854 + 1.98854i −0.0649976 + 0.0649976i
\(937\) 1.32768 0.0433733 0.0216866 0.999765i \(-0.493096\pi\)
0.0216866 + 0.999765i \(0.493096\pi\)
\(938\) −0.544476 17.9570i −0.0177778 0.586317i
\(939\) 23.1277 23.1277i 0.754744 0.754744i
\(940\) −12.6824 12.6824i −0.413654 0.413654i
\(941\) −38.4127 −1.25222 −0.626109 0.779736i \(-0.715353\pi\)
−0.626109 + 0.779736i \(0.715353\pi\)
\(942\) 15.8986 15.8986i 0.518005 0.518005i
\(943\) −19.5779 + 19.5779i −0.637545 + 0.637545i
\(944\) 2.61946i 0.0852560i
\(945\) 4.63872 0.140651i 0.150898 0.00457538i
\(946\) −9.18929 9.18929i −0.298770 0.298770i
\(947\) 28.6572 28.6572i 0.931235 0.931235i −0.0665485 0.997783i \(-0.521199\pi\)
0.997783 + 0.0665485i \(0.0211987\pi\)
\(948\) 0.512029i 0.0166299i
\(949\) −23.9144 + 23.9144i −0.776296 + 0.776296i
\(950\) −3.85117 −0.124948
\(951\) 21.6426i 0.701810i
\(952\) 2.04535 2.17326i 0.0662901 0.0704358i
\(953\) −6.91902 −0.224129 −0.112065 0.993701i \(-0.535746\pi\)
−0.112065 + 0.993701i \(0.535746\pi\)
\(954\) −7.83318 7.83318i −0.253608 0.253608i
\(955\) 4.94262 4.94262i 0.159939 0.159939i
\(956\) 0.644234i 0.0208360i
\(957\) −2.23213 7.07705i −0.0721547 0.228769i
\(958\) 23.0215i 0.743791i
\(959\) −36.7548 + 1.11445i −1.18687 + 0.0359873i
\(960\) −1.24032 + 1.24032i −0.0400311 + 0.0400311i
\(961\) 71.3788i 2.30254i
\(962\) 0.339082 0.0109324
\(963\) 4.67199i 0.150553i
\(964\) 1.19558i 0.0385070i
\(965\) 7.42859 7.42859i 0.239135 0.239135i
\(966\) 15.4727 + 14.5620i 0.497824 + 0.468524i
\(967\) −34.5265 34.5265i −1.11030 1.11030i −0.993110 0.117188i \(-0.962612\pi\)
−0.117188 0.993110i \(-0.537388\pi\)
\(968\) −6.43547 + 6.43547i −0.206844 + 0.206844i
\(969\) 1.59718 1.59718i 0.0513089 0.0513089i
\(970\) 16.7056i 0.536384i
\(971\) 27.8144 + 27.8144i 0.892607 + 0.892607i 0.994768 0.102161i \(-0.0325757\pi\)
−0.102161 + 0.994768i \(0.532576\pi\)
\(972\) −0.707107 + 0.707107i −0.0226805 + 0.0226805i
\(973\) −0.255329 + 0.271297i −0.00818549 + 0.00869739i
\(974\) 6.95484 6.95484i 0.222848 0.222848i
\(975\) −3.82440 3.82440i −0.122479 0.122479i
\(976\) −5.33534 5.33534i −0.170780 0.170780i
\(977\) 15.4743 0.495066 0.247533 0.968879i \(-0.420380\pi\)
0.247533 + 0.968879i \(0.420380\pi\)
\(978\) −3.57404 3.57404i −0.114285 0.114285i
\(979\) 12.8939 0.412091
\(980\) 12.2560 0.743913i 0.391503 0.0237634i
\(981\) 7.44268 0.237627
\(982\) −2.22568 −0.0710244
\(983\) −6.29237 + 6.29237i −0.200695 + 0.200695i −0.800298 0.599602i \(-0.795325\pi\)
0.599602 + 0.800298i \(0.295325\pi\)
\(984\) −2.43786 2.43786i −0.0777162 0.0777162i
\(985\) −44.0797 −1.40450
\(986\) −1.82717 5.79309i −0.0581888 0.184490i
\(987\) −19.7004 18.5409i −0.627071 0.590163i
\(988\) −3.98198 + 3.98198i −0.126684 + 0.126684i
\(989\) 53.5541 53.5541i 1.70292 1.70292i
\(990\) 2.41711 0.0768207
\(991\) 12.8569i 0.408412i 0.978928 + 0.204206i \(0.0654613\pi\)
−0.978928 + 0.204206i \(0.934539\pi\)
\(992\) 10.1182 0.321254
\(993\) 28.0509i 0.890167i
\(994\) −1.17474 38.7435i −0.0372606 1.22887i
\(995\) 30.4397i 0.965003i
\(996\) 10.2307 + 10.2307i 0.324171 + 0.324171i
\(997\) 23.0928 + 23.0928i 0.731357 + 0.731357i 0.970889 0.239531i \(-0.0769938\pi\)
−0.239531 + 0.970889i \(0.576994\pi\)
\(998\) 1.38080 + 1.38080i 0.0437086 + 0.0437086i
\(999\) 0.120574 0.00381480
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1218.2.m.a.307.9 40
7.6 odd 2 1218.2.m.b.307.9 yes 40
29.12 odd 4 1218.2.m.b.853.9 yes 40
203.41 even 4 inner 1218.2.m.a.853.9 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.m.a.307.9 40 1.1 even 1 trivial
1218.2.m.a.853.9 yes 40 203.41 even 4 inner
1218.2.m.b.307.9 yes 40 7.6 odd 2
1218.2.m.b.853.9 yes 40 29.12 odd 4