Properties

Label 1216.3.d.f.191.8
Level $1216$
Weight $3$
Character 1216.191
Analytic conductor $33.134$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1216,3,Mod(191,1216)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1216, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1216.191"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1216.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.1336001462\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 124 x^{18} + 6294 x^{16} + 169580 x^{14} + 2633777 x^{12} + 23965840 x^{10} + 123396288 x^{8} + \cdots + 6553600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{32}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 608)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.8
Root \(1.05616i\) of defining polynomial
Character \(\chi\) \(=\) 1216.191
Dual form 1216.3.d.f.191.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.05616i q^{3} +9.08870 q^{5} +10.7326i q^{7} +7.88453 q^{9} -10.6397i q^{11} +1.41113 q^{13} -9.59909i q^{15} -5.11408 q^{17} +4.35890i q^{19} +11.3353 q^{21} -28.0907i q^{23} +57.6044 q^{25} -17.8327i q^{27} +47.6305 q^{29} -16.9716i q^{31} -11.2372 q^{33} +97.5452i q^{35} +37.9673 q^{37} -1.49037i q^{39} -65.9127 q^{41} +24.4023i q^{43} +71.6601 q^{45} +15.3535i q^{47} -66.1883 q^{49} +5.40127i q^{51} -41.7427 q^{53} -96.7007i q^{55} +4.60368 q^{57} +59.7473i q^{59} -16.6603 q^{61} +84.6214i q^{63} +12.8253 q^{65} -21.1960i q^{67} -29.6681 q^{69} +45.3051i q^{71} +17.0782 q^{73} -60.8393i q^{75} +114.191 q^{77} +59.9085i q^{79} +52.1266 q^{81} +157.492i q^{83} -46.4803 q^{85} -50.3053i q^{87} +119.385 q^{89} +15.1450i q^{91} -17.9247 q^{93} +39.6167i q^{95} +10.8878 q^{97} -83.8888i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 68 q^{9} + 16 q^{13} + 8 q^{17} - 64 q^{21} + 196 q^{25} + 88 q^{29} - 184 q^{33} - 16 q^{37} - 16 q^{41} - 16 q^{45} + 52 q^{49} - 88 q^{53} + 208 q^{61} - 192 q^{65} - 248 q^{69} - 152 q^{73} - 312 q^{77}+ \cdots - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.05616i − 0.352052i −0.984385 0.176026i \(-0.943676\pi\)
0.984385 0.176026i \(-0.0563243\pi\)
\(4\) 0 0
\(5\) 9.08870 1.81774 0.908870 0.417081i \(-0.136947\pi\)
0.908870 + 0.417081i \(0.136947\pi\)
\(6\) 0 0
\(7\) 10.7326i 1.53323i 0.642110 + 0.766613i \(0.278059\pi\)
−0.642110 + 0.766613i \(0.721941\pi\)
\(8\) 0 0
\(9\) 7.88453 0.876059
\(10\) 0 0
\(11\) − 10.6397i − 0.967243i −0.875277 0.483622i \(-0.839321\pi\)
0.875277 0.483622i \(-0.160679\pi\)
\(12\) 0 0
\(13\) 1.41113 0.108548 0.0542741 0.998526i \(-0.482716\pi\)
0.0542741 + 0.998526i \(0.482716\pi\)
\(14\) 0 0
\(15\) − 9.59909i − 0.639939i
\(16\) 0 0
\(17\) −5.11408 −0.300828 −0.150414 0.988623i \(-0.548061\pi\)
−0.150414 + 0.988623i \(0.548061\pi\)
\(18\) 0 0
\(19\) 4.35890i 0.229416i
\(20\) 0 0
\(21\) 11.3353 0.539776
\(22\) 0 0
\(23\) − 28.0907i − 1.22133i −0.791888 0.610666i \(-0.790902\pi\)
0.791888 0.610666i \(-0.209098\pi\)
\(24\) 0 0
\(25\) 57.6044 2.30418
\(26\) 0 0
\(27\) − 17.8327i − 0.660471i
\(28\) 0 0
\(29\) 47.6305 1.64243 0.821215 0.570618i \(-0.193296\pi\)
0.821215 + 0.570618i \(0.193296\pi\)
\(30\) 0 0
\(31\) − 16.9716i − 0.547472i −0.961805 0.273736i \(-0.911741\pi\)
0.961805 0.273736i \(-0.0882594\pi\)
\(32\) 0 0
\(33\) −11.2372 −0.340520
\(34\) 0 0
\(35\) 97.5452i 2.78700i
\(36\) 0 0
\(37\) 37.9673 1.02614 0.513072 0.858345i \(-0.328507\pi\)
0.513072 + 0.858345i \(0.328507\pi\)
\(38\) 0 0
\(39\) − 1.49037i − 0.0382147i
\(40\) 0 0
\(41\) −65.9127 −1.60763 −0.803813 0.594882i \(-0.797199\pi\)
−0.803813 + 0.594882i \(0.797199\pi\)
\(42\) 0 0
\(43\) 24.4023i 0.567496i 0.958899 + 0.283748i \(0.0915779\pi\)
−0.958899 + 0.283748i \(0.908422\pi\)
\(44\) 0 0
\(45\) 71.6601 1.59245
\(46\) 0 0
\(47\) 15.3535i 0.326670i 0.986571 + 0.163335i \(0.0522251\pi\)
−0.986571 + 0.163335i \(0.947775\pi\)
\(48\) 0 0
\(49\) −66.1883 −1.35078
\(50\) 0 0
\(51\) 5.40127i 0.105907i
\(52\) 0 0
\(53\) −41.7427 −0.787599 −0.393799 0.919196i \(-0.628840\pi\)
−0.393799 + 0.919196i \(0.628840\pi\)
\(54\) 0 0
\(55\) − 96.7007i − 1.75820i
\(56\) 0 0
\(57\) 4.60368 0.0807664
\(58\) 0 0
\(59\) 59.7473i 1.01267i 0.862338 + 0.506333i \(0.168999\pi\)
−0.862338 + 0.506333i \(0.831001\pi\)
\(60\) 0 0
\(61\) −16.6603 −0.273120 −0.136560 0.990632i \(-0.543605\pi\)
−0.136560 + 0.990632i \(0.543605\pi\)
\(62\) 0 0
\(63\) 84.6214i 1.34320i
\(64\) 0 0
\(65\) 12.8253 0.197312
\(66\) 0 0
\(67\) − 21.1960i − 0.316359i −0.987410 0.158179i \(-0.949438\pi\)
0.987410 0.158179i \(-0.0505624\pi\)
\(68\) 0 0
\(69\) −29.6681 −0.429973
\(70\) 0 0
\(71\) 45.3051i 0.638101i 0.947738 + 0.319050i \(0.103364\pi\)
−0.947738 + 0.319050i \(0.896636\pi\)
\(72\) 0 0
\(73\) 17.0782 0.233948 0.116974 0.993135i \(-0.462681\pi\)
0.116974 + 0.993135i \(0.462681\pi\)
\(74\) 0 0
\(75\) − 60.8393i − 0.811190i
\(76\) 0 0
\(77\) 114.191 1.48300
\(78\) 0 0
\(79\) 59.9085i 0.758336i 0.925328 + 0.379168i \(0.123790\pi\)
−0.925328 + 0.379168i \(0.876210\pi\)
\(80\) 0 0
\(81\) 52.1266 0.643539
\(82\) 0 0
\(83\) 157.492i 1.89750i 0.316032 + 0.948748i \(0.397649\pi\)
−0.316032 + 0.948748i \(0.602351\pi\)
\(84\) 0 0
\(85\) −46.4803 −0.546827
\(86\) 0 0
\(87\) − 50.3053i − 0.578222i
\(88\) 0 0
\(89\) 119.385 1.34140 0.670700 0.741729i \(-0.265994\pi\)
0.670700 + 0.741729i \(0.265994\pi\)
\(90\) 0 0
\(91\) 15.1450i 0.166429i
\(92\) 0 0
\(93\) −17.9247 −0.192739
\(94\) 0 0
\(95\) 39.6167i 0.417018i
\(96\) 0 0
\(97\) 10.8878 0.112246 0.0561228 0.998424i \(-0.482126\pi\)
0.0561228 + 0.998424i \(0.482126\pi\)
\(98\) 0 0
\(99\) − 83.8888i − 0.847362i
\(100\) 0 0
\(101\) 119.173 1.17993 0.589967 0.807428i \(-0.299141\pi\)
0.589967 + 0.807428i \(0.299141\pi\)
\(102\) 0 0
\(103\) − 160.655i − 1.55976i −0.625929 0.779880i \(-0.715280\pi\)
0.625929 0.779880i \(-0.284720\pi\)
\(104\) 0 0
\(105\) 103.023 0.981172
\(106\) 0 0
\(107\) − 121.599i − 1.13644i −0.822877 0.568220i \(-0.807632\pi\)
0.822877 0.568220i \(-0.192368\pi\)
\(108\) 0 0
\(109\) −146.538 −1.34438 −0.672192 0.740377i \(-0.734647\pi\)
−0.672192 + 0.740377i \(0.734647\pi\)
\(110\) 0 0
\(111\) − 40.0995i − 0.361257i
\(112\) 0 0
\(113\) −121.020 −1.07098 −0.535489 0.844543i \(-0.679872\pi\)
−0.535489 + 0.844543i \(0.679872\pi\)
\(114\) 0 0
\(115\) − 255.307i − 2.22006i
\(116\) 0 0
\(117\) 11.1261 0.0950946
\(118\) 0 0
\(119\) − 54.8873i − 0.461237i
\(120\) 0 0
\(121\) 7.79736 0.0644410
\(122\) 0 0
\(123\) 69.6142i 0.565969i
\(124\) 0 0
\(125\) 296.331 2.37065
\(126\) 0 0
\(127\) − 101.781i − 0.801427i −0.916203 0.400713i \(-0.868762\pi\)
0.916203 0.400713i \(-0.131238\pi\)
\(128\) 0 0
\(129\) 25.7727 0.199788
\(130\) 0 0
\(131\) 211.601i 1.61528i 0.589679 + 0.807638i \(0.299254\pi\)
−0.589679 + 0.807638i \(0.700746\pi\)
\(132\) 0 0
\(133\) −46.7822 −0.351746
\(134\) 0 0
\(135\) − 162.076i − 1.20056i
\(136\) 0 0
\(137\) −246.389 −1.79846 −0.899231 0.437474i \(-0.855873\pi\)
−0.899231 + 0.437474i \(0.855873\pi\)
\(138\) 0 0
\(139\) − 106.610i − 0.766982i −0.923545 0.383491i \(-0.874722\pi\)
0.923545 0.383491i \(-0.125278\pi\)
\(140\) 0 0
\(141\) 16.2157 0.115005
\(142\) 0 0
\(143\) − 15.0139i − 0.104992i
\(144\) 0 0
\(145\) 432.899 2.98551
\(146\) 0 0
\(147\) 69.9052i 0.475546i
\(148\) 0 0
\(149\) 247.376 1.66024 0.830120 0.557585i \(-0.188272\pi\)
0.830120 + 0.557585i \(0.188272\pi\)
\(150\) 0 0
\(151\) 212.829i 1.40947i 0.709472 + 0.704733i \(0.248933\pi\)
−0.709472 + 0.704733i \(0.751067\pi\)
\(152\) 0 0
\(153\) −40.3221 −0.263543
\(154\) 0 0
\(155\) − 154.250i − 0.995161i
\(156\) 0 0
\(157\) 64.5993 0.411461 0.205730 0.978609i \(-0.434043\pi\)
0.205730 + 0.978609i \(0.434043\pi\)
\(158\) 0 0
\(159\) 44.0869i 0.277276i
\(160\) 0 0
\(161\) 301.485 1.87258
\(162\) 0 0
\(163\) − 63.9954i − 0.392610i −0.980543 0.196305i \(-0.937106\pi\)
0.980543 0.196305i \(-0.0628942\pi\)
\(164\) 0 0
\(165\) −102.131 −0.618977
\(166\) 0 0
\(167\) 21.2326i 0.127142i 0.997977 + 0.0635708i \(0.0202489\pi\)
−0.997977 + 0.0635708i \(0.979751\pi\)
\(168\) 0 0
\(169\) −167.009 −0.988217
\(170\) 0 0
\(171\) 34.3679i 0.200982i
\(172\) 0 0
\(173\) 20.9025 0.120824 0.0604119 0.998174i \(-0.480759\pi\)
0.0604119 + 0.998174i \(0.480759\pi\)
\(174\) 0 0
\(175\) 618.244i 3.53282i
\(176\) 0 0
\(177\) 63.1026 0.356512
\(178\) 0 0
\(179\) − 284.510i − 1.58944i −0.606976 0.794720i \(-0.707618\pi\)
0.606976 0.794720i \(-0.292382\pi\)
\(180\) 0 0
\(181\) 201.589 1.11375 0.556876 0.830596i \(-0.312000\pi\)
0.556876 + 0.830596i \(0.312000\pi\)
\(182\) 0 0
\(183\) 17.5959i 0.0961524i
\(184\) 0 0
\(185\) 345.074 1.86526
\(186\) 0 0
\(187\) 54.4121i 0.290974i
\(188\) 0 0
\(189\) 191.391 1.01265
\(190\) 0 0
\(191\) 71.0568i 0.372025i 0.982547 + 0.186013i \(0.0595565\pi\)
−0.982547 + 0.186013i \(0.940443\pi\)
\(192\) 0 0
\(193\) −50.5535 −0.261935 −0.130968 0.991387i \(-0.541808\pi\)
−0.130968 + 0.991387i \(0.541808\pi\)
\(194\) 0 0
\(195\) − 13.5455i − 0.0694643i
\(196\) 0 0
\(197\) −291.498 −1.47969 −0.739843 0.672780i \(-0.765100\pi\)
−0.739843 + 0.672780i \(0.765100\pi\)
\(198\) 0 0
\(199\) − 169.601i − 0.852266i −0.904660 0.426133i \(-0.859876\pi\)
0.904660 0.426133i \(-0.140124\pi\)
\(200\) 0 0
\(201\) −22.3864 −0.111375
\(202\) 0 0
\(203\) 511.198i 2.51822i
\(204\) 0 0
\(205\) −599.060 −2.92225
\(206\) 0 0
\(207\) − 221.482i − 1.06996i
\(208\) 0 0
\(209\) 46.3773 0.221901
\(210\) 0 0
\(211\) − 292.244i − 1.38504i −0.721399 0.692520i \(-0.756500\pi\)
0.721399 0.692520i \(-0.243500\pi\)
\(212\) 0 0
\(213\) 47.8494 0.224645
\(214\) 0 0
\(215\) 221.785i 1.03156i
\(216\) 0 0
\(217\) 182.149 0.839398
\(218\) 0 0
\(219\) − 18.0373i − 0.0823620i
\(220\) 0 0
\(221\) −7.21661 −0.0326544
\(222\) 0 0
\(223\) 168.114i 0.753873i 0.926239 + 0.376937i \(0.123023\pi\)
−0.926239 + 0.376937i \(0.876977\pi\)
\(224\) 0 0
\(225\) 454.184 2.01859
\(226\) 0 0
\(227\) − 132.903i − 0.585476i −0.956193 0.292738i \(-0.905434\pi\)
0.956193 0.292738i \(-0.0945664\pi\)
\(228\) 0 0
\(229\) −65.7878 −0.287283 −0.143642 0.989630i \(-0.545881\pi\)
−0.143642 + 0.989630i \(0.545881\pi\)
\(230\) 0 0
\(231\) − 120.604i − 0.522094i
\(232\) 0 0
\(233\) 192.686 0.826978 0.413489 0.910509i \(-0.364310\pi\)
0.413489 + 0.910509i \(0.364310\pi\)
\(234\) 0 0
\(235\) 139.543i 0.593801i
\(236\) 0 0
\(237\) 63.2728 0.266974
\(238\) 0 0
\(239\) 457.827i 1.91559i 0.287445 + 0.957797i \(0.407194\pi\)
−0.287445 + 0.957797i \(0.592806\pi\)
\(240\) 0 0
\(241\) −231.163 −0.959181 −0.479590 0.877493i \(-0.659215\pi\)
−0.479590 + 0.877493i \(0.659215\pi\)
\(242\) 0 0
\(243\) − 215.548i − 0.887030i
\(244\) 0 0
\(245\) −601.565 −2.45537
\(246\) 0 0
\(247\) 6.15096i 0.0249027i
\(248\) 0 0
\(249\) 166.337 0.668018
\(250\) 0 0
\(251\) 336.349i 1.34003i 0.742346 + 0.670017i \(0.233713\pi\)
−0.742346 + 0.670017i \(0.766287\pi\)
\(252\) 0 0
\(253\) −298.875 −1.18133
\(254\) 0 0
\(255\) 49.0905i 0.192512i
\(256\) 0 0
\(257\) −431.835 −1.68029 −0.840146 0.542361i \(-0.817531\pi\)
−0.840146 + 0.542361i \(0.817531\pi\)
\(258\) 0 0
\(259\) 407.488i 1.57331i
\(260\) 0 0
\(261\) 375.544 1.43887
\(262\) 0 0
\(263\) − 403.178i − 1.53299i −0.642248 0.766497i \(-0.721998\pi\)
0.642248 0.766497i \(-0.278002\pi\)
\(264\) 0 0
\(265\) −379.387 −1.43165
\(266\) 0 0
\(267\) − 126.089i − 0.472243i
\(268\) 0 0
\(269\) −60.9622 −0.226625 −0.113313 0.993559i \(-0.536146\pi\)
−0.113313 + 0.993559i \(0.536146\pi\)
\(270\) 0 0
\(271\) 102.993i 0.380048i 0.981779 + 0.190024i \(0.0608566\pi\)
−0.981779 + 0.190024i \(0.939143\pi\)
\(272\) 0 0
\(273\) 15.9955 0.0585917
\(274\) 0 0
\(275\) − 612.892i − 2.22870i
\(276\) 0 0
\(277\) 258.876 0.934571 0.467286 0.884106i \(-0.345232\pi\)
0.467286 + 0.884106i \(0.345232\pi\)
\(278\) 0 0
\(279\) − 133.813i − 0.479618i
\(280\) 0 0
\(281\) −210.378 −0.748677 −0.374339 0.927292i \(-0.622130\pi\)
−0.374339 + 0.927292i \(0.622130\pi\)
\(282\) 0 0
\(283\) − 112.401i − 0.397178i −0.980083 0.198589i \(-0.936364\pi\)
0.980083 0.198589i \(-0.0636358\pi\)
\(284\) 0 0
\(285\) 41.8415 0.146812
\(286\) 0 0
\(287\) − 707.413i − 2.46485i
\(288\) 0 0
\(289\) −262.846 −0.909502
\(290\) 0 0
\(291\) − 11.4993i − 0.0395164i
\(292\) 0 0
\(293\) 103.310 0.352596 0.176298 0.984337i \(-0.443588\pi\)
0.176298 + 0.984337i \(0.443588\pi\)
\(294\) 0 0
\(295\) 543.025i 1.84076i
\(296\) 0 0
\(297\) −189.734 −0.638836
\(298\) 0 0
\(299\) − 39.6395i − 0.132573i
\(300\) 0 0
\(301\) −261.900 −0.870099
\(302\) 0 0
\(303\) − 125.866i − 0.415398i
\(304\) 0 0
\(305\) −151.420 −0.496460
\(306\) 0 0
\(307\) − 570.333i − 1.85776i −0.370378 0.928881i \(-0.620772\pi\)
0.370378 0.928881i \(-0.379228\pi\)
\(308\) 0 0
\(309\) −169.677 −0.549117
\(310\) 0 0
\(311\) 550.030i 1.76859i 0.466933 + 0.884293i \(0.345359\pi\)
−0.466933 + 0.884293i \(0.654641\pi\)
\(312\) 0 0
\(313\) −376.747 −1.20367 −0.601833 0.798622i \(-0.705563\pi\)
−0.601833 + 0.798622i \(0.705563\pi\)
\(314\) 0 0
\(315\) 769.098i 2.44158i
\(316\) 0 0
\(317\) −505.206 −1.59371 −0.796855 0.604170i \(-0.793505\pi\)
−0.796855 + 0.604170i \(0.793505\pi\)
\(318\) 0 0
\(319\) − 506.773i − 1.58863i
\(320\) 0 0
\(321\) −128.428 −0.400086
\(322\) 0 0
\(323\) − 22.2918i − 0.0690147i
\(324\) 0 0
\(325\) 81.2871 0.250114
\(326\) 0 0
\(327\) 154.767i 0.473294i
\(328\) 0 0
\(329\) −164.783 −0.500859
\(330\) 0 0
\(331\) − 188.498i − 0.569480i −0.958605 0.284740i \(-0.908093\pi\)
0.958605 0.284740i \(-0.0919073\pi\)
\(332\) 0 0
\(333\) 299.355 0.898963
\(334\) 0 0
\(335\) − 192.644i − 0.575058i
\(336\) 0 0
\(337\) −400.785 −1.18927 −0.594636 0.803995i \(-0.702704\pi\)
−0.594636 + 0.803995i \(0.702704\pi\)
\(338\) 0 0
\(339\) 127.817i 0.377040i
\(340\) 0 0
\(341\) −180.573 −0.529538
\(342\) 0 0
\(343\) − 184.475i − 0.537827i
\(344\) 0 0
\(345\) −269.645 −0.781579
\(346\) 0 0
\(347\) 526.018i 1.51590i 0.652312 + 0.757951i \(0.273799\pi\)
−0.652312 + 0.757951i \(0.726201\pi\)
\(348\) 0 0
\(349\) 70.6106 0.202323 0.101161 0.994870i \(-0.467744\pi\)
0.101161 + 0.994870i \(0.467744\pi\)
\(350\) 0 0
\(351\) − 25.1642i − 0.0716930i
\(352\) 0 0
\(353\) −147.236 −0.417100 −0.208550 0.978012i \(-0.566874\pi\)
−0.208550 + 0.978012i \(0.566874\pi\)
\(354\) 0 0
\(355\) 411.765i 1.15990i
\(356\) 0 0
\(357\) −57.9696 −0.162380
\(358\) 0 0
\(359\) − 301.319i − 0.839329i −0.907679 0.419665i \(-0.862148\pi\)
0.907679 0.419665i \(-0.137852\pi\)
\(360\) 0 0
\(361\) −19.0000 −0.0526316
\(362\) 0 0
\(363\) − 8.23524i − 0.0226866i
\(364\) 0 0
\(365\) 155.219 0.425256
\(366\) 0 0
\(367\) − 389.154i − 1.06037i −0.847883 0.530183i \(-0.822123\pi\)
0.847883 0.530183i \(-0.177877\pi\)
\(368\) 0 0
\(369\) −519.691 −1.40838
\(370\) 0 0
\(371\) − 448.007i − 1.20757i
\(372\) 0 0
\(373\) −172.585 −0.462694 −0.231347 0.972871i \(-0.574313\pi\)
−0.231347 + 0.972871i \(0.574313\pi\)
\(374\) 0 0
\(375\) − 312.972i − 0.834593i
\(376\) 0 0
\(377\) 67.2127 0.178283
\(378\) 0 0
\(379\) − 301.787i − 0.796271i −0.917327 0.398136i \(-0.869657\pi\)
0.917327 0.398136i \(-0.130343\pi\)
\(380\) 0 0
\(381\) −107.497 −0.282144
\(382\) 0 0
\(383\) 11.8009i 0.0308118i 0.999881 + 0.0154059i \(0.00490405\pi\)
−0.999881 + 0.0154059i \(0.995096\pi\)
\(384\) 0 0
\(385\) 1037.85 2.69571
\(386\) 0 0
\(387\) 192.401i 0.497160i
\(388\) 0 0
\(389\) 67.1649 0.172660 0.0863302 0.996267i \(-0.472486\pi\)
0.0863302 + 0.996267i \(0.472486\pi\)
\(390\) 0 0
\(391\) 143.658i 0.367411i
\(392\) 0 0
\(393\) 223.484 0.568662
\(394\) 0 0
\(395\) 544.490i 1.37846i
\(396\) 0 0
\(397\) 147.524 0.371596 0.185798 0.982588i \(-0.440513\pi\)
0.185798 + 0.982588i \(0.440513\pi\)
\(398\) 0 0
\(399\) 49.4094i 0.123833i
\(400\) 0 0
\(401\) 162.234 0.404573 0.202286 0.979326i \(-0.435163\pi\)
0.202286 + 0.979326i \(0.435163\pi\)
\(402\) 0 0
\(403\) − 23.9491i − 0.0594271i
\(404\) 0 0
\(405\) 473.763 1.16979
\(406\) 0 0
\(407\) − 403.960i − 0.992531i
\(408\) 0 0
\(409\) 199.679 0.488213 0.244107 0.969748i \(-0.421505\pi\)
0.244107 + 0.969748i \(0.421505\pi\)
\(410\) 0 0
\(411\) 260.226i 0.633153i
\(412\) 0 0
\(413\) −641.243 −1.55265
\(414\) 0 0
\(415\) 1431.40i 3.44915i
\(416\) 0 0
\(417\) −112.597 −0.270018
\(418\) 0 0
\(419\) 64.3969i 0.153692i 0.997043 + 0.0768459i \(0.0244849\pi\)
−0.997043 + 0.0768459i \(0.975515\pi\)
\(420\) 0 0
\(421\) −701.790 −1.66696 −0.833479 0.552550i \(-0.813655\pi\)
−0.833479 + 0.552550i \(0.813655\pi\)
\(422\) 0 0
\(423\) 121.055i 0.286182i
\(424\) 0 0
\(425\) −294.593 −0.693161
\(426\) 0 0
\(427\) − 178.808i − 0.418754i
\(428\) 0 0
\(429\) −15.8571 −0.0369629
\(430\) 0 0
\(431\) 580.968i 1.34795i 0.738753 + 0.673977i \(0.235415\pi\)
−0.738753 + 0.673977i \(0.764585\pi\)
\(432\) 0 0
\(433\) −115.234 −0.266129 −0.133064 0.991107i \(-0.542482\pi\)
−0.133064 + 0.991107i \(0.542482\pi\)
\(434\) 0 0
\(435\) − 457.209i − 1.05106i
\(436\) 0 0
\(437\) 122.444 0.280193
\(438\) 0 0
\(439\) − 299.467i − 0.682157i −0.940035 0.341078i \(-0.889208\pi\)
0.940035 0.341078i \(-0.110792\pi\)
\(440\) 0 0
\(441\) −521.864 −1.18336
\(442\) 0 0
\(443\) 222.362i 0.501946i 0.967994 + 0.250973i \(0.0807506\pi\)
−0.967994 + 0.250973i \(0.919249\pi\)
\(444\) 0 0
\(445\) 1085.05 2.43831
\(446\) 0 0
\(447\) − 261.268i − 0.584491i
\(448\) 0 0
\(449\) −696.538 −1.55131 −0.775655 0.631157i \(-0.782580\pi\)
−0.775655 + 0.631157i \(0.782580\pi\)
\(450\) 0 0
\(451\) 701.289i 1.55497i
\(452\) 0 0
\(453\) 224.781 0.496206
\(454\) 0 0
\(455\) 137.649i 0.302524i
\(456\) 0 0
\(457\) 597.764 1.30802 0.654008 0.756487i \(-0.273086\pi\)
0.654008 + 0.756487i \(0.273086\pi\)
\(458\) 0 0
\(459\) 91.1979i 0.198688i
\(460\) 0 0
\(461\) 493.391 1.07026 0.535131 0.844769i \(-0.320262\pi\)
0.535131 + 0.844769i \(0.320262\pi\)
\(462\) 0 0
\(463\) 334.964i 0.723464i 0.932282 + 0.361732i \(0.117814\pi\)
−0.932282 + 0.361732i \(0.882186\pi\)
\(464\) 0 0
\(465\) −162.912 −0.350349
\(466\) 0 0
\(467\) − 92.0212i − 0.197047i −0.995135 0.0985237i \(-0.968588\pi\)
0.995135 0.0985237i \(-0.0314120\pi\)
\(468\) 0 0
\(469\) 227.488 0.485049
\(470\) 0 0
\(471\) − 68.2270i − 0.144856i
\(472\) 0 0
\(473\) 259.633 0.548906
\(474\) 0 0
\(475\) 251.092i 0.528614i
\(476\) 0 0
\(477\) −329.122 −0.689983
\(478\) 0 0
\(479\) 187.369i 0.391167i 0.980687 + 0.195584i \(0.0626601\pi\)
−0.980687 + 0.195584i \(0.937340\pi\)
\(480\) 0 0
\(481\) 53.5767 0.111386
\(482\) 0 0
\(483\) − 318.416i − 0.659246i
\(484\) 0 0
\(485\) 98.9562 0.204033
\(486\) 0 0
\(487\) − 906.793i − 1.86200i −0.365022 0.930999i \(-0.618939\pi\)
0.365022 0.930999i \(-0.381061\pi\)
\(488\) 0 0
\(489\) −67.5892 −0.138219
\(490\) 0 0
\(491\) − 459.761i − 0.936376i −0.883629 0.468188i \(-0.844907\pi\)
0.883629 0.468188i \(-0.155093\pi\)
\(492\) 0 0
\(493\) −243.586 −0.494089
\(494\) 0 0
\(495\) − 762.440i − 1.54028i
\(496\) 0 0
\(497\) −486.241 −0.978352
\(498\) 0 0
\(499\) 557.911i 1.11806i 0.829148 + 0.559029i \(0.188826\pi\)
−0.829148 + 0.559029i \(0.811174\pi\)
\(500\) 0 0
\(501\) 22.4250 0.0447605
\(502\) 0 0
\(503\) − 535.885i − 1.06538i −0.846311 0.532689i \(-0.821182\pi\)
0.846311 0.532689i \(-0.178818\pi\)
\(504\) 0 0
\(505\) 1083.13 2.14481
\(506\) 0 0
\(507\) 176.387i 0.347904i
\(508\) 0 0
\(509\) 92.2346 0.181207 0.0906037 0.995887i \(-0.471120\pi\)
0.0906037 + 0.995887i \(0.471120\pi\)
\(510\) 0 0
\(511\) 183.293i 0.358695i
\(512\) 0 0
\(513\) 77.7310 0.151522
\(514\) 0 0
\(515\) − 1460.15i − 2.83524i
\(516\) 0 0
\(517\) 163.356 0.315969
\(518\) 0 0
\(519\) − 22.0763i − 0.0425363i
\(520\) 0 0
\(521\) −222.114 −0.426322 −0.213161 0.977017i \(-0.568376\pi\)
−0.213161 + 0.977017i \(0.568376\pi\)
\(522\) 0 0
\(523\) − 207.757i − 0.397241i −0.980076 0.198621i \(-0.936354\pi\)
0.980076 0.198621i \(-0.0636462\pi\)
\(524\) 0 0
\(525\) 652.963 1.24374
\(526\) 0 0
\(527\) 86.7942i 0.164695i
\(528\) 0 0
\(529\) −260.085 −0.491654
\(530\) 0 0
\(531\) 471.080i 0.887156i
\(532\) 0 0
\(533\) −93.0112 −0.174505
\(534\) 0 0
\(535\) − 1105.18i − 2.06575i
\(536\) 0 0
\(537\) −300.487 −0.559566
\(538\) 0 0
\(539\) 704.222i 1.30653i
\(540\) 0 0
\(541\) −177.653 −0.328379 −0.164189 0.986429i \(-0.552501\pi\)
−0.164189 + 0.986429i \(0.552501\pi\)
\(542\) 0 0
\(543\) − 212.910i − 0.392099i
\(544\) 0 0
\(545\) −1331.84 −2.44374
\(546\) 0 0
\(547\) 217.862i 0.398286i 0.979970 + 0.199143i \(0.0638158\pi\)
−0.979970 + 0.199143i \(0.936184\pi\)
\(548\) 0 0
\(549\) −131.359 −0.239269
\(550\) 0 0
\(551\) 207.616i 0.376799i
\(552\) 0 0
\(553\) −642.973 −1.16270
\(554\) 0 0
\(555\) − 364.452i − 0.656670i
\(556\) 0 0
\(557\) 69.8765 0.125452 0.0627258 0.998031i \(-0.480021\pi\)
0.0627258 + 0.998031i \(0.480021\pi\)
\(558\) 0 0
\(559\) 34.4348i 0.0616006i
\(560\) 0 0
\(561\) 57.4678 0.102438
\(562\) 0 0
\(563\) − 202.033i − 0.358851i −0.983772 0.179426i \(-0.942576\pi\)
0.983772 0.179426i \(-0.0574239\pi\)
\(564\) 0 0
\(565\) −1099.92 −1.94676
\(566\) 0 0
\(567\) 559.453i 0.986690i
\(568\) 0 0
\(569\) −31.6232 −0.0555769 −0.0277884 0.999614i \(-0.508846\pi\)
−0.0277884 + 0.999614i \(0.508846\pi\)
\(570\) 0 0
\(571\) 983.070i 1.72166i 0.508889 + 0.860832i \(0.330056\pi\)
−0.508889 + 0.860832i \(0.669944\pi\)
\(572\) 0 0
\(573\) 75.0472 0.130972
\(574\) 0 0
\(575\) − 1618.14i − 2.81417i
\(576\) 0 0
\(577\) 361.922 0.627248 0.313624 0.949547i \(-0.398457\pi\)
0.313624 + 0.949547i \(0.398457\pi\)
\(578\) 0 0
\(579\) 53.3924i 0.0922149i
\(580\) 0 0
\(581\) −1690.30 −2.90929
\(582\) 0 0
\(583\) 444.129i 0.761799i
\(584\) 0 0
\(585\) 101.121 0.172857
\(586\) 0 0
\(587\) 580.530i 0.988978i 0.869184 + 0.494489i \(0.164645\pi\)
−0.869184 + 0.494489i \(0.835355\pi\)
\(588\) 0 0
\(589\) 73.9776 0.125599
\(590\) 0 0
\(591\) 307.868i 0.520927i
\(592\) 0 0
\(593\) −797.055 −1.34411 −0.672053 0.740503i \(-0.734587\pi\)
−0.672053 + 0.740503i \(0.734587\pi\)
\(594\) 0 0
\(595\) − 498.854i − 0.838409i
\(596\) 0 0
\(597\) −179.125 −0.300042
\(598\) 0 0
\(599\) − 1105.87i − 1.84619i −0.384568 0.923097i \(-0.625650\pi\)
0.384568 0.923097i \(-0.374350\pi\)
\(600\) 0 0
\(601\) 353.190 0.587670 0.293835 0.955856i \(-0.405068\pi\)
0.293835 + 0.955856i \(0.405068\pi\)
\(602\) 0 0
\(603\) − 167.121i − 0.277149i
\(604\) 0 0
\(605\) 70.8678 0.117137
\(606\) 0 0
\(607\) 890.397i 1.46688i 0.679754 + 0.733440i \(0.262087\pi\)
−0.679754 + 0.733440i \(0.737913\pi\)
\(608\) 0 0
\(609\) 539.906 0.886544
\(610\) 0 0
\(611\) 21.6657i 0.0354594i
\(612\) 0 0
\(613\) −105.121 −0.171486 −0.0857432 0.996317i \(-0.527326\pi\)
−0.0857432 + 0.996317i \(0.527326\pi\)
\(614\) 0 0
\(615\) 632.702i 1.02878i
\(616\) 0 0
\(617\) −199.151 −0.322773 −0.161386 0.986891i \(-0.551597\pi\)
−0.161386 + 0.986891i \(0.551597\pi\)
\(618\) 0 0
\(619\) − 488.557i − 0.789268i −0.918838 0.394634i \(-0.870871\pi\)
0.918838 0.394634i \(-0.129129\pi\)
\(620\) 0 0
\(621\) −500.933 −0.806655
\(622\) 0 0
\(623\) 1281.30i 2.05667i
\(624\) 0 0
\(625\) 1253.16 2.00505
\(626\) 0 0
\(627\) − 48.9817i − 0.0781207i
\(628\) 0 0
\(629\) −194.168 −0.308693
\(630\) 0 0
\(631\) 180.553i 0.286138i 0.989713 + 0.143069i \(0.0456971\pi\)
−0.989713 + 0.143069i \(0.954303\pi\)
\(632\) 0 0
\(633\) −308.655 −0.487607
\(634\) 0 0
\(635\) − 925.058i − 1.45678i
\(636\) 0 0
\(637\) −93.4001 −0.146625
\(638\) 0 0
\(639\) 357.210i 0.559014i
\(640\) 0 0
\(641\) 704.076 1.09840 0.549201 0.835690i \(-0.314932\pi\)
0.549201 + 0.835690i \(0.314932\pi\)
\(642\) 0 0
\(643\) 472.324i 0.734562i 0.930110 + 0.367281i \(0.119711\pi\)
−0.930110 + 0.367281i \(0.880289\pi\)
\(644\) 0 0
\(645\) 234.240 0.363163
\(646\) 0 0
\(647\) − 694.047i − 1.07271i −0.843991 0.536357i \(-0.819800\pi\)
0.843991 0.536357i \(-0.180200\pi\)
\(648\) 0 0
\(649\) 635.692 0.979494
\(650\) 0 0
\(651\) − 192.378i − 0.295512i
\(652\) 0 0
\(653\) −61.1281 −0.0936112 −0.0468056 0.998904i \(-0.514904\pi\)
−0.0468056 + 0.998904i \(0.514904\pi\)
\(654\) 0 0
\(655\) 1923.18i 2.93615i
\(656\) 0 0
\(657\) 134.654 0.204952
\(658\) 0 0
\(659\) − 572.595i − 0.868884i −0.900700 0.434442i \(-0.856946\pi\)
0.900700 0.434442i \(-0.143054\pi\)
\(660\) 0 0
\(661\) 1204.00 1.82149 0.910745 0.412969i \(-0.135508\pi\)
0.910745 + 0.412969i \(0.135508\pi\)
\(662\) 0 0
\(663\) 7.62188i 0.0114960i
\(664\) 0 0
\(665\) −425.189 −0.639383
\(666\) 0 0
\(667\) − 1337.97i − 2.00595i
\(668\) 0 0
\(669\) 177.555 0.265403
\(670\) 0 0
\(671\) 177.260i 0.264173i
\(672\) 0 0
\(673\) −521.086 −0.774274 −0.387137 0.922022i \(-0.626536\pi\)
−0.387137 + 0.922022i \(0.626536\pi\)
\(674\) 0 0
\(675\) − 1027.24i − 1.52184i
\(676\) 0 0
\(677\) −868.153 −1.28235 −0.641176 0.767393i \(-0.721553\pi\)
−0.641176 + 0.767393i \(0.721553\pi\)
\(678\) 0 0
\(679\) 116.855i 0.172098i
\(680\) 0 0
\(681\) −140.367 −0.206118
\(682\) 0 0
\(683\) 220.439i 0.322752i 0.986893 + 0.161376i \(0.0515931\pi\)
−0.986893 + 0.161376i \(0.948407\pi\)
\(684\) 0 0
\(685\) −2239.36 −3.26913
\(686\) 0 0
\(687\) 69.4823i 0.101139i
\(688\) 0 0
\(689\) −58.9043 −0.0854924
\(690\) 0 0
\(691\) − 868.756i − 1.25724i −0.777711 0.628622i \(-0.783619\pi\)
0.777711 0.628622i \(-0.216381\pi\)
\(692\) 0 0
\(693\) 900.344 1.29920
\(694\) 0 0
\(695\) − 968.950i − 1.39417i
\(696\) 0 0
\(697\) 337.083 0.483619
\(698\) 0 0
\(699\) − 203.506i − 0.291139i
\(700\) 0 0
\(701\) −788.469 −1.12478 −0.562389 0.826873i \(-0.690118\pi\)
−0.562389 + 0.826873i \(0.690118\pi\)
\(702\) 0 0
\(703\) 165.496i 0.235414i
\(704\) 0 0
\(705\) 147.380 0.209049
\(706\) 0 0
\(707\) 1279.04i 1.80910i
\(708\) 0 0
\(709\) −467.071 −0.658774 −0.329387 0.944195i \(-0.606842\pi\)
−0.329387 + 0.944195i \(0.606842\pi\)
\(710\) 0 0
\(711\) 472.351i 0.664347i
\(712\) 0 0
\(713\) −476.744 −0.668645
\(714\) 0 0
\(715\) − 136.457i − 0.190849i
\(716\) 0 0
\(717\) 483.537 0.674390
\(718\) 0 0
\(719\) 883.729i 1.22911i 0.788875 + 0.614554i \(0.210664\pi\)
−0.788875 + 0.614554i \(0.789336\pi\)
\(720\) 0 0
\(721\) 1724.25 2.39146
\(722\) 0 0
\(723\) 244.144i 0.337682i
\(724\) 0 0
\(725\) 2743.73 3.78445
\(726\) 0 0
\(727\) − 259.838i − 0.357412i −0.983903 0.178706i \(-0.942809\pi\)
0.983903 0.178706i \(-0.0571911\pi\)
\(728\) 0 0
\(729\) 241.487 0.331257
\(730\) 0 0
\(731\) − 124.795i − 0.170719i
\(732\) 0 0
\(733\) −34.1773 −0.0466265 −0.0233133 0.999728i \(-0.507422\pi\)
−0.0233133 + 0.999728i \(0.507422\pi\)
\(734\) 0 0
\(735\) 635.347i 0.864418i
\(736\) 0 0
\(737\) −225.519 −0.305996
\(738\) 0 0
\(739\) − 352.235i − 0.476637i −0.971187 0.238318i \(-0.923404\pi\)
0.971187 0.238318i \(-0.0765962\pi\)
\(740\) 0 0
\(741\) 6.49638 0.00876704
\(742\) 0 0
\(743\) 1174.36i 1.58057i 0.612739 + 0.790285i \(0.290068\pi\)
−0.612739 + 0.790285i \(0.709932\pi\)
\(744\) 0 0
\(745\) 2248.32 3.01788
\(746\) 0 0
\(747\) 1241.75i 1.66232i
\(748\) 0 0
\(749\) 1305.07 1.74242
\(750\) 0 0
\(751\) 778.648i 1.03681i 0.855134 + 0.518407i \(0.173475\pi\)
−0.855134 + 0.518407i \(0.826525\pi\)
\(752\) 0 0
\(753\) 355.237 0.471762
\(754\) 0 0
\(755\) 1934.34i 2.56204i
\(756\) 0 0
\(757\) 788.148 1.04115 0.520573 0.853817i \(-0.325718\pi\)
0.520573 + 0.853817i \(0.325718\pi\)
\(758\) 0 0
\(759\) 315.659i 0.415889i
\(760\) 0 0
\(761\) 98.7509 0.129765 0.0648823 0.997893i \(-0.479333\pi\)
0.0648823 + 0.997893i \(0.479333\pi\)
\(762\) 0 0
\(763\) − 1572.73i − 2.06124i
\(764\) 0 0
\(765\) −366.475 −0.479053
\(766\) 0 0
\(767\) 84.3110i 0.109923i
\(768\) 0 0
\(769\) −103.589 −0.134706 −0.0673530 0.997729i \(-0.521455\pi\)
−0.0673530 + 0.997729i \(0.521455\pi\)
\(770\) 0 0
\(771\) 456.085i 0.591551i
\(772\) 0 0
\(773\) 33.3757 0.0431769 0.0215884 0.999767i \(-0.493128\pi\)
0.0215884 + 0.999767i \(0.493128\pi\)
\(774\) 0 0
\(775\) − 977.640i − 1.26147i
\(776\) 0 0
\(777\) 430.371 0.553888
\(778\) 0 0
\(779\) − 287.307i − 0.368815i
\(780\) 0 0
\(781\) 482.032 0.617198
\(782\) 0 0
\(783\) − 849.381i − 1.08478i
\(784\) 0 0
\(785\) 587.124 0.747928
\(786\) 0 0
\(787\) 352.700i 0.448157i 0.974571 + 0.224079i \(0.0719373\pi\)
−0.974571 + 0.224079i \(0.928063\pi\)
\(788\) 0 0
\(789\) −425.819 −0.539694
\(790\) 0 0
\(791\) − 1298.86i − 1.64205i
\(792\) 0 0
\(793\) −23.5098 −0.0296467
\(794\) 0 0
\(795\) 400.692i 0.504015i
\(796\) 0 0
\(797\) 92.2273 0.115718 0.0578591 0.998325i \(-0.481573\pi\)
0.0578591 + 0.998325i \(0.481573\pi\)
\(798\) 0 0
\(799\) − 78.5189i − 0.0982715i
\(800\) 0 0
\(801\) 941.291 1.17515
\(802\) 0 0
\(803\) − 181.707i − 0.226285i
\(804\) 0 0
\(805\) 2740.11 3.40386
\(806\) 0 0
\(807\) 64.3857i 0.0797840i
\(808\) 0 0
\(809\) −492.297 −0.608525 −0.304263 0.952588i \(-0.598410\pi\)
−0.304263 + 0.952588i \(0.598410\pi\)
\(810\) 0 0
\(811\) − 523.571i − 0.645587i −0.946469 0.322793i \(-0.895378\pi\)
0.946469 0.322793i \(-0.104622\pi\)
\(812\) 0 0
\(813\) 108.777 0.133797
\(814\) 0 0
\(815\) − 581.634i − 0.713662i
\(816\) 0 0
\(817\) −106.367 −0.130192
\(818\) 0 0
\(819\) 119.411i 0.145802i
\(820\) 0 0
\(821\) −1176.68 −1.43323 −0.716617 0.697467i \(-0.754310\pi\)
−0.716617 + 0.697467i \(0.754310\pi\)
\(822\) 0 0
\(823\) − 342.603i − 0.416286i −0.978098 0.208143i \(-0.933258\pi\)
0.978098 0.208143i \(-0.0667419\pi\)
\(824\) 0 0
\(825\) −647.310 −0.784618
\(826\) 0 0
\(827\) 695.311i 0.840763i 0.907347 + 0.420382i \(0.138104\pi\)
−0.907347 + 0.420382i \(0.861896\pi\)
\(828\) 0 0
\(829\) 885.118 1.06769 0.533847 0.845581i \(-0.320746\pi\)
0.533847 + 0.845581i \(0.320746\pi\)
\(830\) 0 0
\(831\) − 273.414i − 0.329018i
\(832\) 0 0
\(833\) 338.492 0.406353
\(834\) 0 0
\(835\) 192.977i 0.231110i
\(836\) 0 0
\(837\) −302.650 −0.361589
\(838\) 0 0
\(839\) 556.979i 0.663861i 0.943304 + 0.331930i \(0.107700\pi\)
−0.943304 + 0.331930i \(0.892300\pi\)
\(840\) 0 0
\(841\) 1427.66 1.69758
\(842\) 0 0
\(843\) 222.193i 0.263574i
\(844\) 0 0
\(845\) −1517.89 −1.79632
\(846\) 0 0
\(847\) 83.6858i 0.0988026i
\(848\) 0 0
\(849\) −118.713 −0.139827
\(850\) 0 0
\(851\) − 1066.53i − 1.25326i
\(852\) 0 0
\(853\) 811.661 0.951536 0.475768 0.879571i \(-0.342170\pi\)
0.475768 + 0.879571i \(0.342170\pi\)
\(854\) 0 0
\(855\) 312.359i 0.365332i
\(856\) 0 0
\(857\) −1253.44 −1.46259 −0.731294 0.682062i \(-0.761083\pi\)
−0.731294 + 0.682062i \(0.761083\pi\)
\(858\) 0 0
\(859\) − 576.904i − 0.671599i −0.941933 0.335800i \(-0.890994\pi\)
0.941933 0.335800i \(-0.109006\pi\)
\(860\) 0 0
\(861\) −747.140 −0.867758
\(862\) 0 0
\(863\) 1208.60i 1.40047i 0.713913 + 0.700234i \(0.246921\pi\)
−0.713913 + 0.700234i \(0.753079\pi\)
\(864\) 0 0
\(865\) 189.977 0.219626
\(866\) 0 0
\(867\) 277.607i 0.320193i
\(868\) 0 0
\(869\) 637.407 0.733495
\(870\) 0 0
\(871\) − 29.9103i − 0.0343402i
\(872\) 0 0
\(873\) 85.8454 0.0983338
\(874\) 0 0
\(875\) 3180.40i 3.63474i
\(876\) 0 0
\(877\) −181.176 −0.206586 −0.103293 0.994651i \(-0.532938\pi\)
−0.103293 + 0.994651i \(0.532938\pi\)
\(878\) 0 0
\(879\) − 109.112i − 0.124132i
\(880\) 0 0
\(881\) −640.333 −0.726825 −0.363412 0.931628i \(-0.618388\pi\)
−0.363412 + 0.931628i \(0.618388\pi\)
\(882\) 0 0
\(883\) − 132.874i − 0.150480i −0.997165 0.0752398i \(-0.976028\pi\)
0.997165 0.0752398i \(-0.0239722\pi\)
\(884\) 0 0
\(885\) 573.520 0.648045
\(886\) 0 0
\(887\) 1239.47i 1.39738i 0.715425 + 0.698689i \(0.246233\pi\)
−0.715425 + 0.698689i \(0.753767\pi\)
\(888\) 0 0
\(889\) 1092.37 1.22877
\(890\) 0 0
\(891\) − 554.610i − 0.622458i
\(892\) 0 0
\(893\) −66.9243 −0.0749432
\(894\) 0 0
\(895\) − 2585.82i − 2.88919i
\(896\) 0 0
\(897\) −41.8655 −0.0466728
\(898\) 0 0
\(899\) − 808.367i − 0.899184i
\(900\) 0 0
\(901\) 213.476 0.236932
\(902\) 0 0
\(903\) 276.607i 0.306320i
\(904\) 0 0
\(905\) 1832.18 2.02451
\(906\) 0 0
\(907\) − 611.509i − 0.674211i −0.941467 0.337105i \(-0.890552\pi\)
0.941467 0.337105i \(-0.109448\pi\)
\(908\) 0 0
\(909\) 939.625 1.03369
\(910\) 0 0
\(911\) 896.546i 0.984134i 0.870557 + 0.492067i \(0.163758\pi\)
−0.870557 + 0.492067i \(0.836242\pi\)
\(912\) 0 0
\(913\) 1675.67 1.83534
\(914\) 0 0
\(915\) 159.924i 0.174780i
\(916\) 0 0
\(917\) −2271.03 −2.47658
\(918\) 0 0
\(919\) − 886.935i − 0.965108i −0.875866 0.482554i \(-0.839709\pi\)
0.875866 0.482554i \(-0.160291\pi\)
\(920\) 0 0
\(921\) −602.361 −0.654030
\(922\) 0 0
\(923\) 63.9313i 0.0692647i
\(924\) 0 0
\(925\) 2187.09 2.36442
\(926\) 0 0
\(927\) − 1266.69i − 1.36644i
\(928\) 0 0
\(929\) 368.049 0.396178 0.198089 0.980184i \(-0.436527\pi\)
0.198089 + 0.980184i \(0.436527\pi\)
\(930\) 0 0
\(931\) − 288.508i − 0.309891i
\(932\) 0 0
\(933\) 580.918 0.622635
\(934\) 0 0
\(935\) 494.535i 0.528915i
\(936\) 0 0
\(937\) −1349.93 −1.44070 −0.720348 0.693613i \(-0.756018\pi\)
−0.720348 + 0.693613i \(0.756018\pi\)
\(938\) 0 0
\(939\) 397.904i 0.423753i
\(940\) 0 0
\(941\) 443.896 0.471728 0.235864 0.971786i \(-0.424208\pi\)
0.235864 + 0.971786i \(0.424208\pi\)
\(942\) 0 0
\(943\) 1851.53i 1.96345i
\(944\) 0 0
\(945\) 1739.50 1.84074
\(946\) 0 0
\(947\) 350.509i 0.370126i 0.982727 + 0.185063i \(0.0592489\pi\)
−0.982727 + 0.185063i \(0.940751\pi\)
\(948\) 0 0
\(949\) 24.0995 0.0253946
\(950\) 0 0
\(951\) 533.577i 0.561070i
\(952\) 0 0
\(953\) −263.837 −0.276849 −0.138424 0.990373i \(-0.544204\pi\)
−0.138424 + 0.990373i \(0.544204\pi\)
\(954\) 0 0
\(955\) 645.814i 0.676245i
\(956\) 0 0
\(957\) −535.232 −0.559281
\(958\) 0 0
\(959\) − 2644.39i − 2.75745i
\(960\) 0 0
\(961\) 672.964 0.700275
\(962\) 0 0
\(963\) − 958.752i − 0.995588i
\(964\) 0 0
\(965\) −459.465 −0.476130
\(966\) 0 0
\(967\) − 1063.16i − 1.09944i −0.835349 0.549720i \(-0.814734\pi\)
0.835349 0.549720i \(-0.185266\pi\)
\(968\) 0 0
\(969\) −23.5436 −0.0242968
\(970\) 0 0
\(971\) − 1134.08i − 1.16795i −0.811772 0.583975i \(-0.801497\pi\)
0.811772 0.583975i \(-0.198503\pi\)
\(972\) 0 0
\(973\) 1144.21 1.17596
\(974\) 0 0
\(975\) − 85.8519i − 0.0880533i
\(976\) 0 0
\(977\) −652.300 −0.667657 −0.333828 0.942634i \(-0.608341\pi\)
−0.333828 + 0.942634i \(0.608341\pi\)
\(978\) 0 0
\(979\) − 1270.21i − 1.29746i
\(980\) 0 0
\(981\) −1155.38 −1.17776
\(982\) 0 0
\(983\) − 1237.86i − 1.25926i −0.776894 0.629631i \(-0.783206\pi\)
0.776894 0.629631i \(-0.216794\pi\)
\(984\) 0 0
\(985\) −2649.34 −2.68968
\(986\) 0 0
\(987\) 174.036i 0.176329i
\(988\) 0 0
\(989\) 685.477 0.693101
\(990\) 0 0
\(991\) 230.602i 0.232696i 0.993209 + 0.116348i \(0.0371188\pi\)
−0.993209 + 0.116348i \(0.962881\pi\)
\(992\) 0 0
\(993\) −199.083 −0.200487
\(994\) 0 0
\(995\) − 1541.45i − 1.54920i
\(996\) 0 0
\(997\) 1023.39 1.02647 0.513234 0.858248i \(-0.328447\pi\)
0.513234 + 0.858248i \(0.328447\pi\)
\(998\) 0 0
\(999\) − 677.061i − 0.677739i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.3.d.f.191.8 20
4.3 odd 2 inner 1216.3.d.f.191.13 20
8.3 odd 2 608.3.d.b.191.8 20
8.5 even 2 608.3.d.b.191.13 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.3.d.b.191.8 20 8.3 odd 2
608.3.d.b.191.13 yes 20 8.5 even 2
1216.3.d.f.191.8 20 1.1 even 1 trivial
1216.3.d.f.191.13 20 4.3 odd 2 inner