Properties

Label 1218.2.a.o
Level $1218$
Weight $2$
Character orbit 1218.a
Self dual yes
Analytic conductor $9.726$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(1,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-3,3,0,3,3,-3,3,0,-4,-3,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.72577896619\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} - \beta_1 q^{5} + q^{6} + q^{7} - q^{8} + q^{9} + \beta_1 q^{10} + (\beta_{2} + \beta_1 - 1) q^{11} - q^{12} + ( - \beta_{2} - 1) q^{13} - q^{14} + \beta_1 q^{15} + q^{16}+ \cdots + (\beta_{2} + \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} + 3 q^{6} + 3 q^{7} - 3 q^{8} + 3 q^{9} - 4 q^{11} - 3 q^{12} - 2 q^{13} - 3 q^{14} + 3 q^{16} - 14 q^{17} - 3 q^{18} - 3 q^{21} + 4 q^{22} - 6 q^{23} + 3 q^{24} + 5 q^{25}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 6x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + 3\nu + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 3\beta _1 + 9 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.12489
−1.76156
−0.363328
−1.00000 −1.00000 1.00000 −2.64002 1.00000 1.00000 −1.00000 1.00000 2.64002
1.2 −1.00000 −1.00000 1.00000 −0.864641 1.00000 1.00000 −1.00000 1.00000 0.864641
1.3 −1.00000 −1.00000 1.00000 3.50466 1.00000 1.00000 −1.00000 1.00000 −3.50466
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1218.2.a.o 3
3.b odd 2 1 3654.2.a.bf 3
4.b odd 2 1 9744.2.a.bm 3
7.b odd 2 1 8526.2.a.bt 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1218.2.a.o 3 1.a even 1 1 trivial
3654.2.a.bf 3 3.b odd 2 1
8526.2.a.bt 3 7.b odd 2 1
9744.2.a.bm 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1218))\):

\( T_{5}^{3} - 10T_{5} - 8 \) Copy content Toggle raw display
\( T_{11}^{3} + 4T_{11}^{2} - 20T_{11} - 64 \) Copy content Toggle raw display
\( T_{13}^{3} + 2T_{13}^{2} - 18T_{13} - 44 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 10T - 8 \) Copy content Toggle raw display
$7$ \( (T - 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 4 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$13$ \( T^{3} + 2 T^{2} + \cdots - 44 \) Copy content Toggle raw display
$17$ \( T^{3} + 14 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$19$ \( T^{3} - 40T + 64 \) Copy content Toggle raw display
$23$ \( T^{3} + 6 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$29$ \( (T - 1)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} + 4 T^{2} + \cdots - 200 \) Copy content Toggle raw display
$37$ \( T^{3} + 2 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$41$ \( T^{3} - 2 T^{2} + \cdots - 100 \) Copy content Toggle raw display
$43$ \( T^{3} - 2 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$47$ \( T^{3} + 8 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$53$ \( T^{3} + 10 T^{2} + \cdots - 472 \) Copy content Toggle raw display
$59$ \( T^{3} + 20 T^{2} + \cdots + 88 \) Copy content Toggle raw display
$61$ \( T^{3} - 8 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$67$ \( T^{3} - 4 T^{2} + \cdots + 352 \) Copy content Toggle raw display
$71$ \( T^{3} + 18 T^{2} + \cdots - 88 \) Copy content Toggle raw display
$73$ \( T^{3} + 24 T^{2} + \cdots - 424 \) Copy content Toggle raw display
$79$ \( T^{3} + 2 T^{2} + \cdots + 160 \) Copy content Toggle raw display
$83$ \( T^{3} + 20 T^{2} + \cdots + 88 \) Copy content Toggle raw display
$89$ \( T^{3} + 2 T^{2} + \cdots + 916 \) Copy content Toggle raw display
$97$ \( T^{3} + 8 T^{2} + \cdots - 3256 \) Copy content Toggle raw display
show more
show less