Properties

Label 1216.3.d.f.191.10
Level $1216$
Weight $3$
Character 1216.191
Analytic conductor $33.134$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1216,3,Mod(191,1216)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1216, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1216.191"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1216.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.1336001462\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 124 x^{18} + 6294 x^{16} + 169580 x^{14} + 2633777 x^{12} + 23965840 x^{10} + 123396288 x^{8} + \cdots + 6553600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{32}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 608)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.10
Root \(0.255387i\) of defining polynomial
Character \(\chi\) \(=\) 1216.191
Dual form 1216.3.d.f.191.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.255387i q^{3} +0.657472 q^{5} +5.46816i q^{7} +8.93478 q^{9} -7.62075i q^{11} +23.5457 q^{13} -0.167910i q^{15} +1.93859 q^{17} -4.35890i q^{19} +1.39649 q^{21} -15.5276i q^{23} -24.5677 q^{25} -4.58031i q^{27} -21.8489 q^{29} +23.0254i q^{31} -1.94624 q^{33} +3.59516i q^{35} +34.6145 q^{37} -6.01327i q^{39} -33.7873 q^{41} -51.8448i q^{43} +5.87437 q^{45} +90.4336i q^{47} +19.0993 q^{49} -0.495090i q^{51} +88.3584 q^{53} -5.01043i q^{55} -1.11321 q^{57} +19.6684i q^{59} +83.4867 q^{61} +48.8567i q^{63} +15.4807 q^{65} -80.6552i q^{67} -3.96556 q^{69} +65.6448i q^{71} +70.9481 q^{73} +6.27428i q^{75} +41.6715 q^{77} -145.044i q^{79} +79.2432 q^{81} +78.0145i q^{83} +1.27457 q^{85} +5.57992i q^{87} -46.1237 q^{89} +128.752i q^{91} +5.88039 q^{93} -2.86585i q^{95} +24.0304 q^{97} -68.0897i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 68 q^{9} + 16 q^{13} + 8 q^{17} - 64 q^{21} + 196 q^{25} + 88 q^{29} - 184 q^{33} - 16 q^{37} - 16 q^{41} - 16 q^{45} + 52 q^{49} - 88 q^{53} + 208 q^{61} - 192 q^{65} - 248 q^{69} - 152 q^{73} - 312 q^{77}+ \cdots - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 0.255387i − 0.0851290i −0.999094 0.0425645i \(-0.986447\pi\)
0.999094 0.0425645i \(-0.0135528\pi\)
\(4\) 0 0
\(5\) 0.657472 0.131494 0.0657472 0.997836i \(-0.479057\pi\)
0.0657472 + 0.997836i \(0.479057\pi\)
\(6\) 0 0
\(7\) 5.46816i 0.781165i 0.920568 + 0.390583i \(0.127726\pi\)
−0.920568 + 0.390583i \(0.872274\pi\)
\(8\) 0 0
\(9\) 8.93478 0.992753
\(10\) 0 0
\(11\) − 7.62075i − 0.692796i −0.938088 0.346398i \(-0.887405\pi\)
0.938088 0.346398i \(-0.112595\pi\)
\(12\) 0 0
\(13\) 23.5457 1.81121 0.905605 0.424122i \(-0.139417\pi\)
0.905605 + 0.424122i \(0.139417\pi\)
\(14\) 0 0
\(15\) − 0.167910i − 0.0111940i
\(16\) 0 0
\(17\) 1.93859 0.114035 0.0570173 0.998373i \(-0.481841\pi\)
0.0570173 + 0.998373i \(0.481841\pi\)
\(18\) 0 0
\(19\) − 4.35890i − 0.229416i
\(20\) 0 0
\(21\) 1.39649 0.0664998
\(22\) 0 0
\(23\) − 15.5276i − 0.675115i −0.941305 0.337558i \(-0.890399\pi\)
0.941305 0.337558i \(-0.109601\pi\)
\(24\) 0 0
\(25\) −24.5677 −0.982709
\(26\) 0 0
\(27\) − 4.58031i − 0.169641i
\(28\) 0 0
\(29\) −21.8489 −0.753410 −0.376705 0.926333i \(-0.622943\pi\)
−0.376705 + 0.926333i \(0.622943\pi\)
\(30\) 0 0
\(31\) 23.0254i 0.742756i 0.928482 + 0.371378i \(0.121115\pi\)
−0.928482 + 0.371378i \(0.878885\pi\)
\(32\) 0 0
\(33\) −1.94624 −0.0589770
\(34\) 0 0
\(35\) 3.59516i 0.102719i
\(36\) 0 0
\(37\) 34.6145 0.935527 0.467763 0.883854i \(-0.345060\pi\)
0.467763 + 0.883854i \(0.345060\pi\)
\(38\) 0 0
\(39\) − 6.01327i − 0.154186i
\(40\) 0 0
\(41\) −33.7873 −0.824082 −0.412041 0.911165i \(-0.635184\pi\)
−0.412041 + 0.911165i \(0.635184\pi\)
\(42\) 0 0
\(43\) − 51.8448i − 1.20569i −0.797857 0.602846i \(-0.794033\pi\)
0.797857 0.602846i \(-0.205967\pi\)
\(44\) 0 0
\(45\) 5.87437 0.130541
\(46\) 0 0
\(47\) 90.4336i 1.92412i 0.272841 + 0.962059i \(0.412037\pi\)
−0.272841 + 0.962059i \(0.587963\pi\)
\(48\) 0 0
\(49\) 19.0993 0.389781
\(50\) 0 0
\(51\) − 0.495090i − 0.00970764i
\(52\) 0 0
\(53\) 88.3584 1.66714 0.833570 0.552414i \(-0.186293\pi\)
0.833570 + 0.552414i \(0.186293\pi\)
\(54\) 0 0
\(55\) − 5.01043i − 0.0910988i
\(56\) 0 0
\(57\) −1.11321 −0.0195299
\(58\) 0 0
\(59\) 19.6684i 0.333362i 0.986011 + 0.166681i \(0.0533050\pi\)
−0.986011 + 0.166681i \(0.946695\pi\)
\(60\) 0 0
\(61\) 83.4867 1.36863 0.684317 0.729184i \(-0.260100\pi\)
0.684317 + 0.729184i \(0.260100\pi\)
\(62\) 0 0
\(63\) 48.8567i 0.775504i
\(64\) 0 0
\(65\) 15.4807 0.238164
\(66\) 0 0
\(67\) − 80.6552i − 1.20381i −0.798568 0.601904i \(-0.794409\pi\)
0.798568 0.601904i \(-0.205591\pi\)
\(68\) 0 0
\(69\) −3.96556 −0.0574718
\(70\) 0 0
\(71\) 65.6448i 0.924575i 0.886730 + 0.462287i \(0.152971\pi\)
−0.886730 + 0.462287i \(0.847029\pi\)
\(72\) 0 0
\(73\) 70.9481 0.971891 0.485946 0.873989i \(-0.338475\pi\)
0.485946 + 0.873989i \(0.338475\pi\)
\(74\) 0 0
\(75\) 6.27428i 0.0836570i
\(76\) 0 0
\(77\) 41.6715 0.541188
\(78\) 0 0
\(79\) − 145.044i − 1.83600i −0.396580 0.918000i \(-0.629803\pi\)
0.396580 0.918000i \(-0.370197\pi\)
\(80\) 0 0
\(81\) 79.2432 0.978312
\(82\) 0 0
\(83\) 78.0145i 0.939934i 0.882684 + 0.469967i \(0.155734\pi\)
−0.882684 + 0.469967i \(0.844266\pi\)
\(84\) 0 0
\(85\) 1.27457 0.0149949
\(86\) 0 0
\(87\) 5.57992i 0.0641370i
\(88\) 0 0
\(89\) −46.1237 −0.518243 −0.259122 0.965845i \(-0.583433\pi\)
−0.259122 + 0.965845i \(0.583433\pi\)
\(90\) 0 0
\(91\) 128.752i 1.41485i
\(92\) 0 0
\(93\) 5.88039 0.0632300
\(94\) 0 0
\(95\) − 2.86585i − 0.0301669i
\(96\) 0 0
\(97\) 24.0304 0.247737 0.123868 0.992299i \(-0.460470\pi\)
0.123868 + 0.992299i \(0.460470\pi\)
\(98\) 0 0
\(99\) − 68.0897i − 0.687775i
\(100\) 0 0
\(101\) 37.3854 0.370153 0.185076 0.982724i \(-0.440747\pi\)
0.185076 + 0.982724i \(0.440747\pi\)
\(102\) 0 0
\(103\) 108.182i 1.05031i 0.851006 + 0.525156i \(0.175993\pi\)
−0.851006 + 0.525156i \(0.824007\pi\)
\(104\) 0 0
\(105\) 0.918156 0.00874435
\(106\) 0 0
\(107\) − 190.862i − 1.78376i −0.452274 0.891879i \(-0.649387\pi\)
0.452274 0.891879i \(-0.350613\pi\)
\(108\) 0 0
\(109\) 15.4290 0.141550 0.0707752 0.997492i \(-0.477453\pi\)
0.0707752 + 0.997492i \(0.477453\pi\)
\(110\) 0 0
\(111\) − 8.84009i − 0.0796404i
\(112\) 0 0
\(113\) −20.7286 −0.183439 −0.0917194 0.995785i \(-0.529236\pi\)
−0.0917194 + 0.995785i \(0.529236\pi\)
\(114\) 0 0
\(115\) − 10.2090i − 0.0887739i
\(116\) 0 0
\(117\) 210.376 1.79808
\(118\) 0 0
\(119\) 10.6005i 0.0890798i
\(120\) 0 0
\(121\) 62.9241 0.520034
\(122\) 0 0
\(123\) 8.62884i 0.0701532i
\(124\) 0 0
\(125\) −32.5894 −0.260715
\(126\) 0 0
\(127\) − 155.513i − 1.22451i −0.790660 0.612255i \(-0.790263\pi\)
0.790660 0.612255i \(-0.209737\pi\)
\(128\) 0 0
\(129\) −13.2405 −0.102639
\(130\) 0 0
\(131\) − 51.0526i − 0.389715i −0.980832 0.194857i \(-0.937576\pi\)
0.980832 0.194857i \(-0.0624244\pi\)
\(132\) 0 0
\(133\) 23.8351 0.179212
\(134\) 0 0
\(135\) − 3.01142i − 0.0223068i
\(136\) 0 0
\(137\) 136.974 0.999808 0.499904 0.866081i \(-0.333369\pi\)
0.499904 + 0.866081i \(0.333369\pi\)
\(138\) 0 0
\(139\) 8.53883i 0.0614304i 0.999528 + 0.0307152i \(0.00977849\pi\)
−0.999528 + 0.0307152i \(0.990222\pi\)
\(140\) 0 0
\(141\) 23.0955 0.163798
\(142\) 0 0
\(143\) − 179.436i − 1.25480i
\(144\) 0 0
\(145\) −14.3650 −0.0990692
\(146\) 0 0
\(147\) − 4.87771i − 0.0331817i
\(148\) 0 0
\(149\) −208.907 −1.40206 −0.701029 0.713132i \(-0.747276\pi\)
−0.701029 + 0.713132i \(0.747276\pi\)
\(150\) 0 0
\(151\) − 51.7900i − 0.342980i −0.985186 0.171490i \(-0.945142\pi\)
0.985186 0.171490i \(-0.0548581\pi\)
\(152\) 0 0
\(153\) 17.3208 0.113208
\(154\) 0 0
\(155\) 15.1386i 0.0976683i
\(156\) 0 0
\(157\) −112.143 −0.714284 −0.357142 0.934050i \(-0.616249\pi\)
−0.357142 + 0.934050i \(0.616249\pi\)
\(158\) 0 0
\(159\) − 22.5656i − 0.141922i
\(160\) 0 0
\(161\) 84.9076 0.527376
\(162\) 0 0
\(163\) 257.817i 1.58170i 0.612011 + 0.790849i \(0.290361\pi\)
−0.612011 + 0.790849i \(0.709639\pi\)
\(164\) 0 0
\(165\) −1.27960 −0.00775514
\(166\) 0 0
\(167\) 273.031i 1.63491i 0.575990 + 0.817457i \(0.304617\pi\)
−0.575990 + 0.817457i \(0.695383\pi\)
\(168\) 0 0
\(169\) 385.401 2.28048
\(170\) 0 0
\(171\) − 38.9458i − 0.227753i
\(172\) 0 0
\(173\) 86.9380 0.502532 0.251266 0.967918i \(-0.419153\pi\)
0.251266 + 0.967918i \(0.419153\pi\)
\(174\) 0 0
\(175\) − 134.340i − 0.767658i
\(176\) 0 0
\(177\) 5.02304 0.0283788
\(178\) 0 0
\(179\) 281.670i 1.57357i 0.617225 + 0.786786i \(0.288257\pi\)
−0.617225 + 0.786786i \(0.711743\pi\)
\(180\) 0 0
\(181\) −84.3024 −0.465759 −0.232880 0.972506i \(-0.574815\pi\)
−0.232880 + 0.972506i \(0.574815\pi\)
\(182\) 0 0
\(183\) − 21.3214i − 0.116510i
\(184\) 0 0
\(185\) 22.7581 0.123017
\(186\) 0 0
\(187\) − 14.7735i − 0.0790026i
\(188\) 0 0
\(189\) 25.0458 0.132518
\(190\) 0 0
\(191\) 48.9025i 0.256034i 0.991772 + 0.128017i \(0.0408612\pi\)
−0.991772 + 0.128017i \(0.959139\pi\)
\(192\) 0 0
\(193\) 168.833 0.874781 0.437390 0.899272i \(-0.355903\pi\)
0.437390 + 0.899272i \(0.355903\pi\)
\(194\) 0 0
\(195\) − 3.95356i − 0.0202747i
\(196\) 0 0
\(197\) 77.0588 0.391161 0.195581 0.980688i \(-0.437341\pi\)
0.195581 + 0.980688i \(0.437341\pi\)
\(198\) 0 0
\(199\) 1.40504i 0.00706052i 0.999994 + 0.00353026i \(0.00112372\pi\)
−0.999994 + 0.00353026i \(0.998876\pi\)
\(200\) 0 0
\(201\) −20.5983 −0.102479
\(202\) 0 0
\(203\) − 119.473i − 0.588537i
\(204\) 0 0
\(205\) −22.2142 −0.108362
\(206\) 0 0
\(207\) − 138.736i − 0.670223i
\(208\) 0 0
\(209\) −33.2181 −0.158938
\(210\) 0 0
\(211\) 131.181i 0.621710i 0.950457 + 0.310855i \(0.100615\pi\)
−0.950457 + 0.310855i \(0.899385\pi\)
\(212\) 0 0
\(213\) 16.7648 0.0787081
\(214\) 0 0
\(215\) − 34.0865i − 0.158542i
\(216\) 0 0
\(217\) −125.907 −0.580215
\(218\) 0 0
\(219\) − 18.1192i − 0.0827361i
\(220\) 0 0
\(221\) 45.6455 0.206541
\(222\) 0 0
\(223\) 23.9134i 0.107235i 0.998562 + 0.0536176i \(0.0170752\pi\)
−0.998562 + 0.0536176i \(0.982925\pi\)
\(224\) 0 0
\(225\) −219.507 −0.975588
\(226\) 0 0
\(227\) 311.549i 1.37246i 0.727384 + 0.686231i \(0.240736\pi\)
−0.727384 + 0.686231i \(0.759264\pi\)
\(228\) 0 0
\(229\) −155.791 −0.680311 −0.340155 0.940369i \(-0.610480\pi\)
−0.340155 + 0.940369i \(0.610480\pi\)
\(230\) 0 0
\(231\) − 10.6423i − 0.0460707i
\(232\) 0 0
\(233\) −201.438 −0.864542 −0.432271 0.901744i \(-0.642288\pi\)
−0.432271 + 0.901744i \(0.642288\pi\)
\(234\) 0 0
\(235\) 59.4575i 0.253011i
\(236\) 0 0
\(237\) −37.0423 −0.156297
\(238\) 0 0
\(239\) 92.8528i 0.388505i 0.980952 + 0.194253i \(0.0622282\pi\)
−0.980952 + 0.194253i \(0.937772\pi\)
\(240\) 0 0
\(241\) 294.032 1.22005 0.610025 0.792383i \(-0.291160\pi\)
0.610025 + 0.792383i \(0.291160\pi\)
\(242\) 0 0
\(243\) − 61.4604i − 0.252924i
\(244\) 0 0
\(245\) 12.5572 0.0512541
\(246\) 0 0
\(247\) − 102.633i − 0.415520i
\(248\) 0 0
\(249\) 19.9239 0.0800156
\(250\) 0 0
\(251\) − 106.291i − 0.423471i −0.977327 0.211736i \(-0.932088\pi\)
0.977327 0.211736i \(-0.0679115\pi\)
\(252\) 0 0
\(253\) −118.332 −0.467717
\(254\) 0 0
\(255\) − 0.325508i − 0.00127650i
\(256\) 0 0
\(257\) −145.054 −0.564414 −0.282207 0.959354i \(-0.591066\pi\)
−0.282207 + 0.959354i \(0.591066\pi\)
\(258\) 0 0
\(259\) 189.277i 0.730801i
\(260\) 0 0
\(261\) −195.215 −0.747950
\(262\) 0 0
\(263\) − 321.321i − 1.22175i −0.791726 0.610876i \(-0.790817\pi\)
0.791726 0.610876i \(-0.209183\pi\)
\(264\) 0 0
\(265\) 58.0932 0.219220
\(266\) 0 0
\(267\) 11.7794i 0.0441175i
\(268\) 0 0
\(269\) −190.119 −0.706761 −0.353381 0.935480i \(-0.614968\pi\)
−0.353381 + 0.935480i \(0.614968\pi\)
\(270\) 0 0
\(271\) − 94.7015i − 0.349452i −0.984617 0.174726i \(-0.944096\pi\)
0.984617 0.174726i \(-0.0559040\pi\)
\(272\) 0 0
\(273\) 32.8815 0.120445
\(274\) 0 0
\(275\) 187.225i 0.680817i
\(276\) 0 0
\(277\) −166.331 −0.600471 −0.300236 0.953865i \(-0.597065\pi\)
−0.300236 + 0.953865i \(0.597065\pi\)
\(278\) 0 0
\(279\) 205.727i 0.737373i
\(280\) 0 0
\(281\) 473.516 1.68511 0.842555 0.538611i \(-0.181051\pi\)
0.842555 + 0.538611i \(0.181051\pi\)
\(282\) 0 0
\(283\) − 322.508i − 1.13960i −0.821782 0.569802i \(-0.807020\pi\)
0.821782 0.569802i \(-0.192980\pi\)
\(284\) 0 0
\(285\) −0.731902 −0.00256808
\(286\) 0 0
\(287\) − 184.754i − 0.643744i
\(288\) 0 0
\(289\) −285.242 −0.986996
\(290\) 0 0
\(291\) − 6.13706i − 0.0210896i
\(292\) 0 0
\(293\) 186.461 0.636387 0.318194 0.948026i \(-0.396924\pi\)
0.318194 + 0.948026i \(0.396924\pi\)
\(294\) 0 0
\(295\) 12.9314i 0.0438352i
\(296\) 0 0
\(297\) −34.9054 −0.117527
\(298\) 0 0
\(299\) − 365.610i − 1.22278i
\(300\) 0 0
\(301\) 283.495 0.941845
\(302\) 0 0
\(303\) − 9.54775i − 0.0315107i
\(304\) 0 0
\(305\) 54.8902 0.179968
\(306\) 0 0
\(307\) − 365.908i − 1.19188i −0.803028 0.595941i \(-0.796779\pi\)
0.803028 0.595941i \(-0.203221\pi\)
\(308\) 0 0
\(309\) 27.6283 0.0894120
\(310\) 0 0
\(311\) 251.100i 0.807395i 0.914893 + 0.403697i \(0.132275\pi\)
−0.914893 + 0.403697i \(0.867725\pi\)
\(312\) 0 0
\(313\) −436.567 −1.39478 −0.697391 0.716691i \(-0.745656\pi\)
−0.697391 + 0.716691i \(0.745656\pi\)
\(314\) 0 0
\(315\) 32.1219i 0.101974i
\(316\) 0 0
\(317\) −292.634 −0.923134 −0.461567 0.887105i \(-0.652713\pi\)
−0.461567 + 0.887105i \(0.652713\pi\)
\(318\) 0 0
\(319\) 166.505i 0.521959i
\(320\) 0 0
\(321\) −48.7437 −0.151849
\(322\) 0 0
\(323\) − 8.45011i − 0.0261613i
\(324\) 0 0
\(325\) −578.465 −1.77989
\(326\) 0 0
\(327\) − 3.94036i − 0.0120500i
\(328\) 0 0
\(329\) −494.505 −1.50305
\(330\) 0 0
\(331\) 154.294i 0.466146i 0.972459 + 0.233073i \(0.0748781\pi\)
−0.972459 + 0.233073i \(0.925122\pi\)
\(332\) 0 0
\(333\) 309.273 0.928747
\(334\) 0 0
\(335\) − 53.0285i − 0.158294i
\(336\) 0 0
\(337\) 136.284 0.404403 0.202202 0.979344i \(-0.435190\pi\)
0.202202 + 0.979344i \(0.435190\pi\)
\(338\) 0 0
\(339\) 5.29381i 0.0156160i
\(340\) 0 0
\(341\) 175.471 0.514578
\(342\) 0 0
\(343\) 372.377i 1.08565i
\(344\) 0 0
\(345\) −2.60724 −0.00755723
\(346\) 0 0
\(347\) − 218.574i − 0.629897i −0.949109 0.314949i \(-0.898013\pi\)
0.949109 0.314949i \(-0.101987\pi\)
\(348\) 0 0
\(349\) 69.7726 0.199922 0.0999608 0.994991i \(-0.468128\pi\)
0.0999608 + 0.994991i \(0.468128\pi\)
\(350\) 0 0
\(351\) − 107.847i − 0.307255i
\(352\) 0 0
\(353\) −203.173 −0.575561 −0.287781 0.957696i \(-0.592917\pi\)
−0.287781 + 0.957696i \(0.592917\pi\)
\(354\) 0 0
\(355\) 43.1596i 0.121576i
\(356\) 0 0
\(357\) 2.70723 0.00758327
\(358\) 0 0
\(359\) 173.731i 0.483932i 0.970285 + 0.241966i \(0.0777922\pi\)
−0.970285 + 0.241966i \(0.922208\pi\)
\(360\) 0 0
\(361\) −19.0000 −0.0526316
\(362\) 0 0
\(363\) − 16.0700i − 0.0442700i
\(364\) 0 0
\(365\) 46.6464 0.127798
\(366\) 0 0
\(367\) − 363.755i − 0.991157i −0.868563 0.495579i \(-0.834956\pi\)
0.868563 0.495579i \(-0.165044\pi\)
\(368\) 0 0
\(369\) −301.882 −0.818109
\(370\) 0 0
\(371\) 483.157i 1.30231i
\(372\) 0 0
\(373\) −446.876 −1.19806 −0.599030 0.800727i \(-0.704447\pi\)
−0.599030 + 0.800727i \(0.704447\pi\)
\(374\) 0 0
\(375\) 8.32290i 0.0221944i
\(376\) 0 0
\(377\) −514.448 −1.36458
\(378\) 0 0
\(379\) − 215.080i − 0.567493i −0.958899 0.283746i \(-0.908423\pi\)
0.958899 0.283746i \(-0.0915774\pi\)
\(380\) 0 0
\(381\) −39.7159 −0.104241
\(382\) 0 0
\(383\) 304.799i 0.795821i 0.917424 + 0.397910i \(0.130265\pi\)
−0.917424 + 0.397910i \(0.869735\pi\)
\(384\) 0 0
\(385\) 27.3978 0.0711632
\(386\) 0 0
\(387\) − 463.222i − 1.19696i
\(388\) 0 0
\(389\) 328.735 0.845076 0.422538 0.906345i \(-0.361139\pi\)
0.422538 + 0.906345i \(0.361139\pi\)
\(390\) 0 0
\(391\) − 30.1017i − 0.0769864i
\(392\) 0 0
\(393\) −13.0382 −0.0331760
\(394\) 0 0
\(395\) − 95.3624i − 0.241424i
\(396\) 0 0
\(397\) −375.875 −0.946789 −0.473395 0.880850i \(-0.656972\pi\)
−0.473395 + 0.880850i \(0.656972\pi\)
\(398\) 0 0
\(399\) − 6.08718i − 0.0152561i
\(400\) 0 0
\(401\) −671.545 −1.67468 −0.837338 0.546686i \(-0.815889\pi\)
−0.837338 + 0.546686i \(0.815889\pi\)
\(402\) 0 0
\(403\) 542.151i 1.34529i
\(404\) 0 0
\(405\) 52.1002 0.128643
\(406\) 0 0
\(407\) − 263.788i − 0.648129i
\(408\) 0 0
\(409\) −525.692 −1.28531 −0.642655 0.766156i \(-0.722167\pi\)
−0.642655 + 0.766156i \(0.722167\pi\)
\(410\) 0 0
\(411\) − 34.9813i − 0.0851126i
\(412\) 0 0
\(413\) −107.550 −0.260411
\(414\) 0 0
\(415\) 51.2924i 0.123596i
\(416\) 0 0
\(417\) 2.18070 0.00522951
\(418\) 0 0
\(419\) − 419.467i − 1.00111i −0.865703 0.500557i \(-0.833128\pi\)
0.865703 0.500557i \(-0.166872\pi\)
\(420\) 0 0
\(421\) 202.155 0.480179 0.240090 0.970751i \(-0.422823\pi\)
0.240090 + 0.970751i \(0.422823\pi\)
\(422\) 0 0
\(423\) 808.004i 1.91017i
\(424\) 0 0
\(425\) −47.6267 −0.112063
\(426\) 0 0
\(427\) 456.518i 1.06913i
\(428\) 0 0
\(429\) −45.8256 −0.106820
\(430\) 0 0
\(431\) 299.444i 0.694766i 0.937723 + 0.347383i \(0.112930\pi\)
−0.937723 + 0.347383i \(0.887070\pi\)
\(432\) 0 0
\(433\) −193.823 −0.447627 −0.223814 0.974632i \(-0.571851\pi\)
−0.223814 + 0.974632i \(0.571851\pi\)
\(434\) 0 0
\(435\) 3.66864i 0.00843365i
\(436\) 0 0
\(437\) −67.6834 −0.154882
\(438\) 0 0
\(439\) 661.662i 1.50720i 0.657332 + 0.753601i \(0.271685\pi\)
−0.657332 + 0.753601i \(0.728315\pi\)
\(440\) 0 0
\(441\) 170.648 0.386957
\(442\) 0 0
\(443\) − 548.601i − 1.23838i −0.785243 0.619188i \(-0.787462\pi\)
0.785243 0.619188i \(-0.212538\pi\)
\(444\) 0 0
\(445\) −30.3250 −0.0681461
\(446\) 0 0
\(447\) 53.3520i 0.119356i
\(448\) 0 0
\(449\) 30.2929 0.0674676 0.0337338 0.999431i \(-0.489260\pi\)
0.0337338 + 0.999431i \(0.489260\pi\)
\(450\) 0 0
\(451\) 257.485i 0.570920i
\(452\) 0 0
\(453\) −13.2265 −0.0291975
\(454\) 0 0
\(455\) 84.6506i 0.186045i
\(456\) 0 0
\(457\) 372.917 0.816010 0.408005 0.912980i \(-0.366225\pi\)
0.408005 + 0.912980i \(0.366225\pi\)
\(458\) 0 0
\(459\) − 8.87932i − 0.0193449i
\(460\) 0 0
\(461\) −816.298 −1.77071 −0.885355 0.464915i \(-0.846085\pi\)
−0.885355 + 0.464915i \(0.846085\pi\)
\(462\) 0 0
\(463\) − 797.212i − 1.72184i −0.508741 0.860920i \(-0.669889\pi\)
0.508741 0.860920i \(-0.330111\pi\)
\(464\) 0 0
\(465\) 3.86620 0.00831440
\(466\) 0 0
\(467\) − 813.132i − 1.74118i −0.492008 0.870591i \(-0.663737\pi\)
0.492008 0.870591i \(-0.336263\pi\)
\(468\) 0 0
\(469\) 441.035 0.940373
\(470\) 0 0
\(471\) 28.6397i 0.0608062i
\(472\) 0 0
\(473\) −395.096 −0.835299
\(474\) 0 0
\(475\) 107.088i 0.225449i
\(476\) 0 0
\(477\) 789.463 1.65506
\(478\) 0 0
\(479\) − 459.023i − 0.958295i −0.877734 0.479147i \(-0.840946\pi\)
0.877734 0.479147i \(-0.159054\pi\)
\(480\) 0 0
\(481\) 815.023 1.69444
\(482\) 0 0
\(483\) − 21.6843i − 0.0448950i
\(484\) 0 0
\(485\) 15.7993 0.0325760
\(486\) 0 0
\(487\) 134.407i 0.275990i 0.990433 + 0.137995i \(0.0440658\pi\)
−0.990433 + 0.137995i \(0.955934\pi\)
\(488\) 0 0
\(489\) 65.8430 0.134648
\(490\) 0 0
\(491\) − 562.378i − 1.14537i −0.819774 0.572686i \(-0.805901\pi\)
0.819774 0.572686i \(-0.194099\pi\)
\(492\) 0 0
\(493\) −42.3560 −0.0859147
\(494\) 0 0
\(495\) − 44.7671i − 0.0904386i
\(496\) 0 0
\(497\) −358.956 −0.722245
\(498\) 0 0
\(499\) 11.3480i 0.0227414i 0.999935 + 0.0113707i \(0.00361949\pi\)
−0.999935 + 0.0113707i \(0.996381\pi\)
\(500\) 0 0
\(501\) 69.7284 0.139179
\(502\) 0 0
\(503\) 125.309i 0.249124i 0.992212 + 0.124562i \(0.0397526\pi\)
−0.992212 + 0.124562i \(0.960247\pi\)
\(504\) 0 0
\(505\) 24.5799 0.0486730
\(506\) 0 0
\(507\) − 98.4264i − 0.194135i
\(508\) 0 0
\(509\) −10.6729 −0.0209683 −0.0104841 0.999945i \(-0.503337\pi\)
−0.0104841 + 0.999945i \(0.503337\pi\)
\(510\) 0 0
\(511\) 387.955i 0.759207i
\(512\) 0 0
\(513\) −19.9651 −0.0389183
\(514\) 0 0
\(515\) 71.1267i 0.138110i
\(516\) 0 0
\(517\) 689.172 1.33302
\(518\) 0 0
\(519\) − 22.2028i − 0.0427800i
\(520\) 0 0
\(521\) −775.979 −1.48940 −0.744701 0.667398i \(-0.767408\pi\)
−0.744701 + 0.667398i \(0.767408\pi\)
\(522\) 0 0
\(523\) 944.542i 1.80601i 0.429633 + 0.903004i \(0.358643\pi\)
−0.429633 + 0.903004i \(0.641357\pi\)
\(524\) 0 0
\(525\) −34.3087 −0.0653499
\(526\) 0 0
\(527\) 44.6368i 0.0846999i
\(528\) 0 0
\(529\) 287.892 0.544220
\(530\) 0 0
\(531\) 175.732i 0.330946i
\(532\) 0 0
\(533\) −795.548 −1.49258
\(534\) 0 0
\(535\) − 125.486i − 0.234554i
\(536\) 0 0
\(537\) 71.9347 0.133957
\(538\) 0 0
\(539\) − 145.551i − 0.270039i
\(540\) 0 0
\(541\) −369.872 −0.683682 −0.341841 0.939758i \(-0.611050\pi\)
−0.341841 + 0.939758i \(0.611050\pi\)
\(542\) 0 0
\(543\) 21.5297i 0.0396496i
\(544\) 0 0
\(545\) 10.1441 0.0186131
\(546\) 0 0
\(547\) 431.881i 0.789545i 0.918779 + 0.394772i \(0.129177\pi\)
−0.918779 + 0.394772i \(0.870823\pi\)
\(548\) 0 0
\(549\) 745.935 1.35872
\(550\) 0 0
\(551\) 95.2371i 0.172844i
\(552\) 0 0
\(553\) 793.123 1.43422
\(554\) 0 0
\(555\) − 5.81211i − 0.0104723i
\(556\) 0 0
\(557\) −248.079 −0.445383 −0.222692 0.974889i \(-0.571484\pi\)
−0.222692 + 0.974889i \(0.571484\pi\)
\(558\) 0 0
\(559\) − 1220.72i − 2.18376i
\(560\) 0 0
\(561\) −3.77296 −0.00672541
\(562\) 0 0
\(563\) − 327.600i − 0.581882i −0.956741 0.290941i \(-0.906032\pi\)
0.956741 0.290941i \(-0.0939684\pi\)
\(564\) 0 0
\(565\) −13.6285 −0.0241212
\(566\) 0 0
\(567\) 433.314i 0.764223i
\(568\) 0 0
\(569\) −700.289 −1.23074 −0.615368 0.788240i \(-0.710993\pi\)
−0.615368 + 0.788240i \(0.710993\pi\)
\(570\) 0 0
\(571\) − 665.367i − 1.16527i −0.812736 0.582633i \(-0.802023\pi\)
0.812736 0.582633i \(-0.197977\pi\)
\(572\) 0 0
\(573\) 12.4890 0.0217959
\(574\) 0 0
\(575\) 381.479i 0.663442i
\(576\) 0 0
\(577\) −979.815 −1.69812 −0.849060 0.528296i \(-0.822831\pi\)
−0.849060 + 0.528296i \(0.822831\pi\)
\(578\) 0 0
\(579\) − 43.1176i − 0.0744692i
\(580\) 0 0
\(581\) −426.596 −0.734244
\(582\) 0 0
\(583\) − 673.357i − 1.15499i
\(584\) 0 0
\(585\) 138.316 0.236438
\(586\) 0 0
\(587\) − 178.656i − 0.304354i −0.988353 0.152177i \(-0.951372\pi\)
0.988353 0.152177i \(-0.0486283\pi\)
\(588\) 0 0
\(589\) 100.366 0.170400
\(590\) 0 0
\(591\) − 19.6798i − 0.0332992i
\(592\) 0 0
\(593\) −638.505 −1.07674 −0.538368 0.842710i \(-0.680959\pi\)
−0.538368 + 0.842710i \(0.680959\pi\)
\(594\) 0 0
\(595\) 6.96953i 0.0117135i
\(596\) 0 0
\(597\) 0.358830 0.000601055 0
\(598\) 0 0
\(599\) 760.354i 1.26937i 0.772770 + 0.634686i \(0.218871\pi\)
−0.772770 + 0.634686i \(0.781129\pi\)
\(600\) 0 0
\(601\) 904.393 1.50481 0.752406 0.658699i \(-0.228893\pi\)
0.752406 + 0.658699i \(0.228893\pi\)
\(602\) 0 0
\(603\) − 720.636i − 1.19508i
\(604\) 0 0
\(605\) 41.3709 0.0683816
\(606\) 0 0
\(607\) − 525.160i − 0.865173i −0.901592 0.432587i \(-0.857601\pi\)
0.901592 0.432587i \(-0.142399\pi\)
\(608\) 0 0
\(609\) −30.5118 −0.0501016
\(610\) 0 0
\(611\) 2129.32i 3.48498i
\(612\) 0 0
\(613\) −883.028 −1.44050 −0.720251 0.693713i \(-0.755974\pi\)
−0.720251 + 0.693713i \(0.755974\pi\)
\(614\) 0 0
\(615\) 5.67322i 0.00922475i
\(616\) 0 0
\(617\) −536.131 −0.868932 −0.434466 0.900688i \(-0.643063\pi\)
−0.434466 + 0.900688i \(0.643063\pi\)
\(618\) 0 0
\(619\) − 699.787i − 1.13051i −0.824916 0.565256i \(-0.808777\pi\)
0.824916 0.565256i \(-0.191223\pi\)
\(620\) 0 0
\(621\) −71.1214 −0.114527
\(622\) 0 0
\(623\) − 252.211i − 0.404834i
\(624\) 0 0
\(625\) 592.767 0.948427
\(626\) 0 0
\(627\) 8.48346i 0.0135302i
\(628\) 0 0
\(629\) 67.1032 0.106682
\(630\) 0 0
\(631\) − 607.888i − 0.963373i −0.876344 0.481686i \(-0.840024\pi\)
0.876344 0.481686i \(-0.159976\pi\)
\(632\) 0 0
\(633\) 33.5019 0.0529255
\(634\) 0 0
\(635\) − 102.245i − 0.161016i
\(636\) 0 0
\(637\) 449.706 0.705976
\(638\) 0 0
\(639\) 586.522i 0.917874i
\(640\) 0 0
\(641\) 51.2150 0.0798985 0.0399493 0.999202i \(-0.487280\pi\)
0.0399493 + 0.999202i \(0.487280\pi\)
\(642\) 0 0
\(643\) 534.899i 0.831880i 0.909392 + 0.415940i \(0.136547\pi\)
−0.909392 + 0.415940i \(0.863453\pi\)
\(644\) 0 0
\(645\) −8.70524 −0.0134965
\(646\) 0 0
\(647\) 32.3797i 0.0500459i 0.999687 + 0.0250229i \(0.00796588\pi\)
−0.999687 + 0.0250229i \(0.992034\pi\)
\(648\) 0 0
\(649\) 149.888 0.230952
\(650\) 0 0
\(651\) 32.1549i 0.0493931i
\(652\) 0 0
\(653\) −327.004 −0.500772 −0.250386 0.968146i \(-0.580558\pi\)
−0.250386 + 0.968146i \(0.580558\pi\)
\(654\) 0 0
\(655\) − 33.5657i − 0.0512453i
\(656\) 0 0
\(657\) 633.905 0.964848
\(658\) 0 0
\(659\) 268.988i 0.408176i 0.978952 + 0.204088i \(0.0654229\pi\)
−0.978952 + 0.204088i \(0.934577\pi\)
\(660\) 0 0
\(661\) −358.874 −0.542926 −0.271463 0.962449i \(-0.587507\pi\)
−0.271463 + 0.962449i \(0.587507\pi\)
\(662\) 0 0
\(663\) − 11.6572i − 0.0175826i
\(664\) 0 0
\(665\) 15.6709 0.0235653
\(666\) 0 0
\(667\) 339.262i 0.508638i
\(668\) 0 0
\(669\) 6.10718 0.00912882
\(670\) 0 0
\(671\) − 636.231i − 0.948184i
\(672\) 0 0
\(673\) 754.931 1.12174 0.560870 0.827904i \(-0.310467\pi\)
0.560870 + 0.827904i \(0.310467\pi\)
\(674\) 0 0
\(675\) 112.528i 0.166708i
\(676\) 0 0
\(677\) −1029.69 −1.52095 −0.760477 0.649365i \(-0.775035\pi\)
−0.760477 + 0.649365i \(0.775035\pi\)
\(678\) 0 0
\(679\) 131.402i 0.193523i
\(680\) 0 0
\(681\) 79.5655 0.116836
\(682\) 0 0
\(683\) − 284.033i − 0.415861i −0.978144 0.207930i \(-0.933327\pi\)
0.978144 0.207930i \(-0.0666728\pi\)
\(684\) 0 0
\(685\) 90.0564 0.131469
\(686\) 0 0
\(687\) 39.7870i 0.0579141i
\(688\) 0 0
\(689\) 2080.46 3.01954
\(690\) 0 0
\(691\) 1073.04i 1.55288i 0.630193 + 0.776438i \(0.282976\pi\)
−0.630193 + 0.776438i \(0.717024\pi\)
\(692\) 0 0
\(693\) 372.325 0.537266
\(694\) 0 0
\(695\) 5.61404i 0.00807776i
\(696\) 0 0
\(697\) −65.4997 −0.0939738
\(698\) 0 0
\(699\) 51.4447i 0.0735976i
\(700\) 0 0
\(701\) −957.671 −1.36615 −0.683075 0.730348i \(-0.739358\pi\)
−0.683075 + 0.730348i \(0.739358\pi\)
\(702\) 0 0
\(703\) − 150.881i − 0.214625i
\(704\) 0 0
\(705\) 15.1847 0.0215385
\(706\) 0 0
\(707\) 204.429i 0.289150i
\(708\) 0 0
\(709\) 555.681 0.783753 0.391877 0.920018i \(-0.371826\pi\)
0.391877 + 0.920018i \(0.371826\pi\)
\(710\) 0 0
\(711\) − 1295.94i − 1.82269i
\(712\) 0 0
\(713\) 357.531 0.501446
\(714\) 0 0
\(715\) − 117.974i − 0.164999i
\(716\) 0 0
\(717\) 23.7134 0.0330731
\(718\) 0 0
\(719\) − 884.813i − 1.23062i −0.788287 0.615308i \(-0.789032\pi\)
0.788287 0.615308i \(-0.210968\pi\)
\(720\) 0 0
\(721\) −591.557 −0.820467
\(722\) 0 0
\(723\) − 75.0919i − 0.103862i
\(724\) 0 0
\(725\) 536.777 0.740383
\(726\) 0 0
\(727\) 1228.02i 1.68916i 0.535431 + 0.844579i \(0.320149\pi\)
−0.535431 + 0.844579i \(0.679851\pi\)
\(728\) 0 0
\(729\) 697.493 0.956781
\(730\) 0 0
\(731\) − 100.506i − 0.137491i
\(732\) 0 0
\(733\) 694.837 0.947936 0.473968 0.880542i \(-0.342821\pi\)
0.473968 + 0.880542i \(0.342821\pi\)
\(734\) 0 0
\(735\) − 3.20696i − 0.00436320i
\(736\) 0 0
\(737\) −614.653 −0.833994
\(738\) 0 0
\(739\) − 896.588i − 1.21324i −0.794990 0.606622i \(-0.792524\pi\)
0.794990 0.606622i \(-0.207476\pi\)
\(740\) 0 0
\(741\) −26.2112 −0.0353728
\(742\) 0 0
\(743\) 367.143i 0.494136i 0.968998 + 0.247068i \(0.0794672\pi\)
−0.968998 + 0.247068i \(0.920533\pi\)
\(744\) 0 0
\(745\) −137.350 −0.184363
\(746\) 0 0
\(747\) 697.042i 0.933122i
\(748\) 0 0
\(749\) 1043.66 1.39341
\(750\) 0 0
\(751\) 142.286i 0.189462i 0.995503 + 0.0947312i \(0.0301992\pi\)
−0.995503 + 0.0947312i \(0.969801\pi\)
\(752\) 0 0
\(753\) −27.1454 −0.0360496
\(754\) 0 0
\(755\) − 34.0505i − 0.0451000i
\(756\) 0 0
\(757\) 257.791 0.340543 0.170272 0.985397i \(-0.445535\pi\)
0.170272 + 0.985397i \(0.445535\pi\)
\(758\) 0 0
\(759\) 30.2205i 0.0398162i
\(760\) 0 0
\(761\) 1242.01 1.63208 0.816040 0.577995i \(-0.196165\pi\)
0.816040 + 0.577995i \(0.196165\pi\)
\(762\) 0 0
\(763\) 84.3682i 0.110574i
\(764\) 0 0
\(765\) 11.3880 0.0148862
\(766\) 0 0
\(767\) 463.106i 0.603789i
\(768\) 0 0
\(769\) 1208.34 1.57131 0.785654 0.618666i \(-0.212326\pi\)
0.785654 + 0.618666i \(0.212326\pi\)
\(770\) 0 0
\(771\) 37.0450i 0.0480480i
\(772\) 0 0
\(773\) 950.549 1.22969 0.614844 0.788649i \(-0.289219\pi\)
0.614844 + 0.788649i \(0.289219\pi\)
\(774\) 0 0
\(775\) − 565.683i − 0.729913i
\(776\) 0 0
\(777\) 48.3390 0.0622123
\(778\) 0 0
\(779\) 147.276i 0.189057i
\(780\) 0 0
\(781\) 500.263 0.640541
\(782\) 0 0
\(783\) 100.075i 0.127809i
\(784\) 0 0
\(785\) −73.7306 −0.0939243
\(786\) 0 0
\(787\) − 470.589i − 0.597953i −0.954260 0.298977i \(-0.903355\pi\)
0.954260 0.298977i \(-0.0966452\pi\)
\(788\) 0 0
\(789\) −82.0611 −0.104007
\(790\) 0 0
\(791\) − 113.347i − 0.143296i
\(792\) 0 0
\(793\) 1965.76 2.47888
\(794\) 0 0
\(795\) − 14.8362i − 0.0186619i
\(796\) 0 0
\(797\) 486.651 0.610603 0.305302 0.952256i \(-0.401243\pi\)
0.305302 + 0.952256i \(0.401243\pi\)
\(798\) 0 0
\(799\) 175.313i 0.219416i
\(800\) 0 0
\(801\) −412.105 −0.514488
\(802\) 0 0
\(803\) − 540.678i − 0.673322i
\(804\) 0 0
\(805\) 55.8244 0.0693470
\(806\) 0 0
\(807\) 48.5539i 0.0601659i
\(808\) 0 0
\(809\) −16.1795 −0.0199994 −0.00999972 0.999950i \(-0.503183\pi\)
−0.00999972 + 0.999950i \(0.503183\pi\)
\(810\) 0 0
\(811\) 73.2570i 0.0903292i 0.998980 + 0.0451646i \(0.0143812\pi\)
−0.998980 + 0.0451646i \(0.985619\pi\)
\(812\) 0 0
\(813\) −24.1855 −0.0297485
\(814\) 0 0
\(815\) 169.507i 0.207984i
\(816\) 0 0
\(817\) −225.986 −0.276605
\(818\) 0 0
\(819\) 1150.37i 1.40460i
\(820\) 0 0
\(821\) −97.2100 −0.118404 −0.0592022 0.998246i \(-0.518856\pi\)
−0.0592022 + 0.998246i \(0.518856\pi\)
\(822\) 0 0
\(823\) 660.502i 0.802554i 0.915957 + 0.401277i \(0.131434\pi\)
−0.915957 + 0.401277i \(0.868566\pi\)
\(824\) 0 0
\(825\) 47.8147 0.0579572
\(826\) 0 0
\(827\) 1295.04i 1.56594i 0.622057 + 0.782972i \(0.286297\pi\)
−0.622057 + 0.782972i \(0.713703\pi\)
\(828\) 0 0
\(829\) 711.988 0.858852 0.429426 0.903102i \(-0.358716\pi\)
0.429426 + 0.903102i \(0.358716\pi\)
\(830\) 0 0
\(831\) 42.4786i 0.0511175i
\(832\) 0 0
\(833\) 37.0256 0.0444485
\(834\) 0 0
\(835\) 179.510i 0.214982i
\(836\) 0 0
\(837\) 105.464 0.126002
\(838\) 0 0
\(839\) − 202.080i − 0.240858i −0.992722 0.120429i \(-0.961573\pi\)
0.992722 0.120429i \(-0.0384270\pi\)
\(840\) 0 0
\(841\) −363.627 −0.432374
\(842\) 0 0
\(843\) − 120.930i − 0.143452i
\(844\) 0 0
\(845\) 253.391 0.299871
\(846\) 0 0
\(847\) 344.079i 0.406232i
\(848\) 0 0
\(849\) −82.3643 −0.0970133
\(850\) 0 0
\(851\) − 537.482i − 0.631588i
\(852\) 0 0
\(853\) −1556.36 −1.82457 −0.912286 0.409555i \(-0.865684\pi\)
−0.912286 + 0.409555i \(0.865684\pi\)
\(854\) 0 0
\(855\) − 25.6058i − 0.0299483i
\(856\) 0 0
\(857\) −1025.20 −1.19627 −0.598134 0.801396i \(-0.704091\pi\)
−0.598134 + 0.801396i \(0.704091\pi\)
\(858\) 0 0
\(859\) 705.285i 0.821053i 0.911849 + 0.410527i \(0.134655\pi\)
−0.911849 + 0.410527i \(0.865345\pi\)
\(860\) 0 0
\(861\) −47.1839 −0.0548012
\(862\) 0 0
\(863\) − 662.244i − 0.767375i −0.923463 0.383687i \(-0.874654\pi\)
0.923463 0.383687i \(-0.125346\pi\)
\(864\) 0 0
\(865\) 57.1593 0.0660801
\(866\) 0 0
\(867\) 72.8470i 0.0840219i
\(868\) 0 0
\(869\) −1105.34 −1.27197
\(870\) 0 0
\(871\) − 1899.09i − 2.18035i
\(872\) 0 0
\(873\) 214.707 0.245941
\(874\) 0 0
\(875\) − 178.204i − 0.203662i
\(876\) 0 0
\(877\) −337.589 −0.384936 −0.192468 0.981303i \(-0.561649\pi\)
−0.192468 + 0.981303i \(0.561649\pi\)
\(878\) 0 0
\(879\) − 47.6198i − 0.0541750i
\(880\) 0 0
\(881\) −88.0746 −0.0999712 −0.0499856 0.998750i \(-0.515918\pi\)
−0.0499856 + 0.998750i \(0.515918\pi\)
\(882\) 0 0
\(883\) 574.901i 0.651077i 0.945529 + 0.325539i \(0.105546\pi\)
−0.945529 + 0.325539i \(0.894454\pi\)
\(884\) 0 0
\(885\) 3.30251 0.00373165
\(886\) 0 0
\(887\) 656.925i 0.740615i 0.928909 + 0.370307i \(0.120748\pi\)
−0.928909 + 0.370307i \(0.879252\pi\)
\(888\) 0 0
\(889\) 850.368 0.956544
\(890\) 0 0
\(891\) − 603.893i − 0.677770i
\(892\) 0 0
\(893\) 394.191 0.441423
\(894\) 0 0
\(895\) 185.190i 0.206916i
\(896\) 0 0
\(897\) −93.3719 −0.104094
\(898\) 0 0
\(899\) − 503.080i − 0.559600i
\(900\) 0 0
\(901\) 171.290 0.190112
\(902\) 0 0
\(903\) − 72.4010i − 0.0801783i
\(904\) 0 0
\(905\) −55.4265 −0.0612448
\(906\) 0 0
\(907\) − 1480.35i − 1.63214i −0.577954 0.816070i \(-0.696149\pi\)
0.577954 0.816070i \(-0.303851\pi\)
\(908\) 0 0
\(909\) 334.031 0.367470
\(910\) 0 0
\(911\) − 1640.44i − 1.80071i −0.435161 0.900353i \(-0.643309\pi\)
0.435161 0.900353i \(-0.356691\pi\)
\(912\) 0 0
\(913\) 594.529 0.651182
\(914\) 0 0
\(915\) − 14.0182i − 0.0153205i
\(916\) 0 0
\(917\) 279.164 0.304432
\(918\) 0 0
\(919\) − 754.817i − 0.821346i −0.911783 0.410673i \(-0.865294\pi\)
0.911783 0.410673i \(-0.134706\pi\)
\(920\) 0 0
\(921\) −93.4480 −0.101464
\(922\) 0 0
\(923\) 1545.65i 1.67460i
\(924\) 0 0
\(925\) −850.399 −0.919351
\(926\) 0 0
\(927\) 966.583i 1.04270i
\(928\) 0 0
\(929\) 375.308 0.403992 0.201996 0.979386i \(-0.435257\pi\)
0.201996 + 0.979386i \(0.435257\pi\)
\(930\) 0 0
\(931\) − 83.2518i − 0.0894219i
\(932\) 0 0
\(933\) 64.1276 0.0687327
\(934\) 0 0
\(935\) − 9.71316i − 0.0103884i
\(936\) 0 0
\(937\) −866.580 −0.924845 −0.462422 0.886660i \(-0.653020\pi\)
−0.462422 + 0.886660i \(0.653020\pi\)
\(938\) 0 0
\(939\) 111.493i 0.118736i
\(940\) 0 0
\(941\) 438.764 0.466274 0.233137 0.972444i \(-0.425101\pi\)
0.233137 + 0.972444i \(0.425101\pi\)
\(942\) 0 0
\(943\) 524.638i 0.556350i
\(944\) 0 0
\(945\) 16.4669 0.0174253
\(946\) 0 0
\(947\) − 1417.70i − 1.49704i −0.663111 0.748521i \(-0.730764\pi\)
0.663111 0.748521i \(-0.269236\pi\)
\(948\) 0 0
\(949\) 1670.52 1.76030
\(950\) 0 0
\(951\) 74.7348i 0.0785855i
\(952\) 0 0
\(953\) −1140.01 −1.19623 −0.598116 0.801410i \(-0.704084\pi\)
−0.598116 + 0.801410i \(0.704084\pi\)
\(954\) 0 0
\(955\) 32.1520i 0.0336670i
\(956\) 0 0
\(957\) 42.5232 0.0444338
\(958\) 0 0
\(959\) 748.994i 0.781015i
\(960\) 0 0
\(961\) 430.829 0.448313
\(962\) 0 0
\(963\) − 1705.31i − 1.77083i
\(964\) 0 0
\(965\) 111.003 0.115029
\(966\) 0 0
\(967\) 1183.86i 1.22426i 0.790758 + 0.612129i \(0.209687\pi\)
−0.790758 + 0.612129i \(0.790313\pi\)
\(968\) 0 0
\(969\) −2.15805 −0.00222709
\(970\) 0 0
\(971\) 1064.70i 1.09650i 0.836314 + 0.548250i \(0.184706\pi\)
−0.836314 + 0.548250i \(0.815294\pi\)
\(972\) 0 0
\(973\) −46.6916 −0.0479873
\(974\) 0 0
\(975\) 147.732i 0.151520i
\(976\) 0 0
\(977\) −1948.31 −1.99418 −0.997088 0.0762643i \(-0.975701\pi\)
−0.997088 + 0.0762643i \(0.975701\pi\)
\(978\) 0 0
\(979\) 351.497i 0.359037i
\(980\) 0 0
\(981\) 137.855 0.140525
\(982\) 0 0
\(983\) 1858.53i 1.89068i 0.326092 + 0.945338i \(0.394268\pi\)
−0.326092 + 0.945338i \(0.605732\pi\)
\(984\) 0 0
\(985\) 50.6640 0.0514355
\(986\) 0 0
\(987\) 126.290i 0.127953i
\(988\) 0 0
\(989\) −805.027 −0.813981
\(990\) 0 0
\(991\) 793.544i 0.800751i 0.916351 + 0.400376i \(0.131120\pi\)
−0.916351 + 0.400376i \(0.868880\pi\)
\(992\) 0 0
\(993\) 39.4047 0.0396825
\(994\) 0 0
\(995\) 0.923777i 0 0.000928419i
\(996\) 0 0
\(997\) 939.137 0.941963 0.470981 0.882143i \(-0.343900\pi\)
0.470981 + 0.882143i \(0.343900\pi\)
\(998\) 0 0
\(999\) − 158.545i − 0.158704i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.3.d.f.191.10 20
4.3 odd 2 inner 1216.3.d.f.191.11 20
8.3 odd 2 608.3.d.b.191.10 20
8.5 even 2 608.3.d.b.191.11 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.3.d.b.191.10 20 8.3 odd 2
608.3.d.b.191.11 yes 20 8.5 even 2
1216.3.d.f.191.10 20 1.1 even 1 trivial
1216.3.d.f.191.11 20 4.3 odd 2 inner