Properties

Label 1216.4.a.x
Level $1216$
Weight $4$
Character orbit 1216.a
Self dual yes
Analytic conductor $71.746$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1216,4,Mod(1,1216)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1216.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1216, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1216.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,5,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.7463225670\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.3221.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 9x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 2) q^{3} + ( - 2 \beta_{2} + \beta_1 - 1) q^{5} + (2 \beta_1 - 11) q^{7} + (6 \beta_{2} + 3 \beta_1 + 19) q^{9} + ( - \beta_1 + 9) q^{11} + ( - 2 \beta_{2} + 7 \beta_1 + 38) q^{13} + ( - 5 \beta_{2} - 7 \beta_1 - 80) q^{15}+ \cdots + (36 \beta_{2} + 41 \beta_1 - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 5 q^{3} - 2 q^{5} - 35 q^{7} + 48 q^{9} + 28 q^{11} + 109 q^{13} - 228 q^{15} - 123 q^{17} - 57 q^{19} - 25 q^{21} - 193 q^{23} + 187 q^{25} + 719 q^{27} + 297 q^{29} - 140 q^{31} + 30 q^{33} + 246 q^{35}+ \cdots - 86 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 9x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -\nu^{2} + 3\nu + 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{2} - \beta _1 + 26 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.218090
−2.66246
3.44437
0 −4.73435 0 18.0754 0 0.213413 0 −4.58596 0
1.2 0 −0.573746 0 −5.92862 0 −31.1522 0 −26.6708 0
1.3 0 10.3081 0 −14.1468 0 −4.06119 0 79.2568 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.4.a.x 3
4.b odd 2 1 1216.4.a.q 3
8.b even 2 1 152.4.a.b 3
8.d odd 2 1 304.4.a.j 3
24.h odd 2 1 1368.4.a.e 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.4.a.b 3 8.b even 2 1
304.4.a.j 3 8.d odd 2 1
1216.4.a.q 3 4.b odd 2 1
1216.4.a.x 3 1.a even 1 1 trivial
1368.4.a.e 3 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1216))\):

\( T_{3}^{3} - 5T_{3}^{2} - 52T_{3} - 28 \) Copy content Toggle raw display
\( T_{5}^{3} + 2T_{5}^{2} - 279T_{5} - 1516 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 5 T^{2} + \cdots - 28 \) Copy content Toggle raw display
$5$ \( T^{3} + 2 T^{2} + \cdots - 1516 \) Copy content Toggle raw display
$7$ \( T^{3} + 35 T^{2} + \cdots - 27 \) Copy content Toggle raw display
$11$ \( T^{3} - 28 T^{2} + \cdots - 358 \) Copy content Toggle raw display
$13$ \( T^{3} - 109 T^{2} + \cdots + 113456 \) Copy content Toggle raw display
$17$ \( T^{3} + 123 T^{2} + \cdots + 6637 \) Copy content Toggle raw display
$19$ \( (T + 19)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 193 T^{2} + \cdots - 246848 \) Copy content Toggle raw display
$29$ \( T^{3} - 297 T^{2} + \cdots + 1167636 \) Copy content Toggle raw display
$31$ \( T^{3} + 140 T^{2} + \cdots - 3668096 \) Copy content Toggle raw display
$37$ \( T^{3} + 38 T^{2} + \cdots + 3429384 \) Copy content Toggle raw display
$41$ \( T^{3} - 736 T^{2} + \cdots - 7266624 \) Copy content Toggle raw display
$43$ \( T^{3} - 514 T^{2} + \cdots + 25097948 \) Copy content Toggle raw display
$47$ \( T^{3} - 134 T^{2} + \cdots + 58888776 \) Copy content Toggle raw display
$53$ \( T^{3} + 311 T^{2} + \cdots + 13619792 \) Copy content Toggle raw display
$59$ \( T^{3} + 199 T^{2} + \cdots - 117609444 \) Copy content Toggle raw display
$61$ \( T^{3} + 56 T^{2} + \cdots - 120500582 \) Copy content Toggle raw display
$67$ \( T^{3} - 509 T^{2} + \cdots + 177822064 \) Copy content Toggle raw display
$71$ \( T^{3} + 874 T^{2} + \cdots - 112230216 \) Copy content Toggle raw display
$73$ \( T^{3} - 203 T^{2} + \cdots + 474103 \) Copy content Toggle raw display
$79$ \( T^{3} - 242 T^{2} + \cdots + 201599456 \) Copy content Toggle raw display
$83$ \( T^{3} - 62 T^{2} + \cdots - 83648992 \) Copy content Toggle raw display
$89$ \( T^{3} - 1764 T^{2} + \cdots - 127322496 \) Copy content Toggle raw display
$97$ \( T^{3} + 2178 T^{2} + \cdots + 99903104 \) Copy content Toggle raw display
show more
show less