Properties

Label 1218.2.m.a.307.13
Level $1218$
Weight $2$
Character 1218.307
Analytic conductor $9.726$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(307,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.72577896619\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.13
Character \(\chi\) \(=\) 1218.307
Dual form 1218.2.m.a.853.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-0.707107 - 0.707107i) q^{3} -1.00000i q^{4} +1.77140 q^{5} -1.00000 q^{6} +(-1.44420 - 2.21682i) q^{7} +(-0.707107 - 0.707107i) q^{8} +1.00000i q^{9} +(1.25257 - 1.25257i) q^{10} +(2.65105 - 2.65105i) q^{11} +(-0.707107 + 0.707107i) q^{12} +6.25822 q^{13} +(-2.58873 - 0.546323i) q^{14} +(-1.25257 - 1.25257i) q^{15} -1.00000 q^{16} +(5.28024 + 5.28024i) q^{17} +(0.707107 + 0.707107i) q^{18} +(-1.07898 - 1.07898i) q^{19} -1.77140i q^{20} +(-0.546323 + 2.58873i) q^{21} -3.74916i q^{22} +0.212711 q^{23} +1.00000i q^{24} -1.86213 q^{25} +(4.42523 - 4.42523i) q^{26} +(0.707107 - 0.707107i) q^{27} +(-2.21682 + 1.44420i) q^{28} +(-3.80292 - 3.81285i) q^{29} -1.77140 q^{30} +(-2.50464 - 2.50464i) q^{31} +(-0.707107 + 0.707107i) q^{32} -3.74916 q^{33} +7.46738 q^{34} +(-2.55826 - 3.92688i) q^{35} +1.00000 q^{36} +(-4.32333 - 4.32333i) q^{37} -1.52590 q^{38} +(-4.42523 - 4.42523i) q^{39} +(-1.25257 - 1.25257i) q^{40} +(-3.16605 + 3.16605i) q^{41} +(1.44420 + 2.21682i) q^{42} +(0.313944 - 0.313944i) q^{43} +(-2.65105 - 2.65105i) q^{44} +1.77140i q^{45} +(0.150409 - 0.150409i) q^{46} +(2.82583 - 2.82583i) q^{47} +(0.707107 + 0.707107i) q^{48} +(-2.82857 + 6.40306i) q^{49} +(-1.31672 + 1.31672i) q^{50} -7.46738i q^{51} -6.25822i q^{52} -1.80816 q^{53} -1.00000i q^{54} +(4.69609 - 4.69609i) q^{55} +(-0.546323 + 2.58873i) q^{56} +1.52590i q^{57} +(-5.38516 - 0.00702541i) q^{58} -13.9548i q^{59} +(-1.25257 + 1.25257i) q^{60} +(5.59790 + 5.59790i) q^{61} -3.54209 q^{62} +(2.21682 - 1.44420i) q^{63} +1.00000i q^{64} +11.0858 q^{65} +(-2.65105 + 2.65105i) q^{66} -7.40715i q^{67} +(5.28024 - 5.28024i) q^{68} +(-0.150409 - 0.150409i) q^{69} +(-4.58569 - 0.967759i) q^{70} +12.8883i q^{71} +(0.707107 - 0.707107i) q^{72} +(4.51463 - 4.51463i) q^{73} -6.11411 q^{74} +(1.31672 + 1.31672i) q^{75} +(-1.07898 + 1.07898i) q^{76} +(-9.70556 - 2.04825i) q^{77} -6.25822 q^{78} +(1.08096 - 1.08096i) q^{79} -1.77140 q^{80} -1.00000 q^{81} +4.47747i q^{82} +2.33957i q^{83} +(2.58873 + 0.546323i) q^{84} +(9.35344 + 9.35344i) q^{85} -0.443984i q^{86} +(-0.00702541 + 5.38516i) q^{87} -3.74916 q^{88} +(0.425839 + 0.425839i) q^{89} +(1.25257 + 1.25257i) q^{90} +(-9.03813 - 13.8733i) q^{91} -0.212711i q^{92} +3.54209i q^{93} -3.99632i q^{94} +(-1.91130 - 1.91130i) q^{95} +1.00000 q^{96} +(3.18914 - 3.18914i) q^{97} +(2.52755 + 6.52775i) q^{98} +(2.65105 + 2.65105i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 40 q^{6} + 4 q^{10} + 4 q^{14} - 4 q^{15} - 40 q^{16} + 8 q^{19} - 4 q^{21} + 24 q^{25} - 12 q^{28} + 8 q^{29} - 24 q^{31} - 12 q^{35} + 40 q^{36} - 16 q^{37} - 4 q^{40} + 16 q^{41} - 20 q^{43} + 4 q^{46}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1218\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(871\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) 1.77140 0.792196 0.396098 0.918208i \(-0.370364\pi\)
0.396098 + 0.918208i \(0.370364\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.44420 2.21682i −0.545857 0.837879i
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) 1.25257 1.25257i 0.396098 0.396098i
\(11\) 2.65105 2.65105i 0.799323 0.799323i −0.183666 0.982989i \(-0.558796\pi\)
0.982989 + 0.183666i \(0.0587965\pi\)
\(12\) −0.707107 + 0.707107i −0.204124 + 0.204124i
\(13\) 6.25822 1.73572 0.867860 0.496810i \(-0.165495\pi\)
0.867860 + 0.496810i \(0.165495\pi\)
\(14\) −2.58873 0.546323i −0.691868 0.146011i
\(15\) −1.25257 1.25257i −0.323413 0.323413i
\(16\) −1.00000 −0.250000
\(17\) 5.28024 + 5.28024i 1.28065 + 1.28065i 0.940300 + 0.340345i \(0.110544\pi\)
0.340345 + 0.940300i \(0.389456\pi\)
\(18\) 0.707107 + 0.707107i 0.166667 + 0.166667i
\(19\) −1.07898 1.07898i −0.247534 0.247534i 0.572424 0.819958i \(-0.306003\pi\)
−0.819958 + 0.572424i \(0.806003\pi\)
\(20\) 1.77140i 0.396098i
\(21\) −0.546323 + 2.58873i −0.119217 + 0.564908i
\(22\) 3.74916i 0.799323i
\(23\) 0.212711 0.0443533 0.0221766 0.999754i \(-0.492940\pi\)
0.0221766 + 0.999754i \(0.492940\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −1.86213 −0.372425
\(26\) 4.42523 4.42523i 0.867860 0.867860i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) −2.21682 + 1.44420i −0.418939 + 0.272928i
\(29\) −3.80292 3.81285i −0.706184 0.708029i
\(30\) −1.77140 −0.323413
\(31\) −2.50464 2.50464i −0.449846 0.449846i 0.445457 0.895303i \(-0.353041\pi\)
−0.895303 + 0.445457i \(0.853041\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −3.74916 −0.652644
\(34\) 7.46738 1.28065
\(35\) −2.55826 3.92688i −0.432425 0.663764i
\(36\) 1.00000 0.166667
\(37\) −4.32333 4.32333i −0.710751 0.710751i 0.255942 0.966692i \(-0.417614\pi\)
−0.966692 + 0.255942i \(0.917614\pi\)
\(38\) −1.52590 −0.247534
\(39\) −4.42523 4.42523i −0.708604 0.708604i
\(40\) −1.25257 1.25257i −0.198049 0.198049i
\(41\) −3.16605 + 3.16605i −0.494454 + 0.494454i −0.909706 0.415252i \(-0.863693\pi\)
0.415252 + 0.909706i \(0.363693\pi\)
\(42\) 1.44420 + 2.21682i 0.222845 + 0.342062i
\(43\) 0.313944 0.313944i 0.0478761 0.0478761i −0.682763 0.730640i \(-0.739222\pi\)
0.730640 + 0.682763i \(0.239222\pi\)
\(44\) −2.65105 2.65105i −0.399661 0.399661i
\(45\) 1.77140i 0.264065i
\(46\) 0.150409 0.150409i 0.0221766 0.0221766i
\(47\) 2.82583 2.82583i 0.412189 0.412189i −0.470311 0.882500i \(-0.655858\pi\)
0.882500 + 0.470311i \(0.155858\pi\)
\(48\) 0.707107 + 0.707107i 0.102062 + 0.102062i
\(49\) −2.82857 + 6.40306i −0.404081 + 0.914723i
\(50\) −1.31672 + 1.31672i −0.186213 + 0.186213i
\(51\) 7.46738i 1.04564i
\(52\) 6.25822i 0.867860i
\(53\) −1.80816 −0.248370 −0.124185 0.992259i \(-0.539632\pi\)
−0.124185 + 0.992259i \(0.539632\pi\)
\(54\) 1.00000i 0.136083i
\(55\) 4.69609 4.69609i 0.633220 0.633220i
\(56\) −0.546323 + 2.58873i −0.0730055 + 0.345934i
\(57\) 1.52590i 0.202111i
\(58\) −5.38516 0.00702541i −0.707106 0.000922481i
\(59\) 13.9548i 1.81677i −0.418139 0.908383i \(-0.637317\pi\)
0.418139 0.908383i \(-0.362683\pi\)
\(60\) −1.25257 + 1.25257i −0.161706 + 0.161706i
\(61\) 5.59790 + 5.59790i 0.716738 + 0.716738i 0.967936 0.251198i \(-0.0808245\pi\)
−0.251198 + 0.967936i \(0.580824\pi\)
\(62\) −3.54209 −0.449846
\(63\) 2.21682 1.44420i 0.279293 0.181952i
\(64\) 1.00000i 0.125000i
\(65\) 11.0858 1.37503
\(66\) −2.65105 + 2.65105i −0.326322 + 0.326322i
\(67\) 7.40715i 0.904928i −0.891783 0.452464i \(-0.850545\pi\)
0.891783 0.452464i \(-0.149455\pi\)
\(68\) 5.28024 5.28024i 0.640323 0.640323i
\(69\) −0.150409 0.150409i −0.0181072 0.0181072i
\(70\) −4.58569 0.967759i −0.548095 0.115669i
\(71\) 12.8883i 1.52955i 0.644295 + 0.764777i \(0.277151\pi\)
−0.644295 + 0.764777i \(0.722849\pi\)
\(72\) 0.707107 0.707107i 0.0833333 0.0833333i
\(73\) 4.51463 4.51463i 0.528397 0.528397i −0.391697 0.920094i \(-0.628112\pi\)
0.920094 + 0.391697i \(0.128112\pi\)
\(74\) −6.11411 −0.710751
\(75\) 1.31672 + 1.31672i 0.152042 + 0.152042i
\(76\) −1.07898 + 1.07898i −0.123767 + 0.123767i
\(77\) −9.70556 2.04825i −1.10605 0.233420i
\(78\) −6.25822 −0.708604
\(79\) 1.08096 1.08096i 0.121617 0.121617i −0.643679 0.765296i \(-0.722593\pi\)
0.765296 + 0.643679i \(0.222593\pi\)
\(80\) −1.77140 −0.198049
\(81\) −1.00000 −0.111111
\(82\) 4.47747i 0.494454i
\(83\) 2.33957i 0.256802i 0.991722 + 0.128401i \(0.0409844\pi\)
−0.991722 + 0.128401i \(0.959016\pi\)
\(84\) 2.58873 + 0.546323i 0.282454 + 0.0596087i
\(85\) 9.35344 + 9.35344i 1.01452 + 1.01452i
\(86\) 0.443984i 0.0478761i
\(87\) −0.00702541 + 5.38516i −0.000753203 + 0.577350i
\(88\) −3.74916 −0.399661
\(89\) 0.425839 + 0.425839i 0.0451388 + 0.0451388i 0.729316 0.684177i \(-0.239838\pi\)
−0.684177 + 0.729316i \(0.739838\pi\)
\(90\) 1.25257 + 1.25257i 0.132033 + 0.132033i
\(91\) −9.03813 13.8733i −0.947454 1.45432i
\(92\) 0.212711i 0.0221766i
\(93\) 3.54209i 0.367298i
\(94\) 3.99632i 0.412189i
\(95\) −1.91130 1.91130i −0.196096 0.196096i
\(96\) 1.00000 0.102062
\(97\) 3.18914 3.18914i 0.323809 0.323809i −0.526418 0.850226i \(-0.676465\pi\)
0.850226 + 0.526418i \(0.176465\pi\)
\(98\) 2.52755 + 6.52775i 0.255321 + 0.659402i
\(99\) 2.65105 + 2.65105i 0.266441 + 0.266441i
\(100\) 1.86213i 0.186213i
\(101\) −4.68494 4.68494i −0.466169 0.466169i 0.434502 0.900671i \(-0.356924\pi\)
−0.900671 + 0.434502i \(0.856924\pi\)
\(102\) −5.28024 5.28024i −0.522822 0.522822i
\(103\) 12.8517i 1.26631i 0.774024 + 0.633156i \(0.218241\pi\)
−0.774024 + 0.633156i \(0.781759\pi\)
\(104\) −4.42523 4.42523i −0.433930 0.433930i
\(105\) −0.967759 + 4.58569i −0.0944436 + 0.447518i
\(106\) −1.27856 + 1.27856i −0.124185 + 0.124185i
\(107\) 3.34698 0.323565 0.161782 0.986826i \(-0.448276\pi\)
0.161782 + 0.986826i \(0.448276\pi\)
\(108\) −0.707107 0.707107i −0.0680414 0.0680414i
\(109\) 11.0821i 1.06147i 0.847537 + 0.530737i \(0.178085\pi\)
−0.847537 + 0.530737i \(0.821915\pi\)
\(110\) 6.64127i 0.633220i
\(111\) 6.11411i 0.580325i
\(112\) 1.44420 + 2.21682i 0.136464 + 0.209470i
\(113\) 5.75260 + 5.75260i 0.541159 + 0.541159i 0.923869 0.382710i \(-0.125009\pi\)
−0.382710 + 0.923869i \(0.625009\pi\)
\(114\) 1.07898 + 1.07898i 0.101055 + 0.101055i
\(115\) 0.376797 0.0351365
\(116\) −3.81285 + 3.80292i −0.354014 + 0.353092i
\(117\) 6.25822i 0.578573i
\(118\) −9.86757 9.86757i −0.908383 0.908383i
\(119\) 4.07960 19.3311i 0.373977 1.77207i
\(120\) 1.77140i 0.161706i
\(121\) 3.05617i 0.277834i
\(122\) 7.91663 0.716738
\(123\) 4.47747 0.403720
\(124\) −2.50464 + 2.50464i −0.224923 + 0.224923i
\(125\) −12.1556 −1.08723
\(126\) 0.546323 2.58873i 0.0486703 0.230623i
\(127\) −14.8159 + 14.8159i −1.31469 + 1.31469i −0.396782 + 0.917913i \(0.629873\pi\)
−0.917913 + 0.396782i \(0.870127\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) −0.443984 −0.0390906
\(130\) 7.83888 7.83888i 0.687515 0.687515i
\(131\) −8.00174 + 8.00174i −0.699115 + 0.699115i −0.964220 0.265104i \(-0.914594\pi\)
0.265104 + 0.964220i \(0.414594\pi\)
\(132\) 3.74916i 0.326322i
\(133\) −0.833636 + 3.95016i −0.0722854 + 0.342522i
\(134\) −5.23765 5.23765i −0.452464 0.452464i
\(135\) 1.25257 1.25257i 0.107804 0.107804i
\(136\) 7.46738i 0.640323i
\(137\) 11.4407 11.4407i 0.977443 0.977443i −0.0223080 0.999751i \(-0.507101\pi\)
0.999751 + 0.0223080i \(0.00710146\pi\)
\(138\) −0.212711 −0.0181072
\(139\) 13.9456i 1.18285i 0.806361 + 0.591424i \(0.201434\pi\)
−0.806361 + 0.591424i \(0.798566\pi\)
\(140\) −3.92688 + 2.55826i −0.331882 + 0.216213i
\(141\) −3.99632 −0.336551
\(142\) 9.11337 + 9.11337i 0.764777 + 0.764777i
\(143\) 16.5909 16.5909i 1.38740 1.38740i
\(144\) 1.00000i 0.0833333i
\(145\) −6.73650 6.75410i −0.559436 0.560898i
\(146\) 6.38465i 0.528397i
\(147\) 6.52775 2.52755i 0.538400 0.208469i
\(148\) −4.32333 + 4.32333i −0.355375 + 0.355375i
\(149\) 17.8178i 1.45969i −0.683611 0.729847i \(-0.739591\pi\)
0.683611 0.729847i \(-0.260409\pi\)
\(150\) 1.86213 0.152042
\(151\) 6.26978i 0.510227i 0.966911 + 0.255114i \(0.0821128\pi\)
−0.966911 + 0.255114i \(0.917887\pi\)
\(152\) 1.52590i 0.123767i
\(153\) −5.28024 + 5.28024i −0.426882 + 0.426882i
\(154\) −8.31120 + 5.41453i −0.669735 + 0.436316i
\(155\) −4.43672 4.43672i −0.356366 0.356366i
\(156\) −4.42523 + 4.42523i −0.354302 + 0.354302i
\(157\) 2.23270 2.23270i 0.178189 0.178189i −0.612377 0.790566i \(-0.709786\pi\)
0.790566 + 0.612377i \(0.209786\pi\)
\(158\) 1.52871i 0.121617i
\(159\) 1.27856 + 1.27856i 0.101397 + 0.101397i
\(160\) −1.25257 + 1.25257i −0.0990245 + 0.0990245i
\(161\) −0.307197 0.471542i −0.0242105 0.0371627i
\(162\) −0.707107 + 0.707107i −0.0555556 + 0.0555556i
\(163\) 0.336379 + 0.336379i 0.0263472 + 0.0263472i 0.720158 0.693810i \(-0.244069\pi\)
−0.693810 + 0.720158i \(0.744069\pi\)
\(164\) 3.16605 + 3.16605i 0.247227 + 0.247227i
\(165\) −6.64127 −0.517022
\(166\) 1.65433 + 1.65433i 0.128401 + 0.128401i
\(167\) 6.79715 0.525979 0.262990 0.964799i \(-0.415292\pi\)
0.262990 + 0.964799i \(0.415292\pi\)
\(168\) 2.21682 1.44420i 0.171031 0.111423i
\(169\) 26.1654 2.01272
\(170\) 13.2278 1.01452
\(171\) 1.07898 1.07898i 0.0825114 0.0825114i
\(172\) −0.313944 0.313944i −0.0239380 0.0239380i
\(173\) −1.30807 −0.0994507 −0.0497253 0.998763i \(-0.515835\pi\)
−0.0497253 + 0.998763i \(0.515835\pi\)
\(174\) 3.80292 + 3.81285i 0.288298 + 0.289051i
\(175\) 2.68929 + 4.12800i 0.203291 + 0.312047i
\(176\) −2.65105 + 2.65105i −0.199831 + 0.199831i
\(177\) −9.86757 + 9.86757i −0.741692 + 0.741692i
\(178\) 0.602227 0.0451388
\(179\) 1.07302i 0.0802015i 0.999196 + 0.0401008i \(0.0127679\pi\)
−0.999196 + 0.0401008i \(0.987232\pi\)
\(180\) 1.77140 0.132033
\(181\) 1.98060i 0.147217i 0.997287 + 0.0736083i \(0.0234515\pi\)
−0.997287 + 0.0736083i \(0.976549\pi\)
\(182\) −16.2009 3.41901i −1.20089 0.253434i
\(183\) 7.91663i 0.585214i
\(184\) −0.150409 0.150409i −0.0110883 0.0110883i
\(185\) −7.65836 7.65836i −0.563054 0.563054i
\(186\) 2.50464 + 2.50464i 0.183649 + 0.183649i
\(187\) 27.9964 2.04730
\(188\) −2.82583 2.82583i −0.206094 0.206094i
\(189\) −2.58873 0.546323i −0.188303 0.0397392i
\(190\) −2.70299 −0.196096
\(191\) 13.3495 13.3495i 0.965938 0.965938i −0.0335003 0.999439i \(-0.510665\pi\)
0.999439 + 0.0335003i \(0.0106655\pi\)
\(192\) 0.707107 0.707107i 0.0510310 0.0510310i
\(193\) −12.6253 + 12.6253i −0.908788 + 0.908788i −0.996175 0.0873863i \(-0.972149\pi\)
0.0873863 + 0.996175i \(0.472149\pi\)
\(194\) 4.51013i 0.323809i
\(195\) −7.83888 7.83888i −0.561354 0.561354i
\(196\) 6.40306 + 2.82857i 0.457362 + 0.202041i
\(197\) −18.9073 −1.34709 −0.673545 0.739146i \(-0.735229\pi\)
−0.673545 + 0.739146i \(0.735229\pi\)
\(198\) 3.74916 0.266441
\(199\) 16.7240i 1.18553i 0.805374 + 0.592767i \(0.201965\pi\)
−0.805374 + 0.592767i \(0.798035\pi\)
\(200\) 1.31672 + 1.31672i 0.0931064 + 0.0931064i
\(201\) −5.23765 + 5.23765i −0.369435 + 0.369435i
\(202\) −6.62551 −0.466169
\(203\) −2.96022 + 13.9369i −0.207767 + 0.978178i
\(204\) −7.46738 −0.522822
\(205\) −5.60835 + 5.60835i −0.391704 + 0.391704i
\(206\) 9.08749 + 9.08749i 0.633156 + 0.633156i
\(207\) 0.212711i 0.0147844i
\(208\) −6.25822 −0.433930
\(209\) −5.72085 −0.395720
\(210\) 2.55826 + 3.92688i 0.176537 + 0.270981i
\(211\) 15.3466 + 15.3466i 1.05650 + 1.05650i 0.998305 + 0.0581989i \(0.0185357\pi\)
0.0581989 + 0.998305i \(0.481464\pi\)
\(212\) 1.80816i 0.124185i
\(213\) 9.11337 9.11337i 0.624438 0.624438i
\(214\) 2.36667 2.36667i 0.161782 0.161782i
\(215\) 0.556122 0.556122i 0.0379272 0.0379272i
\(216\) −1.00000 −0.0680414
\(217\) −1.93512 + 9.16952i −0.131365 + 0.622467i
\(218\) 7.83624 + 7.83624i 0.530737 + 0.530737i
\(219\) −6.38465 −0.431434
\(220\) −4.69609 4.69609i −0.316610 0.316610i
\(221\) 33.0449 + 33.0449i 2.22284 + 2.22284i
\(222\) 4.32333 + 4.32333i 0.290163 + 0.290163i
\(223\) 13.3595i 0.894616i 0.894380 + 0.447308i \(0.147617\pi\)
−0.894380 + 0.447308i \(0.852383\pi\)
\(224\) 2.58873 + 0.546323i 0.172967 + 0.0365027i
\(225\) 1.86213i 0.124142i
\(226\) 8.13540 0.541159
\(227\) 12.8118i 0.850352i −0.905111 0.425176i \(-0.860212\pi\)
0.905111 0.425176i \(-0.139788\pi\)
\(228\) 1.52590 0.101055
\(229\) −0.586795 + 0.586795i −0.0387765 + 0.0387765i −0.726229 0.687453i \(-0.758729\pi\)
0.687453 + 0.726229i \(0.258729\pi\)
\(230\) 0.266436 0.266436i 0.0175683 0.0175683i
\(231\) 5.41453 + 8.31120i 0.356250 + 0.546837i
\(232\) −0.00702541 + 5.38516i −0.000461241 + 0.353553i
\(233\) 5.20556 0.341028 0.170514 0.985355i \(-0.445457\pi\)
0.170514 + 0.985355i \(0.445457\pi\)
\(234\) 4.42523 + 4.42523i 0.289287 + 0.289287i
\(235\) 5.00568 5.00568i 0.326534 0.326534i
\(236\) −13.9548 −0.908383
\(237\) −1.52871 −0.0993001
\(238\) −10.7844 16.5538i −0.699049 1.07303i
\(239\) 12.8131 0.828809 0.414405 0.910093i \(-0.363990\pi\)
0.414405 + 0.910093i \(0.363990\pi\)
\(240\) 1.25257 + 1.25257i 0.0808532 + 0.0808532i
\(241\) 27.6897 1.78365 0.891826 0.452379i \(-0.149425\pi\)
0.891826 + 0.452379i \(0.149425\pi\)
\(242\) −2.16104 2.16104i −0.138917 0.138917i
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 5.59790 5.59790i 0.358369 0.358369i
\(245\) −5.01054 + 11.3424i −0.320111 + 0.724640i
\(246\) 3.16605 3.16605i 0.201860 0.201860i
\(247\) −6.75248 6.75248i −0.429650 0.429650i
\(248\) 3.54209i 0.224923i
\(249\) 1.65433 1.65433i 0.104839 0.104839i
\(250\) −8.59531 + 8.59531i −0.543615 + 0.543615i
\(251\) −2.94742 2.94742i −0.186040 0.186040i 0.607942 0.793982i \(-0.291995\pi\)
−0.793982 + 0.607942i \(0.791995\pi\)
\(252\) −1.44420 2.21682i −0.0909761 0.139646i
\(253\) 0.563908 0.563908i 0.0354526 0.0354526i
\(254\) 20.9528i 1.31469i
\(255\) 13.2278i 0.828354i
\(256\) 1.00000 0.0625000
\(257\) 27.9351i 1.74254i 0.490802 + 0.871271i \(0.336704\pi\)
−0.490802 + 0.871271i \(0.663296\pi\)
\(258\) −0.313944 + 0.313944i −0.0195453 + 0.0195453i
\(259\) −3.34028 + 15.8278i −0.207555 + 0.983491i
\(260\) 11.0858i 0.687515i
\(261\) 3.81285 3.80292i 0.236010 0.235395i
\(262\) 11.3162i 0.699115i
\(263\) −0.396506 + 0.396506i −0.0244496 + 0.0244496i −0.719226 0.694776i \(-0.755503\pi\)
0.694776 + 0.719226i \(0.255503\pi\)
\(264\) 2.65105 + 2.65105i 0.163161 + 0.163161i
\(265\) −3.20299 −0.196758
\(266\) 2.20371 + 3.38265i 0.135118 + 0.207404i
\(267\) 0.602227i 0.0368557i
\(268\) −7.40715 −0.452464
\(269\) 21.5599 21.5599i 1.31453 1.31453i 0.396497 0.918036i \(-0.370226\pi\)
0.918036 0.396497i \(-0.129774\pi\)
\(270\) 1.77140i 0.107804i
\(271\) 8.09274 8.09274i 0.491599 0.491599i −0.417211 0.908810i \(-0.636992\pi\)
0.908810 + 0.417211i \(0.136992\pi\)
\(272\) −5.28024 5.28024i −0.320161 0.320161i
\(273\) −3.41901 + 16.2009i −0.206928 + 0.980521i
\(274\) 16.1796i 0.977443i
\(275\) −4.93660 + 4.93660i −0.297688 + 0.297688i
\(276\) −0.150409 + 0.150409i −0.00905358 + 0.00905358i
\(277\) 5.90076 0.354542 0.177271 0.984162i \(-0.443273\pi\)
0.177271 + 0.984162i \(0.443273\pi\)
\(278\) 9.86100 + 9.86100i 0.591424 + 0.591424i
\(279\) 2.50464 2.50464i 0.149949 0.149949i
\(280\) −0.967759 + 4.58569i −0.0578347 + 0.274047i
\(281\) 6.89258 0.411177 0.205588 0.978639i \(-0.434089\pi\)
0.205588 + 0.978639i \(0.434089\pi\)
\(282\) −2.82583 + 2.82583i −0.168275 + 0.168275i
\(283\) −11.4632 −0.681415 −0.340707 0.940169i \(-0.610667\pi\)
−0.340707 + 0.940169i \(0.610667\pi\)
\(284\) 12.8883 0.764777
\(285\) 2.70299i 0.160111i
\(286\) 23.4631i 1.38740i
\(287\) 11.5910 + 2.44614i 0.684193 + 0.144391i
\(288\) −0.707107 0.707107i −0.0416667 0.0416667i
\(289\) 38.7618i 2.28011i
\(290\) −9.53930 0.0124448i −0.560167 0.000730786i
\(291\) −4.51013 −0.264389
\(292\) −4.51463 4.51463i −0.264199 0.264199i
\(293\) 10.3162 + 10.3162i 0.602679 + 0.602679i 0.941023 0.338344i \(-0.109867\pi\)
−0.338344 + 0.941023i \(0.609867\pi\)
\(294\) 2.82857 6.40306i 0.164965 0.373434i
\(295\) 24.7197i 1.43923i
\(296\) 6.11411i 0.355375i
\(297\) 3.74916i 0.217548i
\(298\) −12.5991 12.5991i −0.729847 0.729847i
\(299\) 1.33119 0.0769849
\(300\) 1.31672 1.31672i 0.0760210 0.0760210i
\(301\) −1.14936 0.242559i −0.0662478 0.0139809i
\(302\) 4.43340 + 4.43340i 0.255114 + 0.255114i
\(303\) 6.62551i 0.380625i
\(304\) 1.07898 + 1.07898i 0.0618836 + 0.0618836i
\(305\) 9.91615 + 9.91615i 0.567797 + 0.567797i
\(306\) 7.46738i 0.426882i
\(307\) 7.44335 + 7.44335i 0.424814 + 0.424814i 0.886858 0.462043i \(-0.152883\pi\)
−0.462043 + 0.886858i \(0.652883\pi\)
\(308\) −2.04825 + 9.70556i −0.116710 + 0.553025i
\(309\) 9.08749 9.08749i 0.516969 0.516969i
\(310\) −6.27447 −0.356366
\(311\) 0.377853 + 0.377853i 0.0214261 + 0.0214261i 0.717739 0.696313i \(-0.245177\pi\)
−0.696313 + 0.717739i \(0.745177\pi\)
\(312\) 6.25822i 0.354302i
\(313\) 7.28551i 0.411802i 0.978573 + 0.205901i \(0.0660124\pi\)
−0.978573 + 0.205901i \(0.933988\pi\)
\(314\) 3.15752i 0.178189i
\(315\) 3.92688 2.55826i 0.221255 0.144142i
\(316\) −1.08096 1.08096i −0.0608086 0.0608086i
\(317\) −12.6924 12.6924i −0.712877 0.712877i 0.254259 0.967136i \(-0.418168\pi\)
−0.967136 + 0.254259i \(0.918168\pi\)
\(318\) 1.80816 0.101397
\(319\) −20.1898 0.0263394i −1.13041 0.00147472i
\(320\) 1.77140i 0.0990245i
\(321\) −2.36667 2.36667i −0.132095 0.132095i
\(322\) −0.550652 0.116209i −0.0306866 0.00647607i
\(323\) 11.3945i 0.634008i
\(324\) 1.00000i 0.0555556i
\(325\) −11.6536 −0.646426
\(326\) 0.475712 0.0263472
\(327\) 7.83624 7.83624i 0.433345 0.433345i
\(328\) 4.47747 0.247227
\(329\) −10.3454 2.18328i −0.570360 0.120368i
\(330\) −4.69609 + 4.69609i −0.258511 + 0.258511i
\(331\) −11.1472 11.1472i −0.612703 0.612703i 0.330946 0.943650i \(-0.392632\pi\)
−0.943650 + 0.330946i \(0.892632\pi\)
\(332\) 2.33957 0.128401
\(333\) 4.32333 4.32333i 0.236917 0.236917i
\(334\) 4.80631 4.80631i 0.262990 0.262990i
\(335\) 13.1211i 0.716880i
\(336\) 0.546323 2.58873i 0.0298044 0.141227i
\(337\) −16.5902 16.5902i −0.903723 0.903723i 0.0920325 0.995756i \(-0.470664\pi\)
−0.995756 + 0.0920325i \(0.970664\pi\)
\(338\) 18.5017 18.5017i 1.00636 1.00636i
\(339\) 8.13540i 0.441854i
\(340\) 9.35344 9.35344i 0.507261 0.507261i
\(341\) −13.2798 −0.719144
\(342\) 1.52590i 0.0825114i
\(343\) 18.2794 2.97689i 0.986997 0.160737i
\(344\) −0.443984 −0.0239380
\(345\) −0.266436 0.266436i −0.0143444 0.0143444i
\(346\) −0.924945 + 0.924945i −0.0497253 + 0.0497253i
\(347\) 31.7175i 1.70269i −0.524609 0.851343i \(-0.675788\pi\)
0.524609 0.851343i \(-0.324212\pi\)
\(348\) 5.38516 + 0.00702541i 0.288675 + 0.000376601i
\(349\) 23.9454i 1.28177i 0.767637 + 0.640885i \(0.221432\pi\)
−0.767637 + 0.640885i \(0.778568\pi\)
\(350\) 4.82055 + 1.01732i 0.257669 + 0.0543782i
\(351\) 4.42523 4.42523i 0.236201 0.236201i
\(352\) 3.74916i 0.199831i
\(353\) −23.0797 −1.22841 −0.614205 0.789147i \(-0.710523\pi\)
−0.614205 + 0.789147i \(0.710523\pi\)
\(354\) 13.9548i 0.741692i
\(355\) 22.8303i 1.21171i
\(356\) 0.425839 0.425839i 0.0225694 0.0225694i
\(357\) −16.5538 + 10.7844i −0.876122 + 0.570771i
\(358\) 0.758742 + 0.758742i 0.0401008 + 0.0401008i
\(359\) −25.6638 + 25.6638i −1.35448 + 1.35448i −0.473906 + 0.880576i \(0.657156\pi\)
−0.880576 + 0.473906i \(0.842844\pi\)
\(360\) 1.25257 1.25257i 0.0660163 0.0660163i
\(361\) 16.6716i 0.877454i
\(362\) 1.40049 + 1.40049i 0.0736083 + 0.0736083i
\(363\) −2.16104 + 2.16104i −0.113425 + 0.113425i
\(364\) −13.8733 + 9.03813i −0.727161 + 0.473727i
\(365\) 7.99723 7.99723i 0.418594 0.418594i
\(366\) −5.59790 5.59790i −0.292607 0.292607i
\(367\) −13.6921 13.6921i −0.714722 0.714722i 0.252797 0.967519i \(-0.418649\pi\)
−0.967519 + 0.252797i \(0.918649\pi\)
\(368\) −0.212711 −0.0110883
\(369\) −3.16605 3.16605i −0.164818 0.164818i
\(370\) −10.8306 −0.563054
\(371\) 2.61135 + 4.00837i 0.135575 + 0.208104i
\(372\) 3.54209 0.183649
\(373\) −11.1283 −0.576202 −0.288101 0.957600i \(-0.593024\pi\)
−0.288101 + 0.957600i \(0.593024\pi\)
\(374\) 19.7964 19.7964i 1.02365 1.02365i
\(375\) 8.59531 + 8.59531i 0.443860 + 0.443860i
\(376\) −3.99632 −0.206094
\(377\) −23.7995 23.8617i −1.22574 1.22894i
\(378\) −2.21682 + 1.44420i −0.114021 + 0.0742817i
\(379\) 15.7720 15.7720i 0.810155 0.810155i −0.174501 0.984657i \(-0.555831\pi\)
0.984657 + 0.174501i \(0.0558314\pi\)
\(380\) −1.91130 + 1.91130i −0.0980478 + 0.0980478i
\(381\) 20.9528 1.07344
\(382\) 18.8791i 0.965938i
\(383\) −10.2175 −0.522091 −0.261045 0.965327i \(-0.584067\pi\)
−0.261045 + 0.965327i \(0.584067\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −17.1925 3.62828i −0.876209 0.184914i
\(386\) 17.8549i 0.908788i
\(387\) 0.313944 + 0.313944i 0.0159587 + 0.0159587i
\(388\) −3.18914 3.18914i −0.161904 0.161904i
\(389\) −6.04000 6.04000i −0.306240 0.306240i 0.537209 0.843449i \(-0.319479\pi\)
−0.843449 + 0.537209i \(0.819479\pi\)
\(390\) −11.0858 −0.561354
\(391\) 1.12316 + 1.12316i 0.0568009 + 0.0568009i
\(392\) 6.52775 2.52755i 0.329701 0.127661i
\(393\) 11.3162 0.570825
\(394\) −13.3695 + 13.3695i −0.673545 + 0.673545i
\(395\) 1.91481 1.91481i 0.0963447 0.0963447i
\(396\) 2.65105 2.65105i 0.133220 0.133220i
\(397\) 3.99158i 0.200332i −0.994971 0.100166i \(-0.968063\pi\)
0.994971 0.100166i \(-0.0319373\pi\)
\(398\) 11.8257 + 11.8257i 0.592767 + 0.592767i
\(399\) 3.38265 2.20371i 0.169344 0.110324i
\(400\) 1.86213 0.0931064
\(401\) 25.1175 1.25431 0.627154 0.778896i \(-0.284220\pi\)
0.627154 + 0.778896i \(0.284220\pi\)
\(402\) 7.40715i 0.369435i
\(403\) −15.6746 15.6746i −0.780806 0.780806i
\(404\) −4.68494 + 4.68494i −0.233084 + 0.233084i
\(405\) −1.77140 −0.0880218
\(406\) 7.76168 + 11.9481i 0.385206 + 0.592973i
\(407\) −22.9227 −1.13624
\(408\) −5.28024 + 5.28024i −0.261411 + 0.261411i
\(409\) −0.199703 0.199703i −0.00987467 0.00987467i 0.702152 0.712027i \(-0.252223\pi\)
−0.712027 + 0.702152i \(0.752223\pi\)
\(410\) 7.93141i 0.391704i
\(411\) −16.1796 −0.798079
\(412\) 12.8517 0.633156
\(413\) −30.9354 + 20.1536i −1.52223 + 0.991694i
\(414\) 0.150409 + 0.150409i 0.00739222 + 0.00739222i
\(415\) 4.14433i 0.203437i
\(416\) −4.42523 + 4.42523i −0.216965 + 0.216965i
\(417\) 9.86100 9.86100i 0.482895 0.482895i
\(418\) −4.04525 + 4.04525i −0.197860 + 0.197860i
\(419\) 34.3570 1.67845 0.839224 0.543785i \(-0.183009\pi\)
0.839224 + 0.543785i \(0.183009\pi\)
\(420\) 4.58569 + 0.967759i 0.223759 + 0.0472218i
\(421\) 26.1995 + 26.1995i 1.27689 + 1.27689i 0.942401 + 0.334485i \(0.108562\pi\)
0.334485 + 0.942401i \(0.391438\pi\)
\(422\) 21.7034 1.05650
\(423\) 2.82583 + 2.82583i 0.137396 + 0.137396i
\(424\) 1.27856 + 1.27856i 0.0620925 + 0.0620925i
\(425\) −9.83248 9.83248i −0.476945 0.476945i
\(426\) 12.8883i 0.624438i
\(427\) 4.32504 20.4940i 0.209303 0.991775i
\(428\) 3.34698i 0.161782i
\(429\) −23.4631 −1.13281
\(430\) 0.786476i 0.0379272i
\(431\) 3.55210 0.171099 0.0855493 0.996334i \(-0.472735\pi\)
0.0855493 + 0.996334i \(0.472735\pi\)
\(432\) −0.707107 + 0.707107i −0.0340207 + 0.0340207i
\(433\) −5.39204 + 5.39204i −0.259125 + 0.259125i −0.824698 0.565573i \(-0.808655\pi\)
0.565573 + 0.824698i \(0.308655\pi\)
\(434\) 5.11549 + 7.85217i 0.245551 + 0.376916i
\(435\) −0.0124448 + 9.53930i −0.000596684 + 0.457374i
\(436\) 11.0821 0.530737
\(437\) −0.229510 0.229510i −0.0109790 0.0109790i
\(438\) −4.51463 + 4.51463i −0.215717 + 0.215717i
\(439\) 23.7523 1.13364 0.566819 0.823842i \(-0.308174\pi\)
0.566819 + 0.823842i \(0.308174\pi\)
\(440\) −6.64127 −0.316610
\(441\) −6.40306 2.82857i −0.304908 0.134694i
\(442\) 46.7326 2.22284
\(443\) −6.66754 6.66754i −0.316784 0.316784i 0.530746 0.847531i \(-0.321912\pi\)
−0.847531 + 0.530746i \(0.821912\pi\)
\(444\) 6.11411 0.290163
\(445\) 0.754333 + 0.754333i 0.0357588 + 0.0357588i
\(446\) 9.44657 + 9.44657i 0.447308 + 0.447308i
\(447\) −12.5991 + 12.5991i −0.595918 + 0.595918i
\(448\) 2.21682 1.44420i 0.104735 0.0682321i
\(449\) −12.2300 + 12.2300i −0.577167 + 0.577167i −0.934122 0.356954i \(-0.883815\pi\)
0.356954 + 0.934122i \(0.383815\pi\)
\(450\) −1.31672 1.31672i −0.0620709 0.0620709i
\(451\) 16.7867i 0.790456i
\(452\) 5.75260 5.75260i 0.270579 0.270579i
\(453\) 4.43340 4.43340i 0.208299 0.208299i
\(454\) −9.05934 9.05934i −0.425176 0.425176i
\(455\) −16.0102 24.5753i −0.750569 1.15211i
\(456\) 1.07898 1.07898i 0.0505277 0.0505277i
\(457\) 10.3099i 0.482275i 0.970491 + 0.241137i \(0.0775205\pi\)
−0.970491 + 0.241137i \(0.922480\pi\)
\(458\) 0.829853i 0.0387765i
\(459\) 7.46738 0.348548
\(460\) 0.376797i 0.0175683i
\(461\) −1.38174 + 1.38174i −0.0643538 + 0.0643538i −0.738551 0.674197i \(-0.764490\pi\)
0.674197 + 0.738551i \(0.264490\pi\)
\(462\) 9.70556 + 2.04825i 0.451543 + 0.0952932i
\(463\) 11.0458i 0.513343i 0.966499 + 0.256672i \(0.0826259\pi\)
−0.966499 + 0.256672i \(0.917374\pi\)
\(464\) 3.80292 + 3.81285i 0.176546 + 0.177007i
\(465\) 6.27447i 0.290972i
\(466\) 3.68089 3.68089i 0.170514 0.170514i
\(467\) −11.2760 11.2760i −0.521790 0.521790i 0.396322 0.918112i \(-0.370286\pi\)
−0.918112 + 0.396322i \(0.870286\pi\)
\(468\) 6.25822 0.289287
\(469\) −16.4203 + 10.6974i −0.758220 + 0.493961i
\(470\) 7.07910i 0.326534i
\(471\) −3.15752 −0.145491
\(472\) −9.86757 + 9.86757i −0.454192 + 0.454192i
\(473\) 1.66457i 0.0765368i
\(474\) −1.08096 + 1.08096i −0.0496501 + 0.0496501i
\(475\) 2.00919 + 2.00919i 0.0921881 + 0.0921881i
\(476\) −19.3311 4.07960i −0.886037 0.186988i
\(477\) 1.80816i 0.0827901i
\(478\) 9.06022 9.06022i 0.414405 0.414405i
\(479\) 19.6737 19.6737i 0.898914 0.898914i −0.0964260 0.995340i \(-0.530741\pi\)
0.995340 + 0.0964260i \(0.0307411\pi\)
\(480\) 1.77140 0.0808532
\(481\) −27.0563 27.0563i −1.23366 1.23366i
\(482\) 19.5796 19.5796i 0.891826 0.891826i
\(483\) −0.116209 + 0.550652i −0.00528769 + 0.0250555i
\(484\) −3.05617 −0.138917
\(485\) 5.64926 5.64926i 0.256520 0.256520i
\(486\) 1.00000 0.0453609
\(487\) −28.7993 −1.30502 −0.652511 0.757779i \(-0.726285\pi\)
−0.652511 + 0.757779i \(0.726285\pi\)
\(488\) 7.91663i 0.358369i
\(489\) 0.475712i 0.0215124i
\(490\) 4.47731 + 11.5633i 0.202264 + 0.522376i
\(491\) −11.8275 11.8275i −0.533768 0.533768i 0.387923 0.921692i \(-0.373192\pi\)
−0.921692 + 0.387923i \(0.873192\pi\)
\(492\) 4.47747i 0.201860i
\(493\) 0.0524614 40.2131i 0.00236274 1.81111i
\(494\) −9.54945 −0.429650
\(495\) 4.69609 + 4.69609i 0.211073 + 0.211073i
\(496\) 2.50464 + 2.50464i 0.112461 + 0.112461i
\(497\) 28.5709 18.6132i 1.28158 0.834917i
\(498\) 2.33957i 0.104839i
\(499\) 19.0996i 0.855017i 0.904011 + 0.427509i \(0.140609\pi\)
−0.904011 + 0.427509i \(0.859391\pi\)
\(500\) 12.1556i 0.543615i
\(501\) −4.80631 4.80631i −0.214730 0.214730i
\(502\) −4.16829 −0.186040
\(503\) −1.34934 + 1.34934i −0.0601642 + 0.0601642i −0.736549 0.676385i \(-0.763546\pi\)
0.676385 + 0.736549i \(0.263546\pi\)
\(504\) −2.58873 0.546323i −0.115311 0.0243352i
\(505\) −8.29892 8.29892i −0.369297 0.369297i
\(506\) 0.797487i 0.0354526i
\(507\) −18.5017 18.5017i −0.821690 0.821690i
\(508\) 14.8159 + 14.8159i 0.657347 + 0.657347i
\(509\) 10.8673i 0.481686i 0.970564 + 0.240843i \(0.0774238\pi\)
−0.970564 + 0.240843i \(0.922576\pi\)
\(510\) −9.35344 9.35344i −0.414177 0.414177i
\(511\) −16.5281 3.48808i −0.731162 0.154304i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) −1.52590 −0.0673703
\(514\) 19.7531 + 19.7531i 0.871271 + 0.871271i
\(515\) 22.7655i 1.00317i
\(516\) 0.443984i 0.0195453i
\(517\) 14.9828i 0.658944i
\(518\) 8.83000 + 13.5539i 0.387968 + 0.595523i
\(519\) 0.924945 + 0.924945i 0.0406006 + 0.0406006i
\(520\) −7.83888 7.83888i −0.343757 0.343757i
\(521\) 25.7076 1.12627 0.563134 0.826365i \(-0.309595\pi\)
0.563134 + 0.826365i \(0.309595\pi\)
\(522\) 0.00702541 5.38516i 0.000307494 0.235702i
\(523\) 32.5533i 1.42346i 0.702455 + 0.711729i \(0.252087\pi\)
−0.702455 + 0.711729i \(0.747913\pi\)
\(524\) 8.00174 + 8.00174i 0.349558 + 0.349558i
\(525\) 1.01732 4.82055i 0.0443996 0.210386i
\(526\) 0.560744i 0.0244496i
\(527\) 26.4501i 1.15219i
\(528\) 3.74916 0.163161
\(529\) −22.9548 −0.998033
\(530\) −2.26485 + 2.26485i −0.0983789 + 0.0983789i
\(531\) 13.9548 0.605589
\(532\) 3.95016 + 0.833636i 0.171261 + 0.0361427i
\(533\) −19.8138 + 19.8138i −0.858233 + 0.858233i
\(534\) −0.425839 0.425839i −0.0184278 0.0184278i
\(535\) 5.92886 0.256327
\(536\) −5.23765 + 5.23765i −0.226232 + 0.226232i
\(537\) 0.758742 0.758742i 0.0327421 0.0327421i
\(538\) 30.4904i 1.31453i
\(539\) 9.47618 + 24.4735i 0.408168 + 1.05415i
\(540\) −1.25257 1.25257i −0.0539021 0.0539021i
\(541\) 23.8786 23.8786i 1.02662 1.02662i 0.0269839 0.999636i \(-0.491410\pi\)
0.999636 0.0269839i \(-0.00859027\pi\)
\(542\) 11.4449i 0.491599i
\(543\) 1.40049 1.40049i 0.0601009 0.0601009i
\(544\) −7.46738 −0.320161
\(545\) 19.6309i 0.840896i
\(546\) 9.03813 + 13.8733i 0.386796 + 0.593724i
\(547\) −36.9831 −1.58128 −0.790642 0.612278i \(-0.790253\pi\)
−0.790642 + 0.612278i \(0.790253\pi\)
\(548\) −11.4407 11.4407i −0.488722 0.488722i
\(549\) −5.59790 + 5.59790i −0.238913 + 0.238913i
\(550\) 6.98140i 0.297688i
\(551\) −0.0107201 + 8.21724i −0.000456692 + 0.350066i
\(552\) 0.212711i 0.00905358i
\(553\) −3.95741 0.835167i −0.168286 0.0355149i
\(554\) 4.17247 4.17247i 0.177271 0.177271i
\(555\) 10.8306i 0.459731i
\(556\) 13.9456 0.591424
\(557\) 26.1803i 1.10929i 0.832086 + 0.554647i \(0.187147\pi\)
−0.832086 + 0.554647i \(0.812853\pi\)
\(558\) 3.54209i 0.149949i
\(559\) 1.96473 1.96473i 0.0830994 0.0830994i
\(560\) 2.55826 + 3.92688i 0.108106 + 0.165941i
\(561\) −19.7964 19.7964i −0.835806 0.835806i
\(562\) 4.87379 4.87379i 0.205588 0.205588i
\(563\) −4.30463 + 4.30463i −0.181419 + 0.181419i −0.791974 0.610555i \(-0.790946\pi\)
0.610555 + 0.791974i \(0.290946\pi\)
\(564\) 3.99632i 0.168275i
\(565\) 10.1902 + 10.1902i 0.428704 + 0.428704i
\(566\) −8.10568 + 8.10568i −0.340707 + 0.340707i
\(567\) 1.44420 + 2.21682i 0.0606507 + 0.0930976i
\(568\) 9.11337 9.11337i 0.382389 0.382389i
\(569\) 29.4715 + 29.4715i 1.23551 + 1.23551i 0.961817 + 0.273692i \(0.0882448\pi\)
0.273692 + 0.961817i \(0.411755\pi\)
\(570\) 1.91130 + 1.91130i 0.0800557 + 0.0800557i
\(571\) −28.7188 −1.20185 −0.600923 0.799307i \(-0.705200\pi\)
−0.600923 + 0.799307i \(0.705200\pi\)
\(572\) −16.5909 16.5909i −0.693700 0.693700i
\(573\) −18.8791 −0.788685
\(574\) 9.92574 6.46637i 0.414292 0.269901i
\(575\) −0.396095 −0.0165183
\(576\) −1.00000 −0.0416667
\(577\) 20.9754 20.9754i 0.873217 0.873217i −0.119605 0.992822i \(-0.538163\pi\)
0.992822 + 0.119605i \(0.0381628\pi\)
\(578\) 27.4088 + 27.4088i 1.14005 + 1.14005i
\(579\) 17.8549 0.742022
\(580\) −6.75410 + 6.73650i −0.280449 + 0.279718i
\(581\) 5.18641 3.37881i 0.215169 0.140177i
\(582\) −3.18914 + 3.18914i −0.132194 + 0.132194i
\(583\) −4.79353 + 4.79353i −0.198528 + 0.198528i
\(584\) −6.38465 −0.264199
\(585\) 11.0858i 0.458343i
\(586\) 14.5893 0.602679
\(587\) 10.9396i 0.451526i 0.974182 + 0.225763i \(0.0724875\pi\)
−0.974182 + 0.225763i \(0.927513\pi\)
\(588\) −2.52755 6.52775i −0.104234 0.269200i
\(589\) 5.40489i 0.222705i
\(590\) −17.4794 17.4794i −0.719617 0.719617i
\(591\) 13.3695 + 13.3695i 0.549947 + 0.549947i
\(592\) 4.32333 + 4.32333i 0.177688 + 0.177688i
\(593\) 3.34604 0.137405 0.0687027 0.997637i \(-0.478114\pi\)
0.0687027 + 0.997637i \(0.478114\pi\)
\(594\) −2.65105 2.65105i −0.108774 0.108774i
\(595\) 7.22663 34.2431i 0.296263 1.40383i
\(596\) −17.8178 −0.729847
\(597\) 11.8257 11.8257i 0.483992 0.483992i
\(598\) 0.941296 0.941296i 0.0384924 0.0384924i
\(599\) −28.9241 + 28.9241i −1.18181 + 1.18181i −0.202531 + 0.979276i \(0.564917\pi\)
−0.979276 + 0.202531i \(0.935083\pi\)
\(600\) 1.86213i 0.0760210i
\(601\) 24.3904 + 24.3904i 0.994903 + 0.994903i 0.999987 0.00508391i \(-0.00161826\pi\)
−0.00508391 + 0.999987i \(0.501618\pi\)
\(602\) −0.984233 + 0.641203i −0.0401143 + 0.0261335i
\(603\) 7.40715 0.301643
\(604\) 6.26978 0.255114
\(605\) 5.41371i 0.220099i
\(606\) 4.68494 + 4.68494i 0.190313 + 0.190313i
\(607\) 5.41664 5.41664i 0.219854 0.219854i −0.588583 0.808437i \(-0.700314\pi\)
0.808437 + 0.588583i \(0.200314\pi\)
\(608\) 1.52590 0.0618836
\(609\) 11.9481 7.76168i 0.484160 0.314519i
\(610\) 14.0235 0.567797
\(611\) 17.6846 17.6846i 0.715444 0.715444i
\(612\) 5.28024 + 5.28024i 0.213441 + 0.213441i
\(613\) 7.68465i 0.310380i 0.987885 + 0.155190i \(0.0495990\pi\)
−0.987885 + 0.155190i \(0.950401\pi\)
\(614\) 10.5265 0.424814
\(615\) 7.93141 0.319825
\(616\) 5.41453 + 8.31120i 0.218158 + 0.334868i
\(617\) −30.8424 30.8424i −1.24167 1.24167i −0.959309 0.282359i \(-0.908883\pi\)
−0.282359 0.959309i \(-0.591117\pi\)
\(618\) 12.8517i 0.516969i
\(619\) 30.2202 30.2202i 1.21465 1.21465i 0.245175 0.969479i \(-0.421155\pi\)
0.969479 0.245175i \(-0.0788454\pi\)
\(620\) −4.43672 + 4.43672i −0.178183 + 0.178183i
\(621\) 0.150409 0.150409i 0.00603572 0.00603572i
\(622\) 0.534365 0.0214261
\(623\) 0.329010 1.55900i 0.0131815 0.0624602i
\(624\) 4.42523 + 4.42523i 0.177151 + 0.177151i
\(625\) −12.2218 −0.488874
\(626\) 5.15164 + 5.15164i 0.205901 + 0.205901i
\(627\) 4.04525 + 4.04525i 0.161552 + 0.161552i
\(628\) −2.23270 2.23270i −0.0890946 0.0890946i
\(629\) 45.6564i 1.82044i
\(630\) 0.967759 4.58569i 0.0385564 0.182698i
\(631\) 15.1104i 0.601535i 0.953697 + 0.300768i \(0.0972428\pi\)
−0.953697 + 0.300768i \(0.902757\pi\)
\(632\) −1.52871 −0.0608086
\(633\) 21.7034i 0.862632i
\(634\) −17.9498 −0.712877
\(635\) −26.2449 + 26.2449i −1.04150 + 1.04150i
\(636\) 1.27856 1.27856i 0.0506983 0.0506983i
\(637\) −17.7018 + 40.0718i −0.701371 + 1.58770i
\(638\) −14.2950 + 14.2577i −0.565943 + 0.564469i
\(639\) −12.8883 −0.509851
\(640\) 1.25257 + 1.25257i 0.0495123 + 0.0495123i
\(641\) −7.98301 + 7.98301i −0.315310 + 0.315310i −0.846963 0.531653i \(-0.821571\pi\)
0.531653 + 0.846963i \(0.321571\pi\)
\(642\) −3.34698 −0.132095
\(643\) 1.09891 0.0433369 0.0216684 0.999765i \(-0.493102\pi\)
0.0216684 + 0.999765i \(0.493102\pi\)
\(644\) −0.471542 + 0.307197i −0.0185813 + 0.0121053i
\(645\) −0.786476 −0.0309674
\(646\) −8.05714 8.05714i −0.317004 0.317004i
\(647\) −42.3555 −1.66517 −0.832583 0.553900i \(-0.813139\pi\)
−0.832583 + 0.553900i \(0.813139\pi\)
\(648\) 0.707107 + 0.707107i 0.0277778 + 0.0277778i
\(649\) −36.9950 36.9950i −1.45218 1.45218i
\(650\) −8.24035 + 8.24035i −0.323213 + 0.323213i
\(651\) 7.85217 5.11549i 0.307751 0.200492i
\(652\) 0.336379 0.336379i 0.0131736 0.0131736i
\(653\) 21.4298 + 21.4298i 0.838613 + 0.838613i 0.988676 0.150063i \(-0.0479478\pi\)
−0.150063 + 0.988676i \(0.547948\pi\)
\(654\) 11.0821i 0.433345i
\(655\) −14.1743 + 14.1743i −0.553836 + 0.553836i
\(656\) 3.16605 3.16605i 0.123613 0.123613i
\(657\) 4.51463 + 4.51463i 0.176132 + 0.176132i
\(658\) −8.85912 + 5.77149i −0.345364 + 0.224996i
\(659\) −11.2796 + 11.2796i −0.439390 + 0.439390i −0.891807 0.452417i \(-0.850562\pi\)
0.452417 + 0.891807i \(0.350562\pi\)
\(660\) 6.64127i 0.258511i
\(661\) 32.1711i 1.25131i −0.780099 0.625656i \(-0.784832\pi\)
0.780099 0.625656i \(-0.215168\pi\)
\(662\) −15.7645 −0.612703
\(663\) 46.7326i 1.81494i
\(664\) 1.65433 1.65433i 0.0642004 0.0642004i
\(665\) −1.47671 + 6.99732i −0.0572642 + 0.271345i
\(666\) 6.11411i 0.236917i
\(667\) −0.808922 0.811035i −0.0313216 0.0314034i
\(668\) 6.79715i 0.262990i
\(669\) 9.44657 9.44657i 0.365226 0.365226i
\(670\) −9.27799 9.27799i −0.358440 0.358440i
\(671\) 29.6807 1.14581
\(672\) −1.44420 2.21682i −0.0557113 0.0855156i
\(673\) 33.0712i 1.27480i 0.770533 + 0.637400i \(0.219990\pi\)
−0.770533 + 0.637400i \(0.780010\pi\)
\(674\) −23.4620 −0.903723
\(675\) −1.31672 + 1.31672i −0.0506807 + 0.0506807i
\(676\) 26.1654i 1.00636i
\(677\) −21.9256 + 21.9256i −0.842669 + 0.842669i −0.989205 0.146536i \(-0.953188\pi\)
0.146536 + 0.989205i \(0.453188\pi\)
\(678\) −5.75260 5.75260i −0.220927 0.220927i
\(679\) −11.6755 2.46399i −0.448065 0.0945592i
\(680\) 13.2278i 0.507261i
\(681\) −9.05934 + 9.05934i −0.347155 + 0.347155i
\(682\) −9.39027 + 9.39027i −0.359572 + 0.359572i
\(683\) 33.8910 1.29680 0.648401 0.761299i \(-0.275438\pi\)
0.648401 + 0.761299i \(0.275438\pi\)
\(684\) −1.07898 1.07898i −0.0412557 0.0412557i
\(685\) 20.2661 20.2661i 0.774327 0.774327i
\(686\) 10.8205 15.0305i 0.413130 0.573867i
\(687\) 0.829853 0.0316609
\(688\) −0.313944 + 0.313944i −0.0119690 + 0.0119690i
\(689\) −11.3159 −0.431101
\(690\) −0.376797 −0.0143444
\(691\) 24.5578i 0.934221i 0.884199 + 0.467111i \(0.154705\pi\)
−0.884199 + 0.467111i \(0.845295\pi\)
\(692\) 1.30807i 0.0497253i
\(693\) 2.04825 9.70556i 0.0778066 0.368684i
\(694\) −22.4277 22.4277i −0.851343 0.851343i
\(695\) 24.7032i 0.937047i
\(696\) 3.81285 3.80292i 0.144526 0.144149i
\(697\) −33.4350 −1.26644
\(698\) 16.9320 + 16.9320i 0.640885 + 0.640885i
\(699\) −3.68089 3.68089i −0.139224 0.139224i
\(700\) 4.12800 2.68929i 0.156024 0.101645i
\(701\) 13.9533i 0.527007i −0.964658 0.263504i \(-0.915122\pi\)
0.964658 0.263504i \(-0.0848781\pi\)
\(702\) 6.25822i 0.236201i
\(703\) 9.32954i 0.351870i
\(704\) 2.65105 + 2.65105i 0.0999153 + 0.0999153i
\(705\) −7.07910 −0.266614
\(706\) −16.3198 + 16.3198i −0.614205 + 0.614205i
\(707\) −3.61967 + 17.1517i −0.136132 + 0.645054i
\(708\) 9.86757 + 9.86757i 0.370846 + 0.370846i
\(709\) 36.5548i 1.37284i −0.727203 0.686422i \(-0.759180\pi\)
0.727203 0.686422i \(-0.240820\pi\)
\(710\) 16.1435 + 16.1435i 0.605853 + 0.605853i
\(711\) 1.08096 + 1.08096i 0.0405391 + 0.0405391i
\(712\) 0.602227i 0.0225694i
\(713\) −0.532763 0.532763i −0.0199521 0.0199521i
\(714\) −4.07960 + 19.3311i −0.152675 + 0.723447i
\(715\) 29.3892 29.3892i 1.09909 1.09909i
\(716\) 1.07302 0.0401008
\(717\) −9.06022 9.06022i −0.338360 0.338360i
\(718\) 36.2940i 1.35448i
\(719\) 8.65885i 0.322921i 0.986879 + 0.161460i \(0.0516204\pi\)
−0.986879 + 0.161460i \(0.948380\pi\)
\(720\) 1.77140i 0.0660163i
\(721\) 28.4898 18.5604i 1.06102 0.691224i
\(722\) −11.7886 11.7886i −0.438727 0.438727i
\(723\) −19.5796 19.5796i −0.728173 0.728173i
\(724\) 1.98060 0.0736083
\(725\) 7.08151 + 7.10001i 0.263001 + 0.263688i
\(726\) 3.05617i 0.113425i
\(727\) −36.6881 36.6881i −1.36069 1.36069i −0.873042 0.487645i \(-0.837856\pi\)
−0.487645 0.873042i \(-0.662144\pi\)
\(728\) −3.41901 + 16.2009i −0.126717 + 0.600444i
\(729\) 1.00000i 0.0370370i
\(730\) 11.3098i 0.418594i
\(731\) 3.31540 0.122625
\(732\) −7.91663 −0.292607
\(733\) −34.1573 + 34.1573i −1.26163 + 1.26163i −0.311323 + 0.950304i \(0.600772\pi\)
−0.950304 + 0.311323i \(0.899228\pi\)
\(734\) −19.3636 −0.714722
\(735\) 11.5633 4.47731i 0.426518 0.165148i
\(736\) −0.150409 + 0.150409i −0.00554416 + 0.00554416i
\(737\) −19.6368 19.6368i −0.723329 0.723329i
\(738\) −4.47747 −0.164818
\(739\) 3.68225 3.68225i 0.135454 0.135454i −0.636129 0.771583i \(-0.719465\pi\)
0.771583 + 0.636129i \(0.219465\pi\)
\(740\) −7.65836 + 7.65836i −0.281527 + 0.281527i
\(741\) 9.54945i 0.350808i
\(742\) 4.68085 + 0.987841i 0.171839 + 0.0362648i
\(743\) −25.3145 25.3145i −0.928698 0.928698i 0.0689238 0.997622i \(-0.478043\pi\)
−0.997622 + 0.0689238i \(0.978043\pi\)
\(744\) 2.50464 2.50464i 0.0918244 0.0918244i
\(745\) 31.5626i 1.15636i
\(746\) −7.86890 + 7.86890i −0.288101 + 0.288101i
\(747\) −2.33957 −0.0856005
\(748\) 27.9964i 1.02365i
\(749\) −4.83371 7.41965i −0.176620 0.271108i
\(750\) 12.1556 0.443860
\(751\) −31.9097 31.9097i −1.16440 1.16440i −0.983501 0.180900i \(-0.942099\pi\)
−0.180900 0.983501i \(-0.557901\pi\)
\(752\) −2.82583 + 2.82583i −0.103047 + 0.103047i
\(753\) 4.16829i 0.151901i
\(754\) −33.7015 0.0439666i −1.22734 0.00160117i
\(755\) 11.1063i 0.404200i
\(756\) −0.546323 + 2.58873i −0.0198696 + 0.0941513i
\(757\) 2.25680 2.25680i 0.0820249 0.0820249i −0.664904 0.746929i \(-0.731528\pi\)
0.746929 + 0.664904i \(0.231528\pi\)
\(758\) 22.3050i 0.810155i
\(759\) −0.797487 −0.0289469
\(760\) 2.70299i 0.0980478i
\(761\) 11.1308i 0.403490i 0.979438 + 0.201745i \(0.0646613\pi\)
−0.979438 + 0.201745i \(0.935339\pi\)
\(762\) 14.8159 14.8159i 0.536722 0.536722i
\(763\) 24.5670 16.0048i 0.889386 0.579413i
\(764\) −13.3495 13.3495i −0.482969 0.482969i
\(765\) −9.35344 + 9.35344i −0.338174 + 0.338174i
\(766\) −7.22488 + 7.22488i −0.261045 + 0.261045i
\(767\) 87.3326i 3.15340i
\(768\) −0.707107 0.707107i −0.0255155 0.0255155i
\(769\) −23.3556 + 23.3556i −0.842224 + 0.842224i −0.989148 0.146924i \(-0.953063\pi\)
0.146924 + 0.989148i \(0.453063\pi\)
\(770\) −14.7225 + 9.59133i −0.530562 + 0.345648i
\(771\) 19.7531 19.7531i 0.711390 0.711390i
\(772\) 12.6253 + 12.6253i 0.454394 + 0.454394i
\(773\) 35.3652 + 35.3652i 1.27200 + 1.27200i 0.945037 + 0.326962i \(0.106025\pi\)
0.326962 + 0.945037i \(0.393975\pi\)
\(774\) 0.443984 0.0159587
\(775\) 4.66395 + 4.66395i 0.167534 + 0.167534i
\(776\) −4.51013 −0.161904
\(777\) 13.5539 8.83000i 0.486242 0.316774i
\(778\) −8.54185 −0.306240
\(779\) 6.83219 0.244789
\(780\) −7.83888 + 7.83888i −0.280677 + 0.280677i
\(781\) 34.1675 + 34.1675i 1.22261 + 1.22261i
\(782\) 1.58839 0.0568009
\(783\) −5.38516 0.00702541i −0.192450 0.000251068i
\(784\) 2.82857 6.40306i 0.101020 0.228681i
\(785\) 3.95502 3.95502i 0.141161 0.141161i
\(786\) 8.00174 8.00174i 0.285413 0.285413i
\(787\) 17.8708 0.637025 0.318512 0.947919i \(-0.396817\pi\)
0.318512 + 0.947919i \(0.396817\pi\)
\(788\) 18.9073i 0.673545i
\(789\) 0.560744 0.0199630
\(790\) 2.70796i 0.0963447i
\(791\) 4.44456 21.0604i 0.158030 0.748820i
\(792\) 3.74916i 0.133220i
\(793\) 35.0329 + 35.0329i 1.24406 + 1.24406i
\(794\) −2.82247 2.82247i −0.100166 0.100166i
\(795\) 2.26485 + 2.26485i 0.0803261 + 0.0803261i
\(796\) 16.7240 0.592767
\(797\) 7.00288 + 7.00288i 0.248055 + 0.248055i 0.820172 0.572117i \(-0.193878\pi\)
−0.572117 + 0.820172i \(0.693878\pi\)
\(798\) 0.833636 3.95016i 0.0295104 0.139834i
\(799\) 29.8421 1.05574
\(800\) 1.31672 1.31672i 0.0465532 0.0465532i
\(801\) −0.425839 + 0.425839i −0.0150463 + 0.0150463i
\(802\) 17.7607 17.7607i 0.627154 0.627154i
\(803\) 23.9370i 0.844720i
\(804\) 5.23765 + 5.23765i 0.184718 + 0.184718i
\(805\) −0.544171 0.835291i −0.0191795 0.0294401i
\(806\) −22.1672 −0.780806
\(807\) −30.4904 −1.07331
\(808\) 6.62551i 0.233084i
\(809\) −26.8998 26.8998i −0.945748 0.945748i 0.0528544 0.998602i \(-0.483168\pi\)
−0.998602 + 0.0528544i \(0.983168\pi\)
\(810\) −1.25257 + 1.25257i −0.0440109 + 0.0440109i
\(811\) −21.8894 −0.768639 −0.384320 0.923200i \(-0.625564\pi\)
−0.384320 + 0.923200i \(0.625564\pi\)
\(812\) 13.9369 + 2.96022i 0.489089 + 0.103883i
\(813\) −11.4449 −0.401389
\(814\) −16.2088 + 16.2088i −0.568119 + 0.568119i
\(815\) 0.595863 + 0.595863i 0.0208722 + 0.0208722i
\(816\) 7.46738i 0.261411i
\(817\) −0.677477 −0.0237019
\(818\) −0.282422 −0.00987467
\(819\) 13.8733 9.03813i 0.484774 0.315818i
\(820\) 5.60835 + 5.60835i 0.195852 + 0.195852i
\(821\) 22.7930i 0.795481i −0.917498 0.397740i \(-0.869794\pi\)
0.917498 0.397740i \(-0.130206\pi\)
\(822\) −11.4407 + 11.4407i −0.399039 + 0.399039i
\(823\) 34.3796 34.3796i 1.19840 1.19840i 0.223752 0.974646i \(-0.428169\pi\)
0.974646 0.223752i \(-0.0718306\pi\)
\(824\) 9.08749 9.08749i 0.316578 0.316578i
\(825\) 6.98140 0.243061
\(826\) −7.62385 + 36.1254i −0.265268 + 1.25696i
\(827\) −1.04334 1.04334i −0.0362806 0.0362806i 0.688734 0.725014i \(-0.258167\pi\)
−0.725014 + 0.688734i \(0.758167\pi\)
\(828\) 0.212711 0.00739222
\(829\) 17.4499 + 17.4499i 0.606059 + 0.606059i 0.941914 0.335855i \(-0.109025\pi\)
−0.335855 + 0.941914i \(0.609025\pi\)
\(830\) 2.93048 + 2.93048i 0.101719 + 0.101719i
\(831\) −4.17247 4.17247i −0.144741 0.144741i
\(832\) 6.25822i 0.216965i
\(833\) −48.7452 + 18.8742i −1.68892 + 0.653952i
\(834\) 13.9456i 0.482895i
\(835\) 12.0405 0.416679
\(836\) 5.72085i 0.197860i
\(837\) −3.54209 −0.122433
\(838\) 24.2941 24.2941i 0.839224 0.839224i
\(839\) −0.729922 + 0.729922i −0.0251997 + 0.0251997i −0.719594 0.694395i \(-0.755672\pi\)
0.694395 + 0.719594i \(0.255672\pi\)
\(840\) 3.92688 2.55826i 0.135490 0.0882685i
\(841\) −0.0756659 + 28.9999i −0.00260917 + 0.999997i
\(842\) 37.0517 1.27689
\(843\) −4.87379 4.87379i −0.167862 0.167862i
\(844\) 15.3466 15.3466i 0.528252 0.528252i
\(845\) 46.3495 1.59447
\(846\) 3.99632 0.137396
\(847\) −6.77497 + 4.41372i −0.232791 + 0.151657i
\(848\) 1.80816 0.0620925
\(849\) 8.10568 + 8.10568i 0.278186 + 0.278186i
\(850\) −13.9052 −0.476945
\(851\) −0.919619 0.919619i −0.0315241 0.0315241i
\(852\) −9.11337 9.11337i −0.312219 0.312219i
\(853\) 40.3203 40.3203i 1.38054 1.38054i 0.536889 0.843653i \(-0.319600\pi\)
0.843653 0.536889i \(-0.180400\pi\)
\(854\) −11.4332 17.5497i −0.391236 0.600539i
\(855\) 1.91130 1.91130i 0.0653652 0.0653652i
\(856\) −2.36667 2.36667i −0.0808912 0.0808912i
\(857\) 11.4895i 0.392474i 0.980556 + 0.196237i \(0.0628723\pi\)
−0.980556 + 0.196237i \(0.937128\pi\)
\(858\) −16.5909 + 16.5909i −0.566404 + 0.566404i
\(859\) −18.3189 + 18.3189i −0.625032 + 0.625032i −0.946814 0.321782i \(-0.895718\pi\)
0.321782 + 0.946814i \(0.395718\pi\)
\(860\) −0.556122 0.556122i −0.0189636 0.0189636i
\(861\) −6.46637 9.92574i −0.220373 0.338268i
\(862\) 2.51171 2.51171i 0.0855493 0.0855493i
\(863\) 0.920279i 0.0313267i 0.999877 + 0.0156633i \(0.00498600\pi\)
−0.999877 + 0.0156633i \(0.995014\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) −2.31712 −0.0787844
\(866\) 7.62549i 0.259125i
\(867\) 27.4088 27.4088i 0.930850 0.930850i
\(868\) 9.16952 + 1.93512i 0.311234 + 0.0656824i
\(869\) 5.73136i 0.194423i
\(870\) 6.73650 + 6.75410i 0.228389 + 0.228985i
\(871\) 46.3556i 1.57070i
\(872\) 7.83624 7.83624i 0.265369 0.265369i
\(873\) 3.18914 + 3.18914i 0.107936 + 0.107936i
\(874\) −0.324576 −0.0109790
\(875\) 17.5551 + 26.9468i 0.593472 + 0.910967i
\(876\) 6.38465i 0.215717i
\(877\) 10.4200 0.351857 0.175929 0.984403i \(-0.443707\pi\)
0.175929 + 0.984403i \(0.443707\pi\)
\(878\) 16.7954 16.7954i 0.566819 0.566819i
\(879\) 14.5893i 0.492085i
\(880\) −4.69609 + 4.69609i −0.158305 + 0.158305i
\(881\) 12.2681 + 12.2681i 0.413324 + 0.413324i 0.882895 0.469571i \(-0.155591\pi\)
−0.469571 + 0.882895i \(0.655591\pi\)
\(882\) −6.52775 + 2.52755i −0.219801 + 0.0851070i
\(883\) 44.5394i 1.49887i 0.662078 + 0.749435i \(0.269675\pi\)
−0.662078 + 0.749435i \(0.730325\pi\)
\(884\) 33.0449 33.0449i 1.11142 1.11142i
\(885\) −17.4794 + 17.4794i −0.587565 + 0.587565i
\(886\) −9.42932 −0.316784
\(887\) 6.04195 + 6.04195i 0.202869 + 0.202869i 0.801228 0.598359i \(-0.204180\pi\)
−0.598359 + 0.801228i \(0.704180\pi\)
\(888\) 4.32333 4.32333i 0.145081 0.145081i
\(889\) 54.2411 + 11.4470i 1.81919 + 0.383920i
\(890\) 1.06679 0.0357588
\(891\) −2.65105 + 2.65105i −0.0888136 + 0.0888136i
\(892\) 13.3595 0.447308
\(893\) −6.09800 −0.204062
\(894\) 17.8178i 0.595918i
\(895\) 1.90076i 0.0635354i
\(896\) 0.546323 2.58873i 0.0182514 0.0864835i
\(897\) −0.941296 0.941296i −0.0314289 0.0314289i
\(898\) 17.2958i 0.577167i
\(899\) −0.0248846 + 19.0747i −0.000829949 + 0.636177i
\(900\) −1.86213 −0.0620709
\(901\) −9.54753 9.54753i −0.318074 0.318074i
\(902\) 11.8700 + 11.8700i 0.395228 + 0.395228i
\(903\) 0.641203 + 0.984233i 0.0213379 + 0.0327532i
\(904\) 8.13540i 0.270579i
\(905\) 3.50844i 0.116624i
\(906\) 6.26978i 0.208299i
\(907\) 10.8633 + 10.8633i 0.360709 + 0.360709i 0.864074 0.503365i \(-0.167905\pi\)
−0.503365 + 0.864074i \(0.667905\pi\)
\(908\) −12.8118 −0.425176
\(909\) 4.68494 4.68494i 0.155390 0.155390i
\(910\) −28.6983 6.05645i −0.951339 0.200769i
\(911\) −6.42874 6.42874i −0.212994 0.212994i 0.592544 0.805538i \(-0.298124\pi\)
−0.805538 + 0.592544i \(0.798124\pi\)
\(912\) 1.52590i 0.0505277i
\(913\) 6.20233 + 6.20233i 0.205267 + 0.205267i
\(914\) 7.29017 + 7.29017i 0.241137 + 0.241137i
\(915\) 14.0235i 0.463604i
\(916\) 0.586795 + 0.586795i 0.0193882 + 0.0193882i
\(917\) 29.2945 + 6.18228i 0.967391 + 0.204157i
\(918\) 5.28024 5.28024i 0.174274 0.174274i
\(919\) −31.9688 −1.05455 −0.527277 0.849693i \(-0.676787\pi\)
−0.527277 + 0.849693i \(0.676787\pi\)
\(920\) −0.266436 0.266436i −0.00878413 0.00878413i
\(921\) 10.5265i 0.346860i
\(922\) 1.95407i 0.0643538i
\(923\) 80.6576i 2.65488i
\(924\) 8.31120 5.41453i 0.273418 0.178125i
\(925\) 8.05058 + 8.05058i 0.264702 + 0.264702i
\(926\) 7.81058 + 7.81058i 0.256672 + 0.256672i
\(927\) −12.8517 −0.422104
\(928\) 5.38516 + 0.00702541i 0.176777 + 0.000230620i
\(929\) 12.0813i 0.396375i −0.980164 0.198188i \(-0.936494\pi\)
0.980164 0.198188i \(-0.0635055\pi\)
\(930\) 4.43672 + 4.43672i 0.145486 + 0.145486i
\(931\) 9.96072 3.85680i 0.326449 0.126401i
\(932\) 5.20556i 0.170514i
\(933\) 0.534365i 0.0174943i
\(934\) −15.9466 −0.521790
\(935\) 49.5929 1.62186
\(936\) 4.42523 4.42523i 0.144643 0.144643i
\(937\) 44.9724 1.46918 0.734592 0.678509i \(-0.237374\pi\)
0.734592 + 0.678509i \(0.237374\pi\)
\(938\) −4.04670 + 19.1751i −0.132129 + 0.626090i
\(939\) 5.15164 5.15164i 0.168117 0.168117i
\(940\) −5.00568 5.00568i −0.163267 0.163267i
\(941\) −55.5130 −1.80967 −0.904835 0.425762i \(-0.860006\pi\)
−0.904835 + 0.425762i \(0.860006\pi\)
\(942\) −2.23270 + 2.23270i −0.0727454 + 0.0727454i
\(943\) −0.673453 + 0.673453i −0.0219307 + 0.0219307i
\(944\) 13.9548i 0.454192i
\(945\) −4.58569 0.967759i −0.149173 0.0314812i
\(946\) −1.17703 1.17703i −0.0382684 0.0382684i
\(947\) 12.0347 12.0347i 0.391075 0.391075i −0.483996 0.875070i \(-0.660815\pi\)
0.875070 + 0.483996i \(0.160815\pi\)
\(948\) 1.52871i 0.0496501i
\(949\) 28.2536 28.2536i 0.917149 0.917149i
\(950\) 2.84143 0.0921881
\(951\) 17.9498i 0.582062i
\(952\) −16.5538 + 10.7844i −0.536513 + 0.349525i
\(953\) −46.2921 −1.49955 −0.749773 0.661695i \(-0.769838\pi\)
−0.749773 + 0.661695i \(0.769838\pi\)
\(954\) −1.27856 1.27856i −0.0413950 0.0413950i
\(955\) 23.6474 23.6474i 0.765213 0.765213i
\(956\) 12.8131i 0.414405i
\(957\) 14.2577 + 14.2950i 0.460887 + 0.462091i
\(958\) 27.8228i 0.898914i
\(959\) −41.8845 8.83927i −1.35252 0.285435i
\(960\) 1.25257 1.25257i 0.0404266 0.0404266i
\(961\) 18.4536i 0.595278i
\(962\) −38.2635 −1.23366
\(963\) 3.34698i 0.107855i
\(964\) 27.6897i 0.891826i
\(965\) −22.3645 + 22.3645i −0.719938 + 0.719938i
\(966\) 0.307197 + 0.471542i 0.00988391 + 0.0151716i
\(967\) −40.2645 40.2645i −1.29482 1.29482i −0.931770 0.363050i \(-0.881735\pi\)
−0.363050 0.931770i \(-0.618265\pi\)
\(968\) −2.16104 + 2.16104i −0.0694584 + 0.0694584i
\(969\) −8.05714 + 8.05714i −0.258833 + 0.258833i
\(970\) 7.98927i 0.256520i
\(971\) 13.7244 + 13.7244i 0.440436 + 0.440436i 0.892159 0.451722i \(-0.149190\pi\)
−0.451722 + 0.892159i \(0.649190\pi\)
\(972\) 0.707107 0.707107i 0.0226805 0.0226805i
\(973\) 30.9148 20.1402i 0.991083 0.645665i
\(974\) −20.3642 + 20.3642i −0.652511 + 0.652511i
\(975\) 8.24035 + 8.24035i 0.263902 + 0.263902i
\(976\) −5.59790 5.59790i −0.179184 0.179184i
\(977\) −40.3911 −1.29223 −0.646113 0.763242i \(-0.723606\pi\)
−0.646113 + 0.763242i \(0.723606\pi\)
\(978\) −0.336379 0.336379i −0.0107562 0.0107562i
\(979\) 2.25784 0.0721610
\(980\) 11.3424 + 5.01054i 0.362320 + 0.160056i
\(981\) −11.0821 −0.353825
\(982\) −16.7266 −0.533768
\(983\) −13.9382 + 13.9382i −0.444561 + 0.444561i −0.893541 0.448981i \(-0.851787\pi\)
0.448981 + 0.893541i \(0.351787\pi\)
\(984\) −3.16605 3.16605i −0.100930 0.100930i
\(985\) −33.4925 −1.06716
\(986\) −28.3978 28.4720i −0.904371 0.906734i
\(987\) 5.77149 + 8.85912i 0.183709 + 0.281989i
\(988\) −6.75248 + 6.75248i −0.214825 + 0.214825i
\(989\) 0.0667794 0.0667794i 0.00212346 0.00212346i
\(990\) 6.64127 0.211073
\(991\) 52.2709i 1.66044i 0.557437 + 0.830219i \(0.311785\pi\)
−0.557437 + 0.830219i \(0.688215\pi\)
\(992\) 3.54209 0.112461
\(993\) 15.7645i 0.500270i
\(994\) 7.04115 33.3642i 0.223332 1.05825i
\(995\) 29.6250i 0.939176i
\(996\) −1.65433 1.65433i −0.0524194 0.0524194i
\(997\) −1.58925 1.58925i −0.0503322 0.0503322i 0.681493 0.731825i \(-0.261331\pi\)
−0.731825 + 0.681493i \(0.761331\pi\)
\(998\) 13.5055 + 13.5055i 0.427509 + 0.427509i
\(999\) −6.11411 −0.193442
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1218.2.m.a.307.13 40
7.6 odd 2 1218.2.m.b.307.13 yes 40
29.12 odd 4 1218.2.m.b.853.13 yes 40
203.41 even 4 inner 1218.2.m.a.853.13 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.m.a.307.13 40 1.1 even 1 trivial
1218.2.m.a.853.13 yes 40 203.41 even 4 inner
1218.2.m.b.307.13 yes 40 7.6 odd 2
1218.2.m.b.853.13 yes 40 29.12 odd 4