Properties

Label 1218.2.m.a.307.1
Level $1218$
Weight $2$
Character 1218.307
Analytic conductor $9.726$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(307,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.72577896619\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.1
Character \(\chi\) \(=\) 1218.307
Dual form 1218.2.m.a.853.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(0.707107 + 0.707107i) q^{3} -1.00000i q^{4} -3.66176 q^{5} -1.00000 q^{6} +(-1.87946 - 1.86216i) q^{7} +(0.707107 + 0.707107i) q^{8} +1.00000i q^{9} +(2.58925 - 2.58925i) q^{10} +(3.90483 - 3.90483i) q^{11} +(0.707107 - 0.707107i) q^{12} -6.46283 q^{13} +(2.64572 - 0.0122313i) q^{14} +(-2.58925 - 2.58925i) q^{15} -1.00000 q^{16} +(3.63679 + 3.63679i) q^{17} +(-0.707107 - 0.707107i) q^{18} +(1.96925 + 1.96925i) q^{19} +3.66176i q^{20} +(-0.0122313 - 2.64572i) q^{21} +5.52226i q^{22} -1.88723 q^{23} +1.00000i q^{24} +8.40845 q^{25} +(4.56991 - 4.56991i) q^{26} +(-0.707107 + 0.707107i) q^{27} +(-1.86216 + 1.87946i) q^{28} +(4.00171 + 3.60365i) q^{29} +3.66176 q^{30} +(1.04212 + 1.04212i) q^{31} +(0.707107 - 0.707107i) q^{32} +5.52226 q^{33} -5.14319 q^{34} +(6.88211 + 6.81877i) q^{35} +1.00000 q^{36} +(1.02071 + 1.02071i) q^{37} -2.78495 q^{38} +(-4.56991 - 4.56991i) q^{39} +(-2.58925 - 2.58925i) q^{40} +(7.51360 - 7.51360i) q^{41} +(1.87946 + 1.86216i) q^{42} +(-6.36372 + 6.36372i) q^{43} +(-3.90483 - 3.90483i) q^{44} -3.66176i q^{45} +(1.33447 - 1.33447i) q^{46} +(-6.78006 + 6.78006i) q^{47} +(-0.707107 - 0.707107i) q^{48} +(0.0647212 + 6.99970i) q^{49} +(-5.94568 + 5.94568i) q^{50} +5.14319i q^{51} +6.46283i q^{52} +13.5738 q^{53} -1.00000i q^{54} +(-14.2985 + 14.2985i) q^{55} +(-0.0122313 - 2.64572i) q^{56} +2.78495i q^{57} +(-5.37780 + 0.281472i) q^{58} +2.64616i q^{59} +(-2.58925 + 2.58925i) q^{60} +(8.08912 + 8.08912i) q^{61} -1.47379 q^{62} +(1.86216 - 1.87946i) q^{63} +1.00000i q^{64} +23.6653 q^{65} +(-3.90483 + 3.90483i) q^{66} -0.980797i q^{67} +(3.63679 - 3.63679i) q^{68} +(-1.33447 - 1.33447i) q^{69} +(-9.68799 + 0.0447880i) q^{70} -1.68936i q^{71} +(-0.707107 + 0.707107i) q^{72} +(-8.58204 + 8.58204i) q^{73} -1.44351 q^{74} +(5.94568 + 5.94568i) q^{75} +(1.96925 - 1.96925i) q^{76} +(-14.6104 + 0.0675444i) q^{77} +6.46283 q^{78} +(5.39398 - 5.39398i) q^{79} +3.66176 q^{80} -1.00000 q^{81} +10.6258i q^{82} -4.30382i q^{83} +(-2.64572 + 0.0122313i) q^{84} +(-13.3170 - 13.3170i) q^{85} -8.99966i q^{86} +(0.281472 + 5.37780i) q^{87} +5.52226 q^{88} +(-4.97318 - 4.97318i) q^{89} +(2.58925 + 2.58925i) q^{90} +(12.1466 + 12.0348i) q^{91} +1.88723i q^{92} +1.47379i q^{93} -9.58845i q^{94} +(-7.21093 - 7.21093i) q^{95} +1.00000 q^{96} +(-2.61488 + 2.61488i) q^{97} +(-4.99530 - 4.90377i) q^{98} +(3.90483 + 3.90483i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 40 q^{6} + 4 q^{10} + 4 q^{14} - 4 q^{15} - 40 q^{16} + 8 q^{19} - 4 q^{21} + 24 q^{25} - 12 q^{28} + 8 q^{29} - 24 q^{31} - 12 q^{35} + 40 q^{36} - 16 q^{37} - 4 q^{40} + 16 q^{41} - 20 q^{43} + 4 q^{46}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1218\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(871\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) −3.66176 −1.63759 −0.818793 0.574088i \(-0.805357\pi\)
−0.818793 + 0.574088i \(0.805357\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.87946 1.86216i −0.710368 0.703830i
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) 2.58925 2.58925i 0.818793 0.818793i
\(11\) 3.90483 3.90483i 1.17735 1.17735i 0.196934 0.980417i \(-0.436901\pi\)
0.980417 0.196934i \(-0.0630985\pi\)
\(12\) 0.707107 0.707107i 0.204124 0.204124i
\(13\) −6.46283 −1.79247 −0.896234 0.443582i \(-0.853707\pi\)
−0.896234 + 0.443582i \(0.853707\pi\)
\(14\) 2.64572 0.0122313i 0.707099 0.00326895i
\(15\) −2.58925 2.58925i −0.668542 0.668542i
\(16\) −1.00000 −0.250000
\(17\) 3.63679 + 3.63679i 0.882050 + 0.882050i 0.993743 0.111693i \(-0.0356272\pi\)
−0.111693 + 0.993743i \(0.535627\pi\)
\(18\) −0.707107 0.707107i −0.166667 0.166667i
\(19\) 1.96925 + 1.96925i 0.451778 + 0.451778i 0.895944 0.444167i \(-0.146500\pi\)
−0.444167 + 0.895944i \(0.646500\pi\)
\(20\) 3.66176i 0.818793i
\(21\) −0.0122313 2.64572i −0.00266909 0.577344i
\(22\) 5.52226i 1.17735i
\(23\) −1.88723 −0.393515 −0.196757 0.980452i \(-0.563041\pi\)
−0.196757 + 0.980452i \(0.563041\pi\)
\(24\) 1.00000i 0.204124i
\(25\) 8.40845 1.68169
\(26\) 4.56991 4.56991i 0.896234 0.896234i
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) −1.86216 + 1.87946i −0.351915 + 0.355184i
\(29\) 4.00171 + 3.60365i 0.743099 + 0.669181i
\(30\) 3.66176 0.668542
\(31\) 1.04212 + 1.04212i 0.187171 + 0.187171i 0.794472 0.607301i \(-0.207748\pi\)
−0.607301 + 0.794472i \(0.707748\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 5.52226 0.961303
\(34\) −5.14319 −0.882050
\(35\) 6.88211 + 6.81877i 1.16329 + 1.15258i
\(36\) 1.00000 0.166667
\(37\) 1.02071 + 1.02071i 0.167804 + 0.167804i 0.786014 0.618209i \(-0.212142\pi\)
−0.618209 + 0.786014i \(0.712142\pi\)
\(38\) −2.78495 −0.451778
\(39\) −4.56991 4.56991i −0.731772 0.731772i
\(40\) −2.58925 2.58925i −0.409397 0.409397i
\(41\) 7.51360 7.51360i 1.17343 1.17343i 0.192040 0.981387i \(-0.438490\pi\)
0.981387 0.192040i \(-0.0615104\pi\)
\(42\) 1.87946 + 1.86216i 0.290007 + 0.287338i
\(43\) −6.36372 + 6.36372i −0.970459 + 0.970459i −0.999576 0.0291172i \(-0.990730\pi\)
0.0291172 + 0.999576i \(0.490730\pi\)
\(44\) −3.90483 3.90483i −0.588675 0.588675i
\(45\) 3.66176i 0.545862i
\(46\) 1.33447 1.33447i 0.196757 0.196757i
\(47\) −6.78006 + 6.78006i −0.988973 + 0.988973i −0.999940 0.0109665i \(-0.996509\pi\)
0.0109665 + 0.999940i \(0.496509\pi\)
\(48\) −0.707107 0.707107i −0.102062 0.102062i
\(49\) 0.0647212 + 6.99970i 0.00924588 + 0.999957i
\(50\) −5.94568 + 5.94568i −0.840845 + 0.840845i
\(51\) 5.14319i 0.720191i
\(52\) 6.46283i 0.896234i
\(53\) 13.5738 1.86451 0.932254 0.361805i \(-0.117839\pi\)
0.932254 + 0.361805i \(0.117839\pi\)
\(54\) 1.00000i 0.136083i
\(55\) −14.2985 + 14.2985i −1.92801 + 1.92801i
\(56\) −0.0122313 2.64572i −0.00163447 0.353550i
\(57\) 2.78495i 0.368875i
\(58\) −5.37780 + 0.281472i −0.706140 + 0.0369591i
\(59\) 2.64616i 0.344500i 0.985053 + 0.172250i \(0.0551037\pi\)
−0.985053 + 0.172250i \(0.944896\pi\)
\(60\) −2.58925 + 2.58925i −0.334271 + 0.334271i
\(61\) 8.08912 + 8.08912i 1.03571 + 1.03571i 0.999338 + 0.0363672i \(0.0115786\pi\)
0.0363672 + 0.999338i \(0.488421\pi\)
\(62\) −1.47379 −0.187171
\(63\) 1.86216 1.87946i 0.234610 0.236789i
\(64\) 1.00000i 0.125000i
\(65\) 23.6653 2.93532
\(66\) −3.90483 + 3.90483i −0.480651 + 0.480651i
\(67\) 0.980797i 0.119823i −0.998204 0.0599117i \(-0.980918\pi\)
0.998204 0.0599117i \(-0.0190819\pi\)
\(68\) 3.63679 3.63679i 0.441025 0.441025i
\(69\) −1.33447 1.33447i −0.160652 0.160652i
\(70\) −9.68799 + 0.0447880i −1.15794 + 0.00535319i
\(71\) 1.68936i 0.200491i −0.994963 0.100245i \(-0.968037\pi\)
0.994963 0.100245i \(-0.0319628\pi\)
\(72\) −0.707107 + 0.707107i −0.0833333 + 0.0833333i
\(73\) −8.58204 + 8.58204i −1.00445 + 1.00445i −0.00446173 + 0.999990i \(0.501420\pi\)
−0.999990 + 0.00446173i \(0.998580\pi\)
\(74\) −1.44351 −0.167804
\(75\) 5.94568 + 5.94568i 0.686547 + 0.686547i
\(76\) 1.96925 1.96925i 0.225889 0.225889i
\(77\) −14.6104 + 0.0675444i −1.66501 + 0.00769740i
\(78\) 6.46283 0.731772
\(79\) 5.39398 5.39398i 0.606870 0.606870i −0.335257 0.942127i \(-0.608823\pi\)
0.942127 + 0.335257i \(0.108823\pi\)
\(80\) 3.66176 0.409397
\(81\) −1.00000 −0.111111
\(82\) 10.6258i 1.17343i
\(83\) 4.30382i 0.472405i −0.971704 0.236203i \(-0.924097\pi\)
0.971704 0.236203i \(-0.0759029\pi\)
\(84\) −2.64572 + 0.0122313i −0.288672 + 0.00133454i
\(85\) −13.3170 13.3170i −1.44443 1.44443i
\(86\) 8.99966i 0.970459i
\(87\) 0.281472 + 5.37780i 0.0301770 + 0.576561i
\(88\) 5.52226 0.588675
\(89\) −4.97318 4.97318i −0.527156 0.527156i 0.392567 0.919723i \(-0.371587\pi\)
−0.919723 + 0.392567i \(0.871587\pi\)
\(90\) 2.58925 + 2.58925i 0.272931 + 0.272931i
\(91\) 12.1466 + 12.0348i 1.27331 + 1.26159i
\(92\) 1.88723i 0.196757i
\(93\) 1.47379i 0.152825i
\(94\) 9.58845i 0.988973i
\(95\) −7.21093 7.21093i −0.739825 0.739825i
\(96\) 1.00000 0.102062
\(97\) −2.61488 + 2.61488i −0.265501 + 0.265501i −0.827284 0.561784i \(-0.810115\pi\)
0.561784 + 0.827284i \(0.310115\pi\)
\(98\) −4.99530 4.90377i −0.504602 0.495356i
\(99\) 3.90483 + 3.90483i 0.392450 + 0.392450i
\(100\) 8.40845i 0.840845i
\(101\) 6.54466 + 6.54466i 0.651218 + 0.651218i 0.953286 0.302068i \(-0.0976770\pi\)
−0.302068 + 0.953286i \(0.597677\pi\)
\(102\) −3.63679 3.63679i −0.360095 0.360095i
\(103\) 12.8805i 1.26916i −0.772858 0.634579i \(-0.781174\pi\)
0.772858 0.634579i \(-0.218826\pi\)
\(104\) −4.56991 4.56991i −0.448117 0.448117i
\(105\) 0.0447880 + 9.68799i 0.00437086 + 0.945451i
\(106\) −9.59814 + 9.59814i −0.932254 + 0.932254i
\(107\) 11.5173 1.11342 0.556708 0.830708i \(-0.312064\pi\)
0.556708 + 0.830708i \(0.312064\pi\)
\(108\) 0.707107 + 0.707107i 0.0680414 + 0.0680414i
\(109\) 0.398380i 0.0381579i 0.999818 + 0.0190789i \(0.00607339\pi\)
−0.999818 + 0.0190789i \(0.993927\pi\)
\(110\) 20.2212i 1.92801i
\(111\) 1.44351i 0.137012i
\(112\) 1.87946 + 1.86216i 0.177592 + 0.175958i
\(113\) 12.8169 + 12.8169i 1.20571 + 1.20571i 0.972402 + 0.233313i \(0.0749568\pi\)
0.233313 + 0.972402i \(0.425043\pi\)
\(114\) −1.96925 1.96925i −0.184437 0.184437i
\(115\) 6.91058 0.644415
\(116\) 3.60365 4.00171i 0.334591 0.371550i
\(117\) 6.46283i 0.597489i
\(118\) −1.87111 1.87111i −0.172250 0.172250i
\(119\) −0.0629078 13.6075i −0.00576675 1.24739i
\(120\) 3.66176i 0.334271i
\(121\) 19.4954i 1.77231i
\(122\) −11.4397 −1.03571
\(123\) 10.6258 0.958099
\(124\) 1.04212 1.04212i 0.0935856 0.0935856i
\(125\) −12.4809 −1.11633
\(126\) 0.0122313 + 2.64572i 0.00108965 + 0.235700i
\(127\) 1.37247 1.37247i 0.121787 0.121787i −0.643587 0.765373i \(-0.722554\pi\)
0.765373 + 0.643587i \(0.222554\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) −8.99966 −0.792376
\(130\) −16.7339 + 16.7339i −1.46766 + 1.46766i
\(131\) 0.645117 0.645117i 0.0563642 0.0563642i −0.678363 0.734727i \(-0.737310\pi\)
0.734727 + 0.678363i \(0.237310\pi\)
\(132\) 5.52226i 0.480651i
\(133\) −0.0340635 7.36819i −0.00295368 0.638903i
\(134\) 0.693528 + 0.693528i 0.0599117 + 0.0599117i
\(135\) 2.58925 2.58925i 0.222847 0.222847i
\(136\) 5.14319i 0.441025i
\(137\) −7.67530 + 7.67530i −0.655745 + 0.655745i −0.954371 0.298625i \(-0.903472\pi\)
0.298625 + 0.954371i \(0.403472\pi\)
\(138\) 1.88723 0.160652
\(139\) 5.20671i 0.441627i 0.975316 + 0.220814i \(0.0708712\pi\)
−0.975316 + 0.220814i \(0.929129\pi\)
\(140\) 6.81877 6.88211i 0.576292 0.581645i
\(141\) −9.58845 −0.807493
\(142\) 1.19456 + 1.19456i 0.100245 + 0.100245i
\(143\) −25.2363 + 25.2363i −2.11036 + 2.11036i
\(144\) 1.00000i 0.0833333i
\(145\) −14.6533 13.1957i −1.21689 1.09584i
\(146\) 12.1368i 1.00445i
\(147\) −4.90377 + 4.99530i −0.404456 + 0.412005i
\(148\) 1.02071 1.02071i 0.0839021 0.0839021i
\(149\) 13.6021i 1.11432i 0.830404 + 0.557162i \(0.188110\pi\)
−0.830404 + 0.557162i \(0.811890\pi\)
\(150\) −8.40845 −0.686547
\(151\) 13.6357i 1.10965i −0.831965 0.554827i \(-0.812784\pi\)
0.831965 0.554827i \(-0.187216\pi\)
\(152\) 2.78495i 0.225889i
\(153\) −3.63679 + 3.63679i −0.294017 + 0.294017i
\(154\) 10.2833 10.3789i 0.828655 0.836353i
\(155\) −3.81601 3.81601i −0.306509 0.306509i
\(156\) −4.56991 + 4.56991i −0.365886 + 0.365886i
\(157\) 5.42216 5.42216i 0.432735 0.432735i −0.456823 0.889558i \(-0.651013\pi\)
0.889558 + 0.456823i \(0.151013\pi\)
\(158\) 7.62824i 0.606870i
\(159\) 9.59814 + 9.59814i 0.761182 + 0.761182i
\(160\) −2.58925 + 2.58925i −0.204698 + 0.204698i
\(161\) 3.54697 + 3.51433i 0.279540 + 0.276968i
\(162\) 0.707107 0.707107i 0.0555556 0.0555556i
\(163\) 3.51944 + 3.51944i 0.275664 + 0.275664i 0.831375 0.555712i \(-0.187554\pi\)
−0.555712 + 0.831375i \(0.687554\pi\)
\(164\) −7.51360 7.51360i −0.586714 0.586714i
\(165\) −20.2212 −1.57422
\(166\) 3.04326 + 3.04326i 0.236203 + 0.236203i
\(167\) 11.0268 0.853280 0.426640 0.904422i \(-0.359697\pi\)
0.426640 + 0.904422i \(0.359697\pi\)
\(168\) 1.86216 1.87946i 0.143669 0.145003i
\(169\) 28.7682 2.21294
\(170\) 18.8331 1.44443
\(171\) −1.96925 + 1.96925i −0.150593 + 0.150593i
\(172\) 6.36372 + 6.36372i 0.485229 + 0.485229i
\(173\) 4.86418 0.369817 0.184908 0.982756i \(-0.440801\pi\)
0.184908 + 0.982756i \(0.440801\pi\)
\(174\) −4.00171 3.60365i −0.303369 0.273192i
\(175\) −15.8033 15.6579i −1.19462 1.18362i
\(176\) −3.90483 + 3.90483i −0.294338 + 0.294338i
\(177\) −1.87111 + 1.87111i −0.140642 + 0.140642i
\(178\) 7.03314 0.527156
\(179\) 12.4043i 0.927143i 0.886060 + 0.463571i \(0.153432\pi\)
−0.886060 + 0.463571i \(0.846568\pi\)
\(180\) −3.66176 −0.272931
\(181\) 1.40839i 0.104685i 0.998629 + 0.0523424i \(0.0166687\pi\)
−0.998629 + 0.0523424i \(0.983331\pi\)
\(182\) −17.0989 + 0.0790487i −1.26745 + 0.00585948i
\(183\) 11.4397i 0.845650i
\(184\) −1.33447 1.33447i −0.0983787 0.0983787i
\(185\) −3.73760 3.73760i −0.274794 0.274794i
\(186\) −1.04212 1.04212i −0.0764123 0.0764123i
\(187\) 28.4021 2.07696
\(188\) 6.78006 + 6.78006i 0.494487 + 0.494487i
\(189\) 2.64572 0.0122313i 0.192448 0.000889695i
\(190\) 10.1978 0.739825
\(191\) −9.13815 + 9.13815i −0.661213 + 0.661213i −0.955666 0.294453i \(-0.904863\pi\)
0.294453 + 0.955666i \(0.404863\pi\)
\(192\) −0.707107 + 0.707107i −0.0510310 + 0.0510310i
\(193\) −8.81474 + 8.81474i −0.634499 + 0.634499i −0.949193 0.314694i \(-0.898098\pi\)
0.314694 + 0.949193i \(0.398098\pi\)
\(194\) 3.69799i 0.265501i
\(195\) 16.7339 + 16.7339i 1.19834 + 1.19834i
\(196\) 6.99970 0.0647212i 0.499979 0.00462294i
\(197\) 7.54058 0.537244 0.268622 0.963246i \(-0.413432\pi\)
0.268622 + 0.963246i \(0.413432\pi\)
\(198\) −5.52226 −0.392450
\(199\) 12.9406i 0.917333i 0.888608 + 0.458667i \(0.151673\pi\)
−0.888608 + 0.458667i \(0.848327\pi\)
\(200\) 5.94568 + 5.94568i 0.420423 + 0.420423i
\(201\) 0.693528 0.693528i 0.0489177 0.0489177i
\(202\) −9.25555 −0.651218
\(203\) −0.810475 14.2247i −0.0568842 0.998381i
\(204\) 5.14319 0.360095
\(205\) −27.5130 + 27.5130i −1.92159 + 1.92159i
\(206\) 9.10792 + 9.10792i 0.634579 + 0.634579i
\(207\) 1.88723i 0.131172i
\(208\) 6.46283 0.448117
\(209\) 15.3792 1.06380
\(210\) −6.88211 6.81877i −0.474911 0.470540i
\(211\) −3.76259 3.76259i −0.259027 0.259027i 0.565631 0.824658i \(-0.308633\pi\)
−0.824658 + 0.565631i \(0.808633\pi\)
\(212\) 13.5738i 0.932254i
\(213\) 1.19456 1.19456i 0.0818500 0.0818500i
\(214\) −8.14394 + 8.14394i −0.556708 + 0.556708i
\(215\) 23.3024 23.3024i 1.58921 1.58921i
\(216\) −1.00000 −0.0680414
\(217\) −0.0180263 3.89923i −0.00122371 0.264697i
\(218\) −0.281697 0.281697i −0.0190789 0.0190789i
\(219\) −12.1368 −0.820131
\(220\) 14.2985 + 14.2985i 0.964007 + 0.964007i
\(221\) −23.5039 23.5039i −1.58105 1.58105i
\(222\) −1.02071 1.02071i −0.0685058 0.0685058i
\(223\) 6.40263i 0.428752i 0.976751 + 0.214376i \(0.0687718\pi\)
−0.976751 + 0.214376i \(0.931228\pi\)
\(224\) −2.64572 + 0.0122313i −0.176775 + 0.000817237i
\(225\) 8.40845i 0.560564i
\(226\) −18.1259 −1.20571
\(227\) 20.2626i 1.34487i −0.740154 0.672437i \(-0.765247\pi\)
0.740154 0.672437i \(-0.234753\pi\)
\(228\) 2.78495 0.184437
\(229\) −8.12556 + 8.12556i −0.536952 + 0.536952i −0.922632 0.385680i \(-0.873967\pi\)
0.385680 + 0.922632i \(0.373967\pi\)
\(230\) −4.88652 + 4.88652i −0.322207 + 0.322207i
\(231\) −10.3789 10.2833i −0.682879 0.676594i
\(232\) 0.281472 + 5.37780i 0.0184796 + 0.353070i
\(233\) 10.5637 0.692051 0.346026 0.938225i \(-0.387531\pi\)
0.346026 + 0.938225i \(0.387531\pi\)
\(234\) 4.56991 + 4.56991i 0.298745 + 0.298745i
\(235\) 24.8269 24.8269i 1.61953 1.61953i
\(236\) 2.64616 0.172250
\(237\) 7.62824 0.495507
\(238\) 9.66641 + 9.57745i 0.626580 + 0.620814i
\(239\) −12.8622 −0.831987 −0.415994 0.909367i \(-0.636566\pi\)
−0.415994 + 0.909367i \(0.636566\pi\)
\(240\) 2.58925 + 2.58925i 0.167136 + 0.167136i
\(241\) 7.99052 0.514715 0.257357 0.966316i \(-0.417148\pi\)
0.257357 + 0.966316i \(0.417148\pi\)
\(242\) 13.7853 + 13.7853i 0.886155 + 0.886155i
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 8.08912 8.08912i 0.517853 0.517853i
\(245\) −0.236993 25.6312i −0.0151409 1.63752i
\(246\) −7.51360 + 7.51360i −0.479050 + 0.479050i
\(247\) −12.7270 12.7270i −0.809797 0.809797i
\(248\) 1.47379i 0.0935856i
\(249\) 3.04326 3.04326i 0.192859 0.192859i
\(250\) 8.82535 8.82535i 0.558164 0.558164i
\(251\) 15.5773 + 15.5773i 0.983233 + 0.983233i 0.999862 0.0166288i \(-0.00529336\pi\)
−0.0166288 + 0.999862i \(0.505293\pi\)
\(252\) −1.87946 1.86216i −0.118395 0.117305i
\(253\) −7.36932 + 7.36932i −0.463305 + 0.463305i
\(254\) 1.94096i 0.121787i
\(255\) 18.8331i 1.17938i
\(256\) 1.00000 0.0625000
\(257\) 2.42032i 0.150976i 0.997147 + 0.0754878i \(0.0240514\pi\)
−0.997147 + 0.0754878i \(0.975949\pi\)
\(258\) 6.36372 6.36372i 0.396188 0.396188i
\(259\) −0.0176559 3.81912i −0.00109709 0.237308i
\(260\) 23.6653i 1.46766i
\(261\) −3.60365 + 4.00171i −0.223060 + 0.247700i
\(262\) 0.912334i 0.0563642i
\(263\) 5.73007 5.73007i 0.353331 0.353331i −0.508016 0.861347i \(-0.669621\pi\)
0.861347 + 0.508016i \(0.169621\pi\)
\(264\) 3.90483 + 3.90483i 0.240326 + 0.240326i
\(265\) −49.7040 −3.05329
\(266\) 5.23419 + 5.18601i 0.320929 + 0.317975i
\(267\) 7.03314i 0.430421i
\(268\) −0.980797 −0.0599117
\(269\) 11.0738 11.0738i 0.675179 0.675179i −0.283726 0.958905i \(-0.591571\pi\)
0.958905 + 0.283726i \(0.0915708\pi\)
\(270\) 3.66176i 0.222847i
\(271\) 18.4815 18.4815i 1.12267 1.12267i 0.131333 0.991338i \(-0.458074\pi\)
0.991338 0.131333i \(-0.0419258\pi\)
\(272\) −3.63679 3.63679i −0.220513 0.220513i
\(273\) 0.0790487 + 17.0989i 0.00478425 + 1.03487i
\(274\) 10.8545i 0.655745i
\(275\) 32.8336 32.8336i 1.97994 1.97994i
\(276\) −1.33447 + 1.33447i −0.0803259 + 0.0803259i
\(277\) −12.3020 −0.739158 −0.369579 0.929199i \(-0.620498\pi\)
−0.369579 + 0.929199i \(0.620498\pi\)
\(278\) −3.68170 3.68170i −0.220814 0.220814i
\(279\) −1.04212 + 1.04212i −0.0623904 + 0.0623904i
\(280\) 0.0447880 + 9.68799i 0.00267659 + 0.578968i
\(281\) −16.8666 −1.00618 −0.503088 0.864235i \(-0.667803\pi\)
−0.503088 + 0.864235i \(0.667803\pi\)
\(282\) 6.78006 6.78006i 0.403747 0.403747i
\(283\) 0.823083 0.0489272 0.0244636 0.999701i \(-0.492212\pi\)
0.0244636 + 0.999701i \(0.492212\pi\)
\(284\) −1.68936 −0.100245
\(285\) 10.1978i 0.604065i
\(286\) 35.6895i 2.11036i
\(287\) −28.1130 + 0.129968i −1.65946 + 0.00767175i
\(288\) 0.707107 + 0.707107i 0.0416667 + 0.0416667i
\(289\) 9.45242i 0.556025i
\(290\) 19.6922 1.03068i 1.15637 0.0605238i
\(291\) −3.69799 −0.216780
\(292\) 8.58204 + 8.58204i 0.502226 + 0.502226i
\(293\) 1.91754 + 1.91754i 0.112024 + 0.112024i 0.760897 0.648873i \(-0.224759\pi\)
−0.648873 + 0.760897i \(0.724759\pi\)
\(294\) −0.0647212 6.99970i −0.00377462 0.408231i
\(295\) 9.68958i 0.564149i
\(296\) 1.44351i 0.0839021i
\(297\) 5.52226i 0.320434i
\(298\) −9.61811 9.61811i −0.557162 0.557162i
\(299\) 12.1969 0.705363
\(300\) 5.94568 5.94568i 0.343274 0.343274i
\(301\) 23.8106 0.110077i 1.37242 0.00634476i
\(302\) 9.64187 + 9.64187i 0.554827 + 0.554827i
\(303\) 9.25555i 0.531718i
\(304\) −1.96925 1.96925i −0.112944 0.112944i
\(305\) −29.6204 29.6204i −1.69606 1.69606i
\(306\) 5.14319i 0.294017i
\(307\) −12.6975 12.6975i −0.724687 0.724687i 0.244869 0.969556i \(-0.421255\pi\)
−0.969556 + 0.244869i \(0.921255\pi\)
\(308\) 0.0675444 + 14.6104i 0.00384870 + 0.832504i
\(309\) 9.10792 9.10792i 0.518131 0.518131i
\(310\) 5.39665 0.306509
\(311\) −24.6439 24.6439i −1.39743 1.39743i −0.807336 0.590092i \(-0.799092\pi\)
−0.590092 0.807336i \(-0.700908\pi\)
\(312\) 6.46283i 0.365886i
\(313\) 9.32874i 0.527291i −0.964620 0.263646i \(-0.915075\pi\)
0.964620 0.263646i \(-0.0849250\pi\)
\(314\) 7.66809i 0.432735i
\(315\) −6.81877 + 6.88211i −0.384194 + 0.387763i
\(316\) −5.39398 5.39398i −0.303435 0.303435i
\(317\) 0.738414 + 0.738414i 0.0414735 + 0.0414735i 0.727539 0.686066i \(-0.240664\pi\)
−0.686066 + 0.727539i \(0.740664\pi\)
\(318\) −13.5738 −0.761182
\(319\) 29.6977 1.55436i 1.66275 0.0870277i
\(320\) 3.66176i 0.204698i
\(321\) 8.14394 + 8.14394i 0.454550 + 0.454550i
\(322\) −4.99309 + 0.0230833i −0.278254 + 0.00128638i
\(323\) 14.3235i 0.796981i
\(324\) 1.00000i 0.0555556i
\(325\) −54.3424 −3.01438
\(326\) −4.97724 −0.275664
\(327\) −0.281697 + 0.281697i −0.0155779 + 0.0155779i
\(328\) 10.6258 0.586714
\(329\) 25.3684 0.117279i 1.39860 0.00646581i
\(330\) 14.2985 14.2985i 0.787109 0.787109i
\(331\) 11.5342 + 11.5342i 0.633976 + 0.633976i 0.949063 0.315087i \(-0.102034\pi\)
−0.315087 + 0.949063i \(0.602034\pi\)
\(332\) −4.30382 −0.236203
\(333\) −1.02071 + 1.02071i −0.0559347 + 0.0559347i
\(334\) −7.79713 + 7.79713i −0.426640 + 0.426640i
\(335\) 3.59144i 0.196221i
\(336\) 0.0122313 + 2.64572i 0.000667271 + 0.144336i
\(337\) −19.6526 19.6526i −1.07055 1.07055i −0.997315 0.0732328i \(-0.976668\pi\)
−0.0732328 0.997315i \(-0.523332\pi\)
\(338\) −20.3422 + 20.3422i −1.10647 + 1.10647i
\(339\) 18.1259i 0.984462i
\(340\) −13.3170 + 13.3170i −0.722217 + 0.722217i
\(341\) 8.13864 0.440732
\(342\) 2.78495i 0.150593i
\(343\) 12.9129 13.2762i 0.697232 0.716845i
\(344\) −8.99966 −0.485229
\(345\) 4.88652 + 4.88652i 0.263081 + 0.263081i
\(346\) −3.43950 + 3.43950i −0.184908 + 0.184908i
\(347\) 29.5102i 1.58419i 0.610398 + 0.792095i \(0.291009\pi\)
−0.610398 + 0.792095i \(0.708991\pi\)
\(348\) 5.37780 0.281472i 0.288281 0.0150885i
\(349\) 19.8941i 1.06491i 0.846459 + 0.532453i \(0.178730\pi\)
−0.846459 + 0.532453i \(0.821270\pi\)
\(350\) 22.2464 0.102846i 1.18912 0.00549736i
\(351\) 4.56991 4.56991i 0.243924 0.243924i
\(352\) 5.52226i 0.294338i
\(353\) 18.1648 0.966814 0.483407 0.875396i \(-0.339399\pi\)
0.483407 + 0.875396i \(0.339399\pi\)
\(354\) 2.64616i 0.140642i
\(355\) 6.18604i 0.328321i
\(356\) −4.97318 + 4.97318i −0.263578 + 0.263578i
\(357\) 9.57745 9.66641i 0.506892 0.511601i
\(358\) −8.77118 8.77118i −0.463571 0.463571i
\(359\) −18.3421 + 18.3421i −0.968061 + 0.968061i −0.999506 0.0314440i \(-0.989989\pi\)
0.0314440 + 0.999506i \(0.489989\pi\)
\(360\) 2.58925 2.58925i 0.136466 0.136466i
\(361\) 11.2441i 0.591794i
\(362\) −0.995883 0.995883i −0.0523424 0.0523424i
\(363\) 13.7853 13.7853i 0.723543 0.723543i
\(364\) 12.0348 12.1466i 0.630796 0.636656i
\(365\) 31.4253 31.4253i 1.64488 1.64488i
\(366\) −8.08912 8.08912i −0.422825 0.422825i
\(367\) 17.4424 + 17.4424i 0.910485 + 0.910485i 0.996310 0.0858248i \(-0.0273525\pi\)
−0.0858248 + 0.996310i \(0.527353\pi\)
\(368\) 1.88723 0.0983787
\(369\) 7.51360 + 7.51360i 0.391142 + 0.391142i
\(370\) 5.28577 0.274794
\(371\) −25.5114 25.2766i −1.32449 1.31230i
\(372\) 1.47379 0.0764123
\(373\) −13.5522 −0.701706 −0.350853 0.936431i \(-0.614108\pi\)
−0.350853 + 0.936431i \(0.614108\pi\)
\(374\) −20.0833 + 20.0833i −1.03848 + 1.03848i
\(375\) −8.82535 8.82535i −0.455739 0.455739i
\(376\) −9.58845 −0.494487
\(377\) −25.8624 23.2898i −1.33198 1.19949i
\(378\) −1.86216 + 1.87946i −0.0957792 + 0.0966689i
\(379\) −10.7796 + 10.7796i −0.553713 + 0.553713i −0.927510 0.373797i \(-0.878056\pi\)
0.373797 + 0.927510i \(0.378056\pi\)
\(380\) −7.21093 + 7.21093i −0.369913 + 0.369913i
\(381\) 1.94096 0.0994383
\(382\) 12.9233i 0.661213i
\(383\) 12.0093 0.613646 0.306823 0.951767i \(-0.400734\pi\)
0.306823 + 0.951767i \(0.400734\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 53.4997 0.247331i 2.72659 0.0126052i
\(386\) 12.4659i 0.634499i
\(387\) −6.36372 6.36372i −0.323486 0.323486i
\(388\) 2.61488 + 2.61488i 0.132750 + 0.132750i
\(389\) 15.9811 + 15.9811i 0.810276 + 0.810276i 0.984675 0.174399i \(-0.0557982\pi\)
−0.174399 + 0.984675i \(0.555798\pi\)
\(390\) −23.6653 −1.19834
\(391\) −6.86346 6.86346i −0.347100 0.347100i
\(392\) −4.90377 + 4.99530i −0.247678 + 0.252301i
\(393\) 0.912334 0.0460212
\(394\) −5.33199 + 5.33199i −0.268622 + 0.268622i
\(395\) −19.7514 + 19.7514i −0.993802 + 0.993802i
\(396\) 3.90483 3.90483i 0.196225 0.196225i
\(397\) 26.9841i 1.35430i −0.735847 0.677148i \(-0.763216\pi\)
0.735847 0.677148i \(-0.236784\pi\)
\(398\) −9.15037 9.15037i −0.458667 0.458667i
\(399\) 5.18601 5.23419i 0.259625 0.262037i
\(400\) −8.40845 −0.420423
\(401\) −21.0602 −1.05169 −0.525847 0.850579i \(-0.676252\pi\)
−0.525847 + 0.850579i \(0.676252\pi\)
\(402\) 0.980797i 0.0489177i
\(403\) −6.73508 6.73508i −0.335498 0.335498i
\(404\) 6.54466 6.54466i 0.325609 0.325609i
\(405\) 3.66176 0.181954
\(406\) 10.6315 + 9.48532i 0.527632 + 0.470748i
\(407\) 7.97143 0.395129
\(408\) −3.63679 + 3.63679i −0.180048 + 0.180048i
\(409\) 10.6984 + 10.6984i 0.529004 + 0.529004i 0.920275 0.391271i \(-0.127965\pi\)
−0.391271 + 0.920275i \(0.627965\pi\)
\(410\) 38.9092i 1.92159i
\(411\) −10.8545 −0.535414
\(412\) −12.8805 −0.634579
\(413\) 4.92757 4.97334i 0.242470 0.244722i
\(414\) 1.33447 + 1.33447i 0.0655858 + 0.0655858i
\(415\) 15.7595i 0.773605i
\(416\) −4.56991 + 4.56991i −0.224058 + 0.224058i
\(417\) −3.68170 + 3.68170i −0.180294 + 0.180294i
\(418\) −10.8747 + 10.8747i −0.531901 + 0.531901i
\(419\) 12.9812 0.634174 0.317087 0.948397i \(-0.397295\pi\)
0.317087 + 0.948397i \(0.397295\pi\)
\(420\) 9.68799 0.0447880i 0.472726 0.00218543i
\(421\) 13.6916 + 13.6916i 0.667289 + 0.667289i 0.957088 0.289798i \(-0.0935883\pi\)
−0.289798 + 0.957088i \(0.593588\pi\)
\(422\) 5.32111 0.259027
\(423\) −6.78006 6.78006i −0.329658 0.329658i
\(424\) 9.59814 + 9.59814i 0.466127 + 0.466127i
\(425\) 30.5797 + 30.5797i 1.48334 + 1.48334i
\(426\) 1.68936i 0.0818500i
\(427\) −0.139923 30.2664i −0.00677134 1.46469i
\(428\) 11.5173i 0.556708i
\(429\) −35.6895 −1.72310
\(430\) 32.9546i 1.58921i
\(431\) 30.1597 1.45274 0.726371 0.687303i \(-0.241205\pi\)
0.726371 + 0.687303i \(0.241205\pi\)
\(432\) 0.707107 0.707107i 0.0340207 0.0340207i
\(433\) −13.1359 + 13.1359i −0.631272 + 0.631272i −0.948387 0.317115i \(-0.897286\pi\)
0.317115 + 0.948387i \(0.397286\pi\)
\(434\) 2.76992 + 2.74443i 0.132960 + 0.131737i
\(435\) −1.03068 19.6922i −0.0494174 0.944169i
\(436\) 0.398380 0.0190789
\(437\) −3.71644 3.71644i −0.177781 0.177781i
\(438\) 8.58204 8.58204i 0.410066 0.410066i
\(439\) 28.2963 1.35051 0.675254 0.737585i \(-0.264034\pi\)
0.675254 + 0.737585i \(0.264034\pi\)
\(440\) −20.2212 −0.964007
\(441\) −6.99970 + 0.0647212i −0.333319 + 0.00308196i
\(442\) 33.2396 1.58105
\(443\) −4.43660 4.43660i −0.210789 0.210789i 0.593814 0.804603i \(-0.297622\pi\)
−0.804603 + 0.593814i \(0.797622\pi\)
\(444\) 1.44351 0.0685058
\(445\) 18.2106 + 18.2106i 0.863264 + 0.863264i
\(446\) −4.52734 4.52734i −0.214376 0.214376i
\(447\) −9.61811 + 9.61811i −0.454921 + 0.454921i
\(448\) 1.86216 1.87946i 0.0879788 0.0887960i
\(449\) 11.9891 11.9891i 0.565801 0.565801i −0.365149 0.930949i \(-0.618982\pi\)
0.930949 + 0.365149i \(0.118982\pi\)
\(450\) −5.94568 5.94568i −0.280282 0.280282i
\(451\) 58.6787i 2.76307i
\(452\) 12.8169 12.8169i 0.602857 0.602857i
\(453\) 9.64187 9.64187i 0.453015 0.453015i
\(454\) 14.3278 + 14.3278i 0.672437 + 0.672437i
\(455\) −44.4779 44.0686i −2.08516 2.06597i
\(456\) −1.96925 + 1.96925i −0.0922187 + 0.0922187i
\(457\) 13.8990i 0.650168i 0.945685 + 0.325084i \(0.105393\pi\)
−0.945685 + 0.325084i \(0.894607\pi\)
\(458\) 11.4913i 0.536952i
\(459\) −5.14319 −0.240064
\(460\) 6.91058i 0.322207i
\(461\) −17.3861 + 17.3861i −0.809751 + 0.809751i −0.984596 0.174845i \(-0.944058\pi\)
0.174845 + 0.984596i \(0.444058\pi\)
\(462\) 14.6104 0.0675444i 0.679737 0.00314245i
\(463\) 27.2623i 1.26699i −0.773747 0.633494i \(-0.781620\pi\)
0.773747 0.633494i \(-0.218380\pi\)
\(464\) −4.00171 3.60365i −0.185775 0.167295i
\(465\) 5.39665i 0.250264i
\(466\) −7.46967 + 7.46967i −0.346026 + 0.346026i
\(467\) −14.2999 14.2999i −0.661721 0.661721i 0.294065 0.955785i \(-0.404992\pi\)
−0.955785 + 0.294065i \(0.904992\pi\)
\(468\) −6.46283 −0.298745
\(469\) −1.82640 + 1.84337i −0.0843354 + 0.0851188i
\(470\) 35.1106i 1.61953i
\(471\) 7.66809 0.353327
\(472\) −1.87111 + 1.87111i −0.0861250 + 0.0861250i
\(473\) 49.6985i 2.28514i
\(474\) −5.39398 + 5.39398i −0.247754 + 0.247754i
\(475\) 16.5584 + 16.5584i 0.759751 + 0.759751i
\(476\) −13.6075 + 0.0629078i −0.623697 + 0.00288338i
\(477\) 13.5738i 0.621503i
\(478\) 9.09496 9.09496i 0.415994 0.415994i
\(479\) 1.70045 1.70045i 0.0776955 0.0776955i −0.667191 0.744887i \(-0.732504\pi\)
0.744887 + 0.667191i \(0.232504\pi\)
\(480\) −3.66176 −0.167136
\(481\) −6.59670 6.59670i −0.300784 0.300784i
\(482\) −5.65015 + 5.65015i −0.257357 + 0.257357i
\(483\) 0.0230833 + 4.99309i 0.00105032 + 0.227194i
\(484\) −19.4954 −0.886155
\(485\) 9.57504 9.57504i 0.434780 0.434780i
\(486\) 1.00000 0.0453609
\(487\) −4.57867 −0.207479 −0.103740 0.994604i \(-0.533081\pi\)
−0.103740 + 0.994604i \(0.533081\pi\)
\(488\) 11.4397i 0.517853i
\(489\) 4.97724i 0.225078i
\(490\) 18.2916 + 17.9564i 0.826329 + 0.811188i
\(491\) −16.4436 16.4436i −0.742088 0.742088i 0.230892 0.972979i \(-0.425836\pi\)
−0.972979 + 0.230892i \(0.925836\pi\)
\(492\) 10.6258i 0.479050i
\(493\) 1.44767 + 27.6591i 0.0651996 + 1.24570i
\(494\) 17.9986 0.809797
\(495\) −14.2985 14.2985i −0.642671 0.642671i
\(496\) −1.04212 1.04212i −0.0467928 0.0467928i
\(497\) −3.14587 + 3.17509i −0.141111 + 0.142422i
\(498\) 4.30382i 0.192859i
\(499\) 38.2226i 1.71108i 0.517739 + 0.855538i \(0.326774\pi\)
−0.517739 + 0.855538i \(0.673226\pi\)
\(500\) 12.4809i 0.558164i
\(501\) 7.79713 + 7.79713i 0.348350 + 0.348350i
\(502\) −22.0297 −0.983233
\(503\) −27.9861 + 27.9861i −1.24784 + 1.24784i −0.291164 + 0.956673i \(0.594042\pi\)
−0.956673 + 0.291164i \(0.905958\pi\)
\(504\) 2.64572 0.0122313i 0.117850 0.000544825i
\(505\) −23.9650 23.9650i −1.06643 1.06643i
\(506\) 10.4218i 0.463305i
\(507\) 20.3422 + 20.3422i 0.903428 + 0.903428i
\(508\) −1.37247 1.37247i −0.0608933 0.0608933i
\(509\) 4.21311i 0.186743i 0.995631 + 0.0933715i \(0.0297644\pi\)
−0.995631 + 0.0933715i \(0.970236\pi\)
\(510\) 13.3170 + 13.3170i 0.589688 + 0.589688i
\(511\) 32.1107 0.148449i 1.42049 0.00656700i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −2.78495 −0.122958
\(514\) −1.71143 1.71143i −0.0754878 0.0754878i
\(515\) 47.1654i 2.07836i
\(516\) 8.99966i 0.396188i
\(517\) 52.9500i 2.32874i
\(518\) 2.71301 + 2.68804i 0.119203 + 0.118106i
\(519\) 3.43950 + 3.43950i 0.150977 + 0.150977i
\(520\) 16.7339 + 16.7339i 0.733830 + 0.733830i
\(521\) 19.7679 0.866049 0.433025 0.901382i \(-0.357446\pi\)
0.433025 + 0.901382i \(0.357446\pi\)
\(522\) −0.281472 5.37780i −0.0123197 0.235380i
\(523\) 4.36118i 0.190701i 0.995444 + 0.0953506i \(0.0303972\pi\)
−0.995444 + 0.0953506i \(0.969603\pi\)
\(524\) −0.645117 0.645117i −0.0281821 0.0281821i
\(525\) −0.102846 22.2464i −0.00448858 0.970914i
\(526\) 8.10354i 0.353331i
\(527\) 7.57997i 0.330189i
\(528\) −5.52226 −0.240326
\(529\) −19.4384 −0.845146
\(530\) 35.1460 35.1460i 1.52665 1.52665i
\(531\) −2.64616 −0.114833
\(532\) −7.36819 + 0.0340635i −0.319452 + 0.00147684i
\(533\) −48.5591 + 48.5591i −2.10333 + 2.10333i
\(534\) 4.97318 + 4.97318i 0.215211 + 0.215211i
\(535\) −42.1734 −1.82332
\(536\) 0.693528 0.693528i 0.0299559 0.0299559i
\(537\) −8.77118 + 8.77118i −0.378504 + 0.378504i
\(538\) 15.6607i 0.675179i
\(539\) 27.5854 + 27.0799i 1.18819 + 1.16641i
\(540\) −2.58925 2.58925i −0.111424 0.111424i
\(541\) −25.1909 + 25.1909i −1.08304 + 1.08304i −0.0868149 + 0.996224i \(0.527669\pi\)
−0.996224 + 0.0868149i \(0.972331\pi\)
\(542\) 26.1368i 1.12267i
\(543\) −0.995883 + 0.995883i −0.0427374 + 0.0427374i
\(544\) 5.14319 0.220513
\(545\) 1.45877i 0.0624869i
\(546\) −12.1466 12.0348i −0.519827 0.515043i
\(547\) −6.31604 −0.270054 −0.135027 0.990842i \(-0.543112\pi\)
−0.135027 + 0.990842i \(0.543112\pi\)
\(548\) 7.67530 + 7.67530i 0.327873 + 0.327873i
\(549\) −8.08912 + 8.08912i −0.345235 + 0.345235i
\(550\) 46.4337i 1.97994i
\(551\) 0.783885 + 14.9769i 0.0333946 + 0.638037i
\(552\) 1.88723i 0.0803259i
\(553\) −20.1822 + 0.0933032i −0.858235 + 0.00396765i
\(554\) 8.69885 8.69885i 0.369579 0.369579i
\(555\) 5.28577i 0.224368i
\(556\) 5.20671 0.220814
\(557\) 25.8087i 1.09355i −0.837280 0.546775i \(-0.815855\pi\)
0.837280 0.546775i \(-0.184145\pi\)
\(558\) 1.47379i 0.0623904i
\(559\) 41.1277 41.1277i 1.73952 1.73952i
\(560\) −6.88211 6.81877i −0.290822 0.288146i
\(561\) 20.0833 + 20.0833i 0.847917 + 0.847917i
\(562\) 11.9265 11.9265i 0.503088 0.503088i
\(563\) 8.88429 8.88429i 0.374428 0.374428i −0.494659 0.869087i \(-0.664707\pi\)
0.869087 + 0.494659i \(0.164707\pi\)
\(564\) 9.58845i 0.403747i
\(565\) −46.9324 46.9324i −1.97446 1.97446i
\(566\) −0.582008 + 0.582008i −0.0244636 + 0.0244636i
\(567\) 1.87946 + 1.86216i 0.0789298 + 0.0782034i
\(568\) 1.19456 1.19456i 0.0501227 0.0501227i
\(569\) −15.1220 15.1220i −0.633945 0.633945i 0.315110 0.949055i \(-0.397959\pi\)
−0.949055 + 0.315110i \(0.897959\pi\)
\(570\) 7.21093 + 7.21093i 0.302032 + 0.302032i
\(571\) −36.1399 −1.51241 −0.756203 0.654337i \(-0.772948\pi\)
−0.756203 + 0.654337i \(0.772948\pi\)
\(572\) 25.2363 + 25.2363i 1.05518 + 1.05518i
\(573\) −12.9233 −0.539878
\(574\) 19.7870 19.9708i 0.825894 0.833565i
\(575\) −15.8687 −0.661770
\(576\) −1.00000 −0.0416667
\(577\) 19.1725 19.1725i 0.798163 0.798163i −0.184643 0.982806i \(-0.559113\pi\)
0.982806 + 0.184643i \(0.0591129\pi\)
\(578\) −6.68387 6.68387i −0.278012 0.278012i
\(579\) −12.4659 −0.518066
\(580\) −13.1957 + 14.6533i −0.547921 + 0.608445i
\(581\) −8.01440 + 8.08884i −0.332493 + 0.335582i
\(582\) 2.61488 2.61488i 0.108390 0.108390i
\(583\) 53.0035 53.0035i 2.19518 2.19518i
\(584\) −12.1368 −0.502226
\(585\) 23.6653i 0.978440i
\(586\) −2.71180 −0.112024
\(587\) 9.48610i 0.391533i −0.980651 0.195767i \(-0.937281\pi\)
0.980651 0.195767i \(-0.0627195\pi\)
\(588\) 4.99530 + 4.90377i 0.206003 + 0.202228i
\(589\) 4.10442i 0.169120i
\(590\) 6.85157 + 6.85157i 0.282074 + 0.282074i
\(591\) 5.33199 + 5.33199i 0.219329 + 0.219329i
\(592\) −1.02071 1.02071i −0.0419511 0.0419511i
\(593\) −4.85245 −0.199266 −0.0996331 0.995024i \(-0.531767\pi\)
−0.0996331 + 0.995024i \(0.531767\pi\)
\(594\) −3.90483 3.90483i −0.160217 0.160217i
\(595\) 0.230353 + 49.8272i 0.00944356 + 2.04272i
\(596\) 13.6021 0.557162
\(597\) −9.15037 + 9.15037i −0.374500 + 0.374500i
\(598\) −8.62448 + 8.62448i −0.352681 + 0.352681i
\(599\) −25.4689 + 25.4689i −1.04063 + 1.04063i −0.0414918 + 0.999139i \(0.513211\pi\)
−0.999139 + 0.0414918i \(0.986789\pi\)
\(600\) 8.40845i 0.343274i
\(601\) 8.62472 + 8.62472i 0.351810 + 0.351810i 0.860783 0.508973i \(-0.169975\pi\)
−0.508973 + 0.860783i \(0.669975\pi\)
\(602\) −16.7588 + 16.9145i −0.683038 + 0.689383i
\(603\) 0.980797 0.0399411
\(604\) −13.6357 −0.554827
\(605\) 71.3874i 2.90231i
\(606\) −6.54466 6.54466i −0.265859 0.265859i
\(607\) −3.29419 + 3.29419i −0.133707 + 0.133707i −0.770793 0.637086i \(-0.780140\pi\)
0.637086 + 0.770793i \(0.280140\pi\)
\(608\) 2.78495 0.112944
\(609\) 9.48532 10.6315i 0.384364 0.430810i
\(610\) 41.8895 1.69606
\(611\) 43.8184 43.8184i 1.77270 1.77270i
\(612\) 3.63679 + 3.63679i 0.147008 + 0.147008i
\(613\) 37.9508i 1.53282i 0.642352 + 0.766410i \(0.277959\pi\)
−0.642352 + 0.766410i \(0.722041\pi\)
\(614\) 17.9570 0.724687
\(615\) −38.9092 −1.56897
\(616\) −10.3789 10.2833i −0.418176 0.414328i
\(617\) −14.5528 14.5528i −0.585873 0.585873i 0.350638 0.936511i \(-0.385965\pi\)
−0.936511 + 0.350638i \(0.885965\pi\)
\(618\) 12.8805i 0.518131i
\(619\) −17.3732 + 17.3732i −0.698287 + 0.698287i −0.964041 0.265754i \(-0.914379\pi\)
0.265754 + 0.964041i \(0.414379\pi\)
\(620\) −3.81601 + 3.81601i −0.153255 + 0.153255i
\(621\) 1.33447 1.33447i 0.0535506 0.0535506i
\(622\) 34.8518 1.39743
\(623\) 0.0860244 + 18.6077i 0.00344649 + 0.745504i
\(624\) 4.56991 + 4.56991i 0.182943 + 0.182943i
\(625\) 3.65983 0.146393
\(626\) 6.59641 + 6.59641i 0.263646 + 0.263646i
\(627\) 10.8747 + 10.8747i 0.434295 + 0.434295i
\(628\) −5.42216 5.42216i −0.216368 0.216368i
\(629\) 7.42423i 0.296023i
\(630\) −0.0447880 9.68799i −0.00178440 0.385979i
\(631\) 5.64254i 0.224626i −0.993673 0.112313i \(-0.964174\pi\)
0.993673 0.112313i \(-0.0358259\pi\)
\(632\) 7.62824 0.303435
\(633\) 5.32111i 0.211495i
\(634\) −1.04428 −0.0414735
\(635\) −5.02563 + 5.02563i −0.199436 + 0.199436i
\(636\) 9.59814 9.59814i 0.380591 0.380591i
\(637\) −0.418282 45.2379i −0.0165729 1.79239i
\(638\) −19.9003 + 22.0985i −0.787861 + 0.874889i
\(639\) 1.68936 0.0668302
\(640\) 2.58925 + 2.58925i 0.102349 + 0.102349i
\(641\) 11.4231 11.4231i 0.451185 0.451185i −0.444563 0.895748i \(-0.646641\pi\)
0.895748 + 0.444563i \(0.146641\pi\)
\(642\) −11.5173 −0.454550
\(643\) 10.3887 0.409690 0.204845 0.978794i \(-0.434331\pi\)
0.204845 + 0.978794i \(0.434331\pi\)
\(644\) 3.51433 3.54697i 0.138484 0.139770i
\(645\) 32.9546 1.29759
\(646\) −10.1282 10.1282i −0.398491 0.398491i
\(647\) −22.4869 −0.884050 −0.442025 0.897003i \(-0.645740\pi\)
−0.442025 + 0.897003i \(0.645740\pi\)
\(648\) −0.707107 0.707107i −0.0277778 0.0277778i
\(649\) 10.3328 + 10.3328i 0.405598 + 0.405598i
\(650\) 38.4259 38.4259i 1.50719 1.50719i
\(651\) 2.74443 2.76992i 0.107563 0.108562i
\(652\) 3.51944 3.51944i 0.137832 0.137832i
\(653\) 29.7535 + 29.7535i 1.16434 + 1.16434i 0.983515 + 0.180828i \(0.0578777\pi\)
0.180828 + 0.983515i \(0.442122\pi\)
\(654\) 0.398380i 0.0155779i
\(655\) −2.36226 + 2.36226i −0.0923012 + 0.0923012i
\(656\) −7.51360 + 7.51360i −0.293357 + 0.293357i
\(657\) −8.58204 8.58204i −0.334817 0.334817i
\(658\) −17.8552 + 18.0211i −0.696069 + 0.702535i
\(659\) −19.3051 + 19.3051i −0.752018 + 0.752018i −0.974856 0.222837i \(-0.928468\pi\)
0.222837 + 0.974856i \(0.428468\pi\)
\(660\) 20.2212i 0.787109i
\(661\) 6.28568i 0.244485i 0.992500 + 0.122242i \(0.0390085\pi\)
−0.992500 + 0.122242i \(0.960991\pi\)
\(662\) −16.3118 −0.633976
\(663\) 33.2396i 1.29092i
\(664\) 3.04326 3.04326i 0.118101 0.118101i
\(665\) 0.124732 + 26.9805i 0.00483690 + 1.04626i
\(666\) 1.44351i 0.0559347i
\(667\) −7.55216 6.80092i −0.292421 0.263333i
\(668\) 11.0268i 0.426640i
\(669\) −4.52734 + 4.52734i −0.175037 + 0.175037i
\(670\) −2.53953 2.53953i −0.0981106 0.0981106i
\(671\) 63.1733 2.43878
\(672\) −1.87946 1.86216i −0.0725016 0.0718344i
\(673\) 15.4680i 0.596247i 0.954527 + 0.298123i \(0.0963607\pi\)
−0.954527 + 0.298123i \(0.903639\pi\)
\(674\) 27.7930 1.07055
\(675\) −5.94568 + 5.94568i −0.228849 + 0.228849i
\(676\) 28.7682i 1.10647i
\(677\) −33.9281 + 33.9281i −1.30396 + 1.30396i −0.378265 + 0.925697i \(0.623479\pi\)
−0.925697 + 0.378265i \(0.876521\pi\)
\(678\) −12.8169 12.8169i −0.492231 0.492231i
\(679\) 9.78387 0.0452312i 0.375470 0.00173582i
\(680\) 18.8331i 0.722217i
\(681\) 14.3278 14.3278i 0.549043 0.549043i
\(682\) −5.75489 + 5.75489i −0.220366 + 0.220366i
\(683\) 25.5112 0.976159 0.488080 0.872799i \(-0.337698\pi\)
0.488080 + 0.872799i \(0.337698\pi\)
\(684\) 1.96925 + 1.96925i 0.0752963 + 0.0752963i
\(685\) 28.1051 28.1051i 1.07384 1.07384i
\(686\) 0.256850 + 18.5185i 0.00980657 + 0.707039i
\(687\) −11.4913 −0.438420
\(688\) 6.36372 6.36372i 0.242615 0.242615i
\(689\) −87.7253 −3.34207
\(690\) −6.91058 −0.263081
\(691\) 1.09496i 0.0416543i −0.999783 0.0208272i \(-0.993370\pi\)
0.999783 0.0208272i \(-0.00662997\pi\)
\(692\) 4.86418i 0.184908i
\(693\) −0.0675444 14.6104i −0.00256580 0.555003i
\(694\) −20.8668 20.8668i −0.792095 0.792095i
\(695\) 19.0657i 0.723203i
\(696\) −3.60365 + 4.00171i −0.136596 + 0.151685i
\(697\) 54.6507 2.07004
\(698\) −14.0673 14.0673i −0.532453 0.532453i
\(699\) 7.46967 + 7.46967i 0.282529 + 0.282529i
\(700\) −15.6579 + 15.8033i −0.591812 + 0.597310i
\(701\) 44.4522i 1.67894i 0.543409 + 0.839468i \(0.317133\pi\)
−0.543409 + 0.839468i \(0.682867\pi\)
\(702\) 6.46283i 0.243924i
\(703\) 4.02009i 0.151620i
\(704\) 3.90483 + 3.90483i 0.147169 + 0.147169i
\(705\) 35.1106 1.32234
\(706\) −12.8444 + 12.8444i −0.483407 + 0.483407i
\(707\) −0.113207 24.4876i −0.00425760 0.920952i
\(708\) 1.87111 + 1.87111i 0.0703208 + 0.0703208i
\(709\) 20.0491i 0.752960i −0.926425 0.376480i \(-0.877134\pi\)
0.926425 0.376480i \(-0.122866\pi\)
\(710\) −4.37419 4.37419i −0.164160 0.164160i
\(711\) 5.39398 + 5.39398i 0.202290 + 0.202290i
\(712\) 7.03314i 0.263578i
\(713\) −1.96673 1.96673i −0.0736547 0.0736547i
\(714\) 0.0629078 + 13.6075i 0.00235427 + 0.509246i
\(715\) 92.4090 92.4090i 3.45590 3.45590i
\(716\) 12.4043 0.463571
\(717\) −9.09496 9.09496i −0.339657 0.339657i
\(718\) 25.9397i 0.968061i
\(719\) 29.4268i 1.09744i −0.836008 0.548718i \(-0.815116\pi\)
0.836008 0.548718i \(-0.184884\pi\)
\(720\) 3.66176i 0.136466i
\(721\) −23.9856 + 24.2084i −0.893272 + 0.901569i
\(722\) 7.95077 + 7.95077i 0.295897 + 0.295897i
\(723\) 5.65015 + 5.65015i 0.210131 + 0.210131i
\(724\) 1.40839 0.0523424
\(725\) 33.6482 + 30.3011i 1.24966 + 1.12536i
\(726\) 19.4954i 0.723543i
\(727\) 6.03361 + 6.03361i 0.223774 + 0.223774i 0.810086 0.586311i \(-0.199421\pi\)
−0.586311 + 0.810086i \(0.699421\pi\)
\(728\) 0.0790487 + 17.0989i 0.00292974 + 0.633726i
\(729\) 1.00000i 0.0370370i
\(730\) 44.4421i 1.64488i
\(731\) −46.2870 −1.71199
\(732\) 11.4397 0.422825
\(733\) −17.9835 + 17.9835i −0.664236 + 0.664236i −0.956376 0.292139i \(-0.905633\pi\)
0.292139 + 0.956376i \(0.405633\pi\)
\(734\) −24.6673 −0.910485
\(735\) 17.9564 18.2916i 0.662332 0.674695i
\(736\) −1.33447 + 1.33447i −0.0491894 + 0.0491894i
\(737\) −3.82985 3.82985i −0.141074 0.141074i
\(738\) −10.6258 −0.391142
\(739\) 33.1122 33.1122i 1.21805 1.21805i 0.249736 0.968314i \(-0.419656\pi\)
0.968314 0.249736i \(-0.0803439\pi\)
\(740\) −3.73760 + 3.73760i −0.137397 + 0.137397i
\(741\) 17.9986i 0.661196i
\(742\) 35.9126 0.166025i 1.31839 0.00609498i
\(743\) 0.677571 + 0.677571i 0.0248577 + 0.0248577i 0.719426 0.694569i \(-0.244405\pi\)
−0.694569 + 0.719426i \(0.744405\pi\)
\(744\) −1.04212 + 1.04212i −0.0382062 + 0.0382062i
\(745\) 49.8074i 1.82480i
\(746\) 9.58285 9.58285i 0.350853 0.350853i
\(747\) 4.30382 0.157468
\(748\) 28.4021i 1.03848i
\(749\) −21.6462 21.4470i −0.790935 0.783656i
\(750\) 12.4809 0.455739
\(751\) −0.737932 0.737932i −0.0269275 0.0269275i 0.693515 0.720442i \(-0.256061\pi\)
−0.720442 + 0.693515i \(0.756061\pi\)
\(752\) 6.78006 6.78006i 0.247243 0.247243i
\(753\) 22.0297i 0.802806i
\(754\) 34.7558 1.81911i 1.26573 0.0662480i
\(755\) 49.9305i 1.81716i
\(756\) −0.0122313 2.64572i −0.000444848 0.0962240i
\(757\) −9.96437 + 9.96437i −0.362161 + 0.362161i −0.864608 0.502447i \(-0.832433\pi\)
0.502447 + 0.864608i \(0.332433\pi\)
\(758\) 15.2447i 0.553713i
\(759\) −10.4218 −0.378287
\(760\) 10.1978i 0.369913i
\(761\) 35.7110i 1.29452i −0.762268 0.647261i \(-0.775914\pi\)
0.762268 0.647261i \(-0.224086\pi\)
\(762\) −1.37247 + 1.37247i −0.0497192 + 0.0497192i
\(763\) 0.741847 0.748739i 0.0268567 0.0271062i
\(764\) 9.13815 + 9.13815i 0.330607 + 0.330607i
\(765\) 13.3170 13.3170i 0.481478 0.481478i
\(766\) −8.49186 + 8.49186i −0.306823 + 0.306823i
\(767\) 17.1017i 0.617505i
\(768\) 0.707107 + 0.707107i 0.0255155 + 0.0255155i
\(769\) −18.8372 + 18.8372i −0.679287 + 0.679287i −0.959839 0.280552i \(-0.909482\pi\)
0.280552 + 0.959839i \(0.409482\pi\)
\(770\) −37.6551 + 38.0049i −1.35699 + 1.36960i
\(771\) −1.71143 + 1.71143i −0.0616355 + 0.0616355i
\(772\) 8.81474 + 8.81474i 0.317250 + 0.317250i
\(773\) 22.8839 + 22.8839i 0.823078 + 0.823078i 0.986548 0.163470i \(-0.0522687\pi\)
−0.163470 + 0.986548i \(0.552269\pi\)
\(774\) 8.99966 0.323486
\(775\) 8.76266 + 8.76266i 0.314764 + 0.314764i
\(776\) −3.69799 −0.132750
\(777\) 2.68804 2.71301i 0.0964329 0.0973287i
\(778\) −22.6008 −0.810276
\(779\) 29.5924 1.06026
\(780\) 16.7339 16.7339i 0.599170 0.599170i
\(781\) −6.59668 6.59668i −0.236048 0.236048i
\(782\) 9.70639 0.347100
\(783\) −5.37780 + 0.281472i −0.192187 + 0.0100590i
\(784\) −0.0647212 6.99970i −0.00231147 0.249989i
\(785\) −19.8546 + 19.8546i −0.708641 + 0.708641i
\(786\) −0.645117 + 0.645117i −0.0230106 + 0.0230106i
\(787\) 13.7982 0.491852 0.245926 0.969289i \(-0.420908\pi\)
0.245926 + 0.969289i \(0.420908\pi\)
\(788\) 7.54058i 0.268622i
\(789\) 8.10354 0.288494
\(790\) 27.9327i 0.993802i
\(791\) −0.221703 47.9560i −0.00788284 1.70512i
\(792\) 5.52226i 0.196225i
\(793\) −52.2786 52.2786i −1.85647 1.85647i
\(794\) 19.0807 + 19.0807i 0.677148 + 0.677148i
\(795\) −35.1460 35.1460i −1.24650 1.24650i
\(796\) 12.9406 0.458667
\(797\) 28.8679 + 28.8679i 1.02255 + 1.02255i 0.999740 + 0.0228143i \(0.00726265\pi\)
0.0228143 + 0.999740i \(0.492737\pi\)
\(798\) 0.0340635 + 7.36819i 0.00120583 + 0.260831i
\(799\) −49.3153 −1.74465
\(800\) 5.94568 5.94568i 0.210211 0.210211i
\(801\) 4.97318 4.97318i 0.175719 0.175719i
\(802\) 14.8918 14.8918i 0.525847 0.525847i
\(803\) 67.0228i 2.36518i
\(804\) −0.693528 0.693528i −0.0244589 0.0244589i
\(805\) −12.9881 12.8686i −0.457772 0.453559i
\(806\) 9.52484 0.335498
\(807\) 15.6607 0.551281
\(808\) 9.25555i 0.325609i
\(809\) −16.8947 16.8947i −0.593987 0.593987i 0.344719 0.938706i \(-0.387974\pi\)
−0.938706 + 0.344719i \(0.887974\pi\)
\(810\) −2.58925 + 2.58925i −0.0909771 + 0.0909771i
\(811\) −7.27465 −0.255447 −0.127724 0.991810i \(-0.540767\pi\)
−0.127724 + 0.991810i \(0.540767\pi\)
\(812\) −14.2247 + 0.810475i −0.499190 + 0.0284421i
\(813\) 26.1368 0.916658
\(814\) −5.63665 + 5.63665i −0.197564 + 0.197564i
\(815\) −12.8873 12.8873i −0.451423 0.451423i
\(816\) 5.14319i 0.180048i
\(817\) −25.0636 −0.876863
\(818\) −15.1299 −0.529004
\(819\) −12.0348 + 12.1466i −0.420531 + 0.424437i
\(820\) 27.5130 + 27.5130i 0.960795 + 0.960795i
\(821\) 39.4242i 1.37592i 0.725751 + 0.687958i \(0.241492\pi\)
−0.725751 + 0.687958i \(0.758508\pi\)
\(822\) 7.67530 7.67530i 0.267707 0.267707i
\(823\) −29.6061 + 29.6061i −1.03200 + 1.03200i −0.0325327 + 0.999471i \(0.510357\pi\)
−0.999471 + 0.0325327i \(0.989643\pi\)
\(824\) 9.10792 9.10792i 0.317289 0.317289i
\(825\) 46.4337 1.61661
\(826\) 0.0323659 + 7.00100i 0.00112615 + 0.243596i
\(827\) 20.2990 + 20.2990i 0.705867 + 0.705867i 0.965663 0.259796i \(-0.0836555\pi\)
−0.259796 + 0.965663i \(0.583655\pi\)
\(828\) −1.88723 −0.0655858
\(829\) 6.86392 + 6.86392i 0.238394 + 0.238394i 0.816185 0.577791i \(-0.196085\pi\)
−0.577791 + 0.816185i \(0.696085\pi\)
\(830\) −11.1437 11.1437i −0.386802 0.386802i
\(831\) −8.69885 8.69885i −0.301760 0.301760i
\(832\) 6.46283i 0.224058i
\(833\) −25.2210 + 25.6918i −0.873857 + 0.890168i
\(834\) 5.20671i 0.180294i
\(835\) −40.3775 −1.39732
\(836\) 15.3792i 0.531901i
\(837\) −1.47379 −0.0509415
\(838\) −9.17910 + 9.17910i −0.317087 + 0.317087i
\(839\) −19.0512 + 19.0512i −0.657722 + 0.657722i −0.954840 0.297119i \(-0.903974\pi\)
0.297119 + 0.954840i \(0.403974\pi\)
\(840\) −6.81877 + 6.88211i −0.235270 + 0.237455i
\(841\) 3.02740 + 28.8415i 0.104393 + 0.994536i
\(842\) −19.3629 −0.667289
\(843\) −11.9265 11.9265i −0.410770 0.410770i
\(844\) −3.76259 + 3.76259i −0.129514 + 0.129514i
\(845\) −105.342 −3.62388
\(846\) 9.58845 0.329658
\(847\) −36.3036 + 36.6408i −1.24741 + 1.25899i
\(848\) −13.5738 −0.466127
\(849\) 0.582008 + 0.582008i 0.0199745 + 0.0199745i
\(850\) −43.2463 −1.48334
\(851\) −1.92632 1.92632i −0.0660335 0.0660335i
\(852\) −1.19456 1.19456i −0.0409250 0.0409250i
\(853\) 26.3681 26.3681i 0.902825 0.902825i −0.0928548 0.995680i \(-0.529599\pi\)
0.995680 + 0.0928548i \(0.0295992\pi\)
\(854\) 21.5005 + 21.3026i 0.735732 + 0.728961i
\(855\) 7.21093 7.21093i 0.246608 0.246608i
\(856\) 8.14394 + 8.14394i 0.278354 + 0.278354i
\(857\) 13.6781i 0.467234i −0.972329 0.233617i \(-0.924944\pi\)
0.972329 0.233617i \(-0.0750563\pi\)
\(858\) 25.2363 25.2363i 0.861552 0.861552i
\(859\) −10.1041 + 10.1041i −0.344748 + 0.344748i −0.858149 0.513401i \(-0.828385\pi\)
0.513401 + 0.858149i \(0.328385\pi\)
\(860\) −23.3024 23.3024i −0.794605 0.794605i
\(861\) −19.9708 19.7870i −0.680603 0.674339i
\(862\) −21.3261 + 21.3261i −0.726371 + 0.726371i
\(863\) 51.8599i 1.76533i −0.470003 0.882665i \(-0.655747\pi\)
0.470003 0.882665i \(-0.344253\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) −17.8114 −0.605607
\(866\) 18.5770i 0.631272i
\(867\) −6.68387 + 6.68387i −0.226996 + 0.226996i
\(868\) −3.89923 + 0.0180263i −0.132349 + 0.000611853i
\(869\) 42.1252i 1.42900i
\(870\) 14.6533 + 13.1957i 0.496793 + 0.447376i
\(871\) 6.33873i 0.214780i
\(872\) −0.281697 + 0.281697i −0.00953947 + 0.00953947i
\(873\) −2.61488 2.61488i −0.0885002 0.0885002i
\(874\) 5.25584 0.177781
\(875\) 23.4574 + 23.2415i 0.793004 + 0.785706i
\(876\) 12.1368i 0.410066i
\(877\) −6.58287 −0.222288 −0.111144 0.993804i \(-0.535451\pi\)
−0.111144 + 0.993804i \(0.535451\pi\)
\(878\) −20.0085 + 20.0085i −0.675254 + 0.675254i
\(879\) 2.71180i 0.0914669i
\(880\) 14.2985 14.2985i 0.482004 0.482004i
\(881\) −12.8836 12.8836i −0.434060 0.434060i 0.455947 0.890007i \(-0.349301\pi\)
−0.890007 + 0.455947i \(0.849301\pi\)
\(882\) 4.90377 4.99530i 0.165119 0.168201i
\(883\) 4.45599i 0.149956i −0.997185 0.0749779i \(-0.976111\pi\)
0.997185 0.0749779i \(-0.0238886\pi\)
\(884\) −23.5039 + 23.5039i −0.790523 + 0.790523i
\(885\) 6.85157 6.85157i 0.230313 0.230313i
\(886\) 6.27430 0.210789
\(887\) 22.2324 + 22.2324i 0.746491 + 0.746491i 0.973818 0.227327i \(-0.0729987\pi\)
−0.227327 + 0.973818i \(0.572999\pi\)
\(888\) −1.02071 + 1.02071i −0.0342529 + 0.0342529i
\(889\) −5.13524 + 0.0237404i −0.172230 + 0.000796228i
\(890\) −25.7536 −0.863264
\(891\) −3.90483 + 3.90483i −0.130817 + 0.130817i
\(892\) 6.40263 0.214376
\(893\) −26.7033 −0.893592
\(894\) 13.6021i 0.454921i
\(895\) 45.4216i 1.51828i
\(896\) 0.0122313 + 2.64572i 0.000408619 + 0.0883874i
\(897\) 8.62448 + 8.62448i 0.287963 + 0.287963i
\(898\) 16.9551i 0.565801i
\(899\) 0.414830 + 7.92574i 0.0138354 + 0.264338i
\(900\) 8.40845 0.280282
\(901\) 49.3651 + 49.3651i 1.64459 + 1.64459i
\(902\) 41.4921 + 41.4921i 1.38154 + 1.38154i
\(903\) 16.9145 + 16.7588i 0.562879 + 0.557698i
\(904\) 18.1259i 0.602857i
\(905\) 5.15718i 0.171431i
\(906\) 13.6357i 0.453015i
\(907\) 7.53055 + 7.53055i 0.250048 + 0.250048i 0.820990 0.570942i \(-0.193422\pi\)
−0.570942 + 0.820990i \(0.693422\pi\)
\(908\) −20.2626 −0.672437
\(909\) −6.54466 + 6.54466i −0.217073 + 0.217073i
\(910\) 62.6119 0.289457i 2.07556 0.00959541i
\(911\) −22.2789 22.2789i −0.738134 0.738134i 0.234083 0.972217i \(-0.424791\pi\)
−0.972217 + 0.234083i \(0.924791\pi\)
\(912\) 2.78495i 0.0922187i
\(913\) −16.8057 16.8057i −0.556187 0.556187i
\(914\) −9.82809 9.82809i −0.325084 0.325084i
\(915\) 41.8895i 1.38483i
\(916\) 8.12556 + 8.12556i 0.268476 + 0.268476i
\(917\) −2.41378 + 0.0111590i −0.0797101 + 0.000368503i
\(918\) 3.63679 3.63679i 0.120032 0.120032i
\(919\) 37.0586 1.22245 0.611224 0.791457i \(-0.290677\pi\)
0.611224 + 0.791457i \(0.290677\pi\)
\(920\) 4.88652 + 4.88652i 0.161104 + 0.161104i
\(921\) 17.9570i 0.591705i
\(922\) 24.5877i 0.809751i
\(923\) 10.9181i 0.359373i
\(924\) −10.2833 + 10.3789i −0.338297 + 0.341440i
\(925\) 8.58262 + 8.58262i 0.282195 + 0.282195i
\(926\) 19.2774 + 19.2774i 0.633494 + 0.633494i
\(927\) 12.8805 0.423053
\(928\) 5.37780 0.281472i 0.176535 0.00923978i
\(929\) 32.4867i 1.06585i 0.846162 + 0.532926i \(0.178908\pi\)
−0.846162 + 0.532926i \(0.821092\pi\)
\(930\) 3.81601 + 3.81601i 0.125132 + 0.125132i
\(931\) −13.6567 + 13.9116i −0.447581 + 0.455936i
\(932\) 10.5637i 0.346026i
\(933\) 34.8518i 1.14100i
\(934\) 20.2231 0.661721
\(935\) −104.001 −3.40121
\(936\) 4.56991 4.56991i 0.149372 0.149372i
\(937\) 45.9721 1.50184 0.750921 0.660392i \(-0.229610\pi\)
0.750921 + 0.660392i \(0.229610\pi\)
\(938\) −0.0119964 2.59492i −0.000391697 0.0847271i
\(939\) 6.59641 6.59641i 0.215266 0.215266i
\(940\) −24.8269 24.8269i −0.809765 0.809765i
\(941\) 35.6821 1.16320 0.581602 0.813474i \(-0.302426\pi\)
0.581602 + 0.813474i \(0.302426\pi\)
\(942\) −5.42216 + 5.42216i −0.176663 + 0.176663i
\(943\) −14.1799 + 14.1799i −0.461761 + 0.461761i
\(944\) 2.64616i 0.0861250i
\(945\) −9.68799 + 0.0447880i −0.315150 + 0.00145695i
\(946\) −35.1422 35.1422i −1.14257 1.14257i
\(947\) 15.3100 15.3100i 0.497509 0.497509i −0.413153 0.910662i \(-0.635573\pi\)
0.910662 + 0.413153i \(0.135573\pi\)
\(948\) 7.62824i 0.247754i
\(949\) 55.4643 55.4643i 1.80045 1.80045i
\(950\) −23.4171 −0.759751
\(951\) 1.04428i 0.0338629i
\(952\) 9.57745 9.66641i 0.310407 0.313290i
\(953\) −42.6678 −1.38215 −0.691073 0.722785i \(-0.742862\pi\)
−0.691073 + 0.722785i \(0.742862\pi\)
\(954\) −9.59814 9.59814i −0.310751 0.310751i
\(955\) 33.4617 33.4617i 1.08279 1.08279i
\(956\) 12.8622i 0.415994i
\(957\) 22.0985 + 19.9003i 0.714344 + 0.643286i
\(958\) 2.40480i 0.0776955i
\(959\) 28.7181 0.132765i 0.927354 0.00428720i
\(960\) 2.58925 2.58925i 0.0835678 0.0835678i
\(961\) 28.8280i 0.929934i
\(962\) 9.32914 0.300784
\(963\) 11.5173i 0.371139i
\(964\) 7.99052i 0.257357i
\(965\) 32.2774 32.2774i 1.03905 1.03905i
\(966\) −3.54697 3.51433i −0.114122 0.113072i
\(967\) −4.26830 4.26830i −0.137259 0.137259i 0.635139 0.772398i \(-0.280943\pi\)
−0.772398 + 0.635139i \(0.780943\pi\)
\(968\) 13.7853 13.7853i 0.443077 0.443077i
\(969\) −10.1282 + 10.1282i −0.325366 + 0.325366i
\(970\) 13.5412i 0.434780i
\(971\) 23.4821 + 23.4821i 0.753577 + 0.753577i 0.975145 0.221568i \(-0.0711174\pi\)
−0.221568 + 0.975145i \(0.571117\pi\)
\(972\) −0.707107 + 0.707107i −0.0226805 + 0.0226805i
\(973\) 9.69572 9.78578i 0.310831 0.313718i
\(974\) 3.23761 3.23761i 0.103740 0.103740i
\(975\) −38.4259 38.4259i −1.23061 1.23061i
\(976\) −8.08912 8.08912i −0.258926 0.258926i
\(977\) 23.8794 0.763968 0.381984 0.924169i \(-0.375241\pi\)
0.381984 + 0.924169i \(0.375241\pi\)
\(978\) −3.51944 3.51944i −0.112539 0.112539i
\(979\) −38.8389 −1.24130
\(980\) −25.6312 + 0.236993i −0.818758 + 0.00757047i
\(981\) −0.398380 −0.0127193
\(982\) 23.2547 0.742088
\(983\) 10.5213 10.5213i 0.335577 0.335577i −0.519122 0.854700i \(-0.673741\pi\)
0.854700 + 0.519122i \(0.173741\pi\)
\(984\) 7.51360 + 7.51360i 0.239525 + 0.239525i
\(985\) −27.6117 −0.879784
\(986\) −20.5816 18.5343i −0.655451 0.590251i
\(987\) 18.0211 + 17.8552i 0.573618 + 0.568338i
\(988\) −12.7270 + 12.7270i −0.404898 + 0.404898i
\(989\) 12.0098 12.0098i 0.381890 0.381890i
\(990\) 20.2212 0.642671
\(991\) 2.81634i 0.0894639i 0.998999 + 0.0447320i \(0.0142434\pi\)
−0.998999 + 0.0447320i \(0.985757\pi\)
\(992\) 1.47379 0.0467928
\(993\) 16.3118i 0.517639i
\(994\) −0.0206631 4.46959i −0.000655394 0.141767i
\(995\) 47.3852i 1.50221i
\(996\) −3.04326 3.04326i −0.0964293 0.0964293i
\(997\) −6.06758 6.06758i −0.192162 0.192162i 0.604468 0.796630i \(-0.293386\pi\)
−0.796630 + 0.604468i \(0.793386\pi\)
\(998\) −27.0274 27.0274i −0.855538 0.855538i
\(999\) −1.44351 −0.0456705
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1218.2.m.a.307.1 40
7.6 odd 2 1218.2.m.b.307.1 yes 40
29.12 odd 4 1218.2.m.b.853.1 yes 40
203.41 even 4 inner 1218.2.m.a.853.1 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.m.a.307.1 40 1.1 even 1 trivial
1218.2.m.a.853.1 yes 40 203.41 even 4 inner
1218.2.m.b.307.1 yes 40 7.6 odd 2
1218.2.m.b.853.1 yes 40 29.12 odd 4