Properties

Label 1216.3.d.e.191.9
Level $1216$
Weight $3$
Character 1216.191
Analytic conductor $33.134$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1216,3,Mod(191,1216)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1216, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1216.191"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1216.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.1336001462\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 30 x^{14} + 116 x^{13} + 707 x^{12} - 2372 x^{11} - 7342 x^{10} + 12048 x^{9} + \cdots + 19859428 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{26} \)
Twist minimal: no (minimal twist has level 608)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.9
Root \(3.55583 - 0.146051i\) of defining polynomial
Character \(\chi\) \(=\) 1216.191
Dual form 1216.3.d.e.191.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.292102i q^{3} -6.11167 q^{5} -3.90281i q^{7} +8.91468 q^{9} +9.90522i q^{11} -6.62899 q^{13} -1.78523i q^{15} -9.01742 q^{17} -4.35890i q^{19} +1.14002 q^{21} -20.9308i q^{23} +12.3525 q^{25} +5.23292i q^{27} +5.74476 q^{29} +20.2048i q^{31} -2.89334 q^{33} +23.8527i q^{35} -2.91977 q^{37} -1.93634i q^{39} +31.5606 q^{41} +26.6794i q^{43} -54.4836 q^{45} -1.43072i q^{47} +33.7681 q^{49} -2.63401i q^{51} +4.43992 q^{53} -60.5374i q^{55} +1.27325 q^{57} -61.2354i q^{59} +67.7019 q^{61} -34.7923i q^{63} +40.5142 q^{65} +71.5884i q^{67} +6.11393 q^{69} -47.4052i q^{71} +118.522 q^{73} +3.60820i q^{75} +38.6582 q^{77} -37.1573i q^{79} +78.7035 q^{81} -1.37281i q^{83} +55.1115 q^{85} +1.67806i q^{87} +101.156 q^{89} +25.8717i q^{91} -5.90188 q^{93} +26.6402i q^{95} +147.089 q^{97} +88.3018i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{5} - 40 q^{9} - 40 q^{13} - 32 q^{17} + 96 q^{21} + 88 q^{25} - 144 q^{29} + 88 q^{33} + 56 q^{37} - 104 q^{41} - 40 q^{45} - 144 q^{49} + 320 q^{53} - 8 q^{61} + 336 q^{65} - 392 q^{69} + 72 q^{77}+ \cdots - 240 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.292102i 0.0973675i 0.998814 + 0.0486837i \(0.0155026\pi\)
−0.998814 + 0.0486837i \(0.984497\pi\)
\(4\) 0 0
\(5\) −6.11167 −1.22233 −0.611167 0.791502i \(-0.709300\pi\)
−0.611167 + 0.791502i \(0.709300\pi\)
\(6\) 0 0
\(7\) − 3.90281i − 0.557544i −0.960357 0.278772i \(-0.910073\pi\)
0.960357 0.278772i \(-0.0899274\pi\)
\(8\) 0 0
\(9\) 8.91468 0.990520
\(10\) 0 0
\(11\) 9.90522i 0.900475i 0.892909 + 0.450237i \(0.148661\pi\)
−0.892909 + 0.450237i \(0.851339\pi\)
\(12\) 0 0
\(13\) −6.62899 −0.509922 −0.254961 0.966951i \(-0.582063\pi\)
−0.254961 + 0.966951i \(0.582063\pi\)
\(14\) 0 0
\(15\) − 1.78523i − 0.119016i
\(16\) 0 0
\(17\) −9.01742 −0.530436 −0.265218 0.964188i \(-0.585444\pi\)
−0.265218 + 0.964188i \(0.585444\pi\)
\(18\) 0 0
\(19\) − 4.35890i − 0.229416i
\(20\) 0 0
\(21\) 1.14002 0.0542867
\(22\) 0 0
\(23\) − 20.9308i − 0.910033i −0.890483 0.455016i \(-0.849633\pi\)
0.890483 0.455016i \(-0.150367\pi\)
\(24\) 0 0
\(25\) 12.3525 0.494100
\(26\) 0 0
\(27\) 5.23292i 0.193812i
\(28\) 0 0
\(29\) 5.74476 0.198095 0.0990476 0.995083i \(-0.468420\pi\)
0.0990476 + 0.995083i \(0.468420\pi\)
\(30\) 0 0
\(31\) 20.2048i 0.651769i 0.945410 + 0.325884i \(0.105662\pi\)
−0.945410 + 0.325884i \(0.894338\pi\)
\(32\) 0 0
\(33\) −2.89334 −0.0876770
\(34\) 0 0
\(35\) 23.8527i 0.681505i
\(36\) 0 0
\(37\) −2.91977 −0.0789127 −0.0394564 0.999221i \(-0.512563\pi\)
−0.0394564 + 0.999221i \(0.512563\pi\)
\(38\) 0 0
\(39\) − 1.93634i − 0.0496498i
\(40\) 0 0
\(41\) 31.5606 0.769770 0.384885 0.922964i \(-0.374241\pi\)
0.384885 + 0.922964i \(0.374241\pi\)
\(42\) 0 0
\(43\) 26.6794i 0.620451i 0.950663 + 0.310226i \(0.100405\pi\)
−0.950663 + 0.310226i \(0.899595\pi\)
\(44\) 0 0
\(45\) −54.4836 −1.21075
\(46\) 0 0
\(47\) − 1.43072i − 0.0304408i −0.999884 0.0152204i \(-0.995155\pi\)
0.999884 0.0152204i \(-0.00484499\pi\)
\(48\) 0 0
\(49\) 33.7681 0.689144
\(50\) 0 0
\(51\) − 2.63401i − 0.0516472i
\(52\) 0 0
\(53\) 4.43992 0.0837721 0.0418861 0.999122i \(-0.486663\pi\)
0.0418861 + 0.999122i \(0.486663\pi\)
\(54\) 0 0
\(55\) − 60.5374i − 1.10068i
\(56\) 0 0
\(57\) 1.27325 0.0223376
\(58\) 0 0
\(59\) − 61.2354i − 1.03789i −0.854808 0.518944i \(-0.826325\pi\)
0.854808 0.518944i \(-0.173675\pi\)
\(60\) 0 0
\(61\) 67.7019 1.10987 0.554933 0.831895i \(-0.312744\pi\)
0.554933 + 0.831895i \(0.312744\pi\)
\(62\) 0 0
\(63\) − 34.7923i − 0.552259i
\(64\) 0 0
\(65\) 40.5142 0.623295
\(66\) 0 0
\(67\) 71.5884i 1.06848i 0.845332 + 0.534242i \(0.179403\pi\)
−0.845332 + 0.534242i \(0.820597\pi\)
\(68\) 0 0
\(69\) 6.11393 0.0886076
\(70\) 0 0
\(71\) − 47.4052i − 0.667679i −0.942630 0.333839i \(-0.891656\pi\)
0.942630 0.333839i \(-0.108344\pi\)
\(72\) 0 0
\(73\) 118.522 1.62358 0.811792 0.583946i \(-0.198492\pi\)
0.811792 + 0.583946i \(0.198492\pi\)
\(74\) 0 0
\(75\) 3.60820i 0.0481093i
\(76\) 0 0
\(77\) 38.6582 0.502055
\(78\) 0 0
\(79\) − 37.1573i − 0.470346i −0.971954 0.235173i \(-0.924434\pi\)
0.971954 0.235173i \(-0.0755657\pi\)
\(80\) 0 0
\(81\) 78.7035 0.971649
\(82\) 0 0
\(83\) − 1.37281i − 0.0165399i −0.999966 0.00826996i \(-0.997368\pi\)
0.999966 0.00826996i \(-0.00263244\pi\)
\(84\) 0 0
\(85\) 55.1115 0.648370
\(86\) 0 0
\(87\) 1.67806i 0.0192880i
\(88\) 0 0
\(89\) 101.156 1.13658 0.568292 0.822827i \(-0.307604\pi\)
0.568292 + 0.822827i \(0.307604\pi\)
\(90\) 0 0
\(91\) 25.8717i 0.284304i
\(92\) 0 0
\(93\) −5.90188 −0.0634611
\(94\) 0 0
\(95\) 26.6402i 0.280423i
\(96\) 0 0
\(97\) 147.089 1.51638 0.758189 0.652034i \(-0.226084\pi\)
0.758189 + 0.652034i \(0.226084\pi\)
\(98\) 0 0
\(99\) 88.3018i 0.891938i
\(100\) 0 0
\(101\) 72.6814 0.719618 0.359809 0.933026i \(-0.382842\pi\)
0.359809 + 0.933026i \(0.382842\pi\)
\(102\) 0 0
\(103\) − 6.19421i − 0.0601379i −0.999548 0.0300690i \(-0.990427\pi\)
0.999548 0.0300690i \(-0.00957269\pi\)
\(104\) 0 0
\(105\) −6.96743 −0.0663565
\(106\) 0 0
\(107\) − 80.8798i − 0.755886i −0.925829 0.377943i \(-0.876632\pi\)
0.925829 0.377943i \(-0.123368\pi\)
\(108\) 0 0
\(109\) 157.605 1.44592 0.722959 0.690891i \(-0.242782\pi\)
0.722959 + 0.690891i \(0.242782\pi\)
\(110\) 0 0
\(111\) − 0.852872i − 0.00768353i
\(112\) 0 0
\(113\) −55.9659 −0.495274 −0.247637 0.968853i \(-0.579654\pi\)
−0.247637 + 0.968853i \(0.579654\pi\)
\(114\) 0 0
\(115\) 127.922i 1.11236i
\(116\) 0 0
\(117\) −59.0953 −0.505088
\(118\) 0 0
\(119\) 35.1933i 0.295742i
\(120\) 0 0
\(121\) 22.8866 0.189145
\(122\) 0 0
\(123\) 9.21892i 0.0749506i
\(124\) 0 0
\(125\) 77.2973 0.618378
\(126\) 0 0
\(127\) 204.396i 1.60942i 0.593669 + 0.804709i \(0.297679\pi\)
−0.593669 + 0.804709i \(0.702321\pi\)
\(128\) 0 0
\(129\) −7.79312 −0.0604118
\(130\) 0 0
\(131\) 11.7719i 0.0898622i 0.998990 + 0.0449311i \(0.0143068\pi\)
−0.998990 + 0.0449311i \(0.985693\pi\)
\(132\) 0 0
\(133\) −17.0120 −0.127909
\(134\) 0 0
\(135\) − 31.9819i − 0.236903i
\(136\) 0 0
\(137\) −119.745 −0.874049 −0.437024 0.899450i \(-0.643968\pi\)
−0.437024 + 0.899450i \(0.643968\pi\)
\(138\) 0 0
\(139\) − 243.947i − 1.75501i −0.479565 0.877506i \(-0.659205\pi\)
0.479565 0.877506i \(-0.340795\pi\)
\(140\) 0 0
\(141\) 0.417916 0.00296394
\(142\) 0 0
\(143\) − 65.6616i − 0.459172i
\(144\) 0 0
\(145\) −35.1101 −0.242138
\(146\) 0 0
\(147\) 9.86374i 0.0671003i
\(148\) 0 0
\(149\) −50.4912 −0.338867 −0.169434 0.985542i \(-0.554194\pi\)
−0.169434 + 0.985542i \(0.554194\pi\)
\(150\) 0 0
\(151\) 109.222i 0.723325i 0.932309 + 0.361662i \(0.117791\pi\)
−0.932309 + 0.361662i \(0.882209\pi\)
\(152\) 0 0
\(153\) −80.3873 −0.525407
\(154\) 0 0
\(155\) − 123.485i − 0.796679i
\(156\) 0 0
\(157\) 124.637 0.793869 0.396934 0.917847i \(-0.370074\pi\)
0.396934 + 0.917847i \(0.370074\pi\)
\(158\) 0 0
\(159\) 1.29691i 0.00815668i
\(160\) 0 0
\(161\) −81.6888 −0.507384
\(162\) 0 0
\(163\) 128.491i 0.788289i 0.919049 + 0.394144i \(0.128959\pi\)
−0.919049 + 0.394144i \(0.871041\pi\)
\(164\) 0 0
\(165\) 17.6831 0.107171
\(166\) 0 0
\(167\) 323.621i 1.93785i 0.247351 + 0.968926i \(0.420440\pi\)
−0.247351 + 0.968926i \(0.579560\pi\)
\(168\) 0 0
\(169\) −125.057 −0.739980
\(170\) 0 0
\(171\) − 38.8582i − 0.227241i
\(172\) 0 0
\(173\) −99.7258 −0.576450 −0.288225 0.957563i \(-0.593065\pi\)
−0.288225 + 0.957563i \(0.593065\pi\)
\(174\) 0 0
\(175\) − 48.2095i − 0.275483i
\(176\) 0 0
\(177\) 17.8870 0.101057
\(178\) 0 0
\(179\) − 197.680i − 1.10436i −0.833726 0.552178i \(-0.813797\pi\)
0.833726 0.552178i \(-0.186203\pi\)
\(180\) 0 0
\(181\) 214.024 1.18245 0.591227 0.806505i \(-0.298644\pi\)
0.591227 + 0.806505i \(0.298644\pi\)
\(182\) 0 0
\(183\) 19.7759i 0.108065i
\(184\) 0 0
\(185\) 17.8447 0.0964577
\(186\) 0 0
\(187\) − 89.3195i − 0.477644i
\(188\) 0 0
\(189\) 20.4231 0.108059
\(190\) 0 0
\(191\) − 180.062i − 0.942732i −0.881938 0.471366i \(-0.843761\pi\)
0.881938 0.471366i \(-0.156239\pi\)
\(192\) 0 0
\(193\) −132.733 −0.687737 −0.343869 0.939018i \(-0.611738\pi\)
−0.343869 + 0.939018i \(0.611738\pi\)
\(194\) 0 0
\(195\) 11.8343i 0.0606887i
\(196\) 0 0
\(197\) −38.4534 −0.195195 −0.0975975 0.995226i \(-0.531116\pi\)
−0.0975975 + 0.995226i \(0.531116\pi\)
\(198\) 0 0
\(199\) 193.345i 0.971581i 0.874075 + 0.485790i \(0.161468\pi\)
−0.874075 + 0.485790i \(0.838532\pi\)
\(200\) 0 0
\(201\) −20.9112 −0.104036
\(202\) 0 0
\(203\) − 22.4207i − 0.110447i
\(204\) 0 0
\(205\) −192.888 −0.940916
\(206\) 0 0
\(207\) − 186.591i − 0.901405i
\(208\) 0 0
\(209\) 43.1759 0.206583
\(210\) 0 0
\(211\) − 298.214i − 1.41333i −0.707546 0.706667i \(-0.750198\pi\)
0.707546 0.706667i \(-0.249802\pi\)
\(212\) 0 0
\(213\) 13.8472 0.0650102
\(214\) 0 0
\(215\) − 163.056i − 0.758399i
\(216\) 0 0
\(217\) 78.8556 0.363390
\(218\) 0 0
\(219\) 34.6205i 0.158084i
\(220\) 0 0
\(221\) 59.7763 0.270481
\(222\) 0 0
\(223\) 11.4875i 0.0515134i 0.999668 + 0.0257567i \(0.00819952\pi\)
−0.999668 + 0.0257567i \(0.991800\pi\)
\(224\) 0 0
\(225\) 110.119 0.489416
\(226\) 0 0
\(227\) 288.249i 1.26982i 0.772586 + 0.634910i \(0.218963\pi\)
−0.772586 + 0.634910i \(0.781037\pi\)
\(228\) 0 0
\(229\) 387.140 1.69057 0.845285 0.534316i \(-0.179431\pi\)
0.845285 + 0.534316i \(0.179431\pi\)
\(230\) 0 0
\(231\) 11.2922i 0.0488838i
\(232\) 0 0
\(233\) −225.342 −0.967134 −0.483567 0.875307i \(-0.660659\pi\)
−0.483567 + 0.875307i \(0.660659\pi\)
\(234\) 0 0
\(235\) 8.74407i 0.0372088i
\(236\) 0 0
\(237\) 10.8538 0.0457964
\(238\) 0 0
\(239\) − 224.022i − 0.937330i −0.883376 0.468665i \(-0.844735\pi\)
0.883376 0.468665i \(-0.155265\pi\)
\(240\) 0 0
\(241\) 110.078 0.456756 0.228378 0.973573i \(-0.426658\pi\)
0.228378 + 0.973573i \(0.426658\pi\)
\(242\) 0 0
\(243\) 70.0858i 0.288419i
\(244\) 0 0
\(245\) −206.379 −0.842364
\(246\) 0 0
\(247\) 28.8951i 0.116984i
\(248\) 0 0
\(249\) 0.401002 0.00161045
\(250\) 0 0
\(251\) 2.53572i 0.0101025i 0.999987 + 0.00505123i \(0.00160786\pi\)
−0.999987 + 0.00505123i \(0.998392\pi\)
\(252\) 0 0
\(253\) 207.324 0.819461
\(254\) 0 0
\(255\) 16.0982i 0.0631302i
\(256\) 0 0
\(257\) 221.920 0.863503 0.431752 0.901993i \(-0.357896\pi\)
0.431752 + 0.901993i \(0.357896\pi\)
\(258\) 0 0
\(259\) 11.3953i 0.0439973i
\(260\) 0 0
\(261\) 51.2127 0.196217
\(262\) 0 0
\(263\) 307.882i 1.17065i 0.810797 + 0.585327i \(0.199034\pi\)
−0.810797 + 0.585327i \(0.800966\pi\)
\(264\) 0 0
\(265\) −27.1353 −0.102397
\(266\) 0 0
\(267\) 29.5479i 0.110666i
\(268\) 0 0
\(269\) −3.41169 −0.0126829 −0.00634143 0.999980i \(-0.502019\pi\)
−0.00634143 + 0.999980i \(0.502019\pi\)
\(270\) 0 0
\(271\) 22.0634i 0.0814149i 0.999171 + 0.0407075i \(0.0129612\pi\)
−0.999171 + 0.0407075i \(0.987039\pi\)
\(272\) 0 0
\(273\) −7.55718 −0.0276820
\(274\) 0 0
\(275\) 122.354i 0.444925i
\(276\) 0 0
\(277\) 155.181 0.560220 0.280110 0.959968i \(-0.409629\pi\)
0.280110 + 0.959968i \(0.409629\pi\)
\(278\) 0 0
\(279\) 180.120i 0.645590i
\(280\) 0 0
\(281\) −38.6055 −0.137386 −0.0686930 0.997638i \(-0.521883\pi\)
−0.0686930 + 0.997638i \(0.521883\pi\)
\(282\) 0 0
\(283\) − 428.155i − 1.51292i −0.654042 0.756458i \(-0.726928\pi\)
0.654042 0.756458i \(-0.273072\pi\)
\(284\) 0 0
\(285\) −7.78165 −0.0273041
\(286\) 0 0
\(287\) − 123.175i − 0.429181i
\(288\) 0 0
\(289\) −207.686 −0.718637
\(290\) 0 0
\(291\) 42.9650i 0.147646i
\(292\) 0 0
\(293\) −106.217 −0.362517 −0.181258 0.983435i \(-0.558017\pi\)
−0.181258 + 0.983435i \(0.558017\pi\)
\(294\) 0 0
\(295\) 374.251i 1.26865i
\(296\) 0 0
\(297\) −51.8332 −0.174523
\(298\) 0 0
\(299\) 138.750i 0.464046i
\(300\) 0 0
\(301\) 104.125 0.345929
\(302\) 0 0
\(303\) 21.2304i 0.0700674i
\(304\) 0 0
\(305\) −413.772 −1.35663
\(306\) 0 0
\(307\) − 335.513i − 1.09288i −0.837500 0.546438i \(-0.815983\pi\)
0.837500 0.546438i \(-0.184017\pi\)
\(308\) 0 0
\(309\) 1.80934 0.00585548
\(310\) 0 0
\(311\) 486.601i 1.56463i 0.622881 + 0.782316i \(0.285962\pi\)
−0.622881 + 0.782316i \(0.714038\pi\)
\(312\) 0 0
\(313\) 259.056 0.827654 0.413827 0.910356i \(-0.364192\pi\)
0.413827 + 0.910356i \(0.364192\pi\)
\(314\) 0 0
\(315\) 212.639i 0.675044i
\(316\) 0 0
\(317\) −508.795 −1.60503 −0.802515 0.596631i \(-0.796505\pi\)
−0.802515 + 0.596631i \(0.796505\pi\)
\(318\) 0 0
\(319\) 56.9031i 0.178380i
\(320\) 0 0
\(321\) 23.6252 0.0735987
\(322\) 0 0
\(323\) 39.3060i 0.121690i
\(324\) 0 0
\(325\) −81.8846 −0.251953
\(326\) 0 0
\(327\) 46.0368i 0.140785i
\(328\) 0 0
\(329\) −5.58381 −0.0169721
\(330\) 0 0
\(331\) − 486.139i − 1.46870i −0.678773 0.734348i \(-0.737488\pi\)
0.678773 0.734348i \(-0.262512\pi\)
\(332\) 0 0
\(333\) −26.0288 −0.0781646
\(334\) 0 0
\(335\) − 437.525i − 1.30604i
\(336\) 0 0
\(337\) −253.342 −0.751758 −0.375879 0.926669i \(-0.622659\pi\)
−0.375879 + 0.926669i \(0.622659\pi\)
\(338\) 0 0
\(339\) − 16.3478i − 0.0482235i
\(340\) 0 0
\(341\) −200.133 −0.586901
\(342\) 0 0
\(343\) − 323.028i − 0.941773i
\(344\) 0 0
\(345\) −37.3663 −0.108308
\(346\) 0 0
\(347\) 652.459i 1.88028i 0.340783 + 0.940142i \(0.389308\pi\)
−0.340783 + 0.940142i \(0.610692\pi\)
\(348\) 0 0
\(349\) −16.6947 −0.0478359 −0.0239180 0.999714i \(-0.507614\pi\)
−0.0239180 + 0.999714i \(0.507614\pi\)
\(350\) 0 0
\(351\) − 34.6890i − 0.0988290i
\(352\) 0 0
\(353\) −179.315 −0.507974 −0.253987 0.967208i \(-0.581742\pi\)
−0.253987 + 0.967208i \(0.581742\pi\)
\(354\) 0 0
\(355\) 289.725i 0.816126i
\(356\) 0 0
\(357\) −10.2800 −0.0287956
\(358\) 0 0
\(359\) − 450.090i − 1.25373i −0.779127 0.626867i \(-0.784337\pi\)
0.779127 0.626867i \(-0.215663\pi\)
\(360\) 0 0
\(361\) −19.0000 −0.0526316
\(362\) 0 0
\(363\) 6.68523i 0.0184166i
\(364\) 0 0
\(365\) −724.365 −1.98456
\(366\) 0 0
\(367\) − 302.333i − 0.823796i −0.911230 0.411898i \(-0.864866\pi\)
0.911230 0.411898i \(-0.135134\pi\)
\(368\) 0 0
\(369\) 281.352 0.762473
\(370\) 0 0
\(371\) − 17.3282i − 0.0467067i
\(372\) 0 0
\(373\) 34.8630 0.0934665 0.0467333 0.998907i \(-0.485119\pi\)
0.0467333 + 0.998907i \(0.485119\pi\)
\(374\) 0 0
\(375\) 22.5787i 0.0602099i
\(376\) 0 0
\(377\) −38.0819 −0.101013
\(378\) 0 0
\(379\) 132.632i 0.349953i 0.984573 + 0.174976i \(0.0559849\pi\)
−0.984573 + 0.174976i \(0.944015\pi\)
\(380\) 0 0
\(381\) −59.7046 −0.156705
\(382\) 0 0
\(383\) − 672.616i − 1.75618i −0.478498 0.878089i \(-0.658818\pi\)
0.478498 0.878089i \(-0.341182\pi\)
\(384\) 0 0
\(385\) −236.266 −0.613678
\(386\) 0 0
\(387\) 237.838i 0.614569i
\(388\) 0 0
\(389\) −721.188 −1.85395 −0.926976 0.375120i \(-0.877602\pi\)
−0.926976 + 0.375120i \(0.877602\pi\)
\(390\) 0 0
\(391\) 188.741i 0.482714i
\(392\) 0 0
\(393\) −3.43861 −0.00874966
\(394\) 0 0
\(395\) 227.093i 0.574920i
\(396\) 0 0
\(397\) 14.8340 0.0373654 0.0186827 0.999825i \(-0.494053\pi\)
0.0186827 + 0.999825i \(0.494053\pi\)
\(398\) 0 0
\(399\) − 4.96923i − 0.0124542i
\(400\) 0 0
\(401\) −51.9950 −0.129663 −0.0648317 0.997896i \(-0.520651\pi\)
−0.0648317 + 0.997896i \(0.520651\pi\)
\(402\) 0 0
\(403\) − 133.938i − 0.332351i
\(404\) 0 0
\(405\) −481.010 −1.18768
\(406\) 0 0
\(407\) − 28.9210i − 0.0710589i
\(408\) 0 0
\(409\) 54.7328 0.133821 0.0669105 0.997759i \(-0.478686\pi\)
0.0669105 + 0.997759i \(0.478686\pi\)
\(410\) 0 0
\(411\) − 34.9777i − 0.0851039i
\(412\) 0 0
\(413\) −238.990 −0.578669
\(414\) 0 0
\(415\) 8.39018i 0.0202173i
\(416\) 0 0
\(417\) 71.2575 0.170881
\(418\) 0 0
\(419\) 257.175i 0.613783i 0.951745 + 0.306891i \(0.0992889\pi\)
−0.951745 + 0.306891i \(0.900711\pi\)
\(420\) 0 0
\(421\) −194.856 −0.462841 −0.231420 0.972854i \(-0.574337\pi\)
−0.231420 + 0.972854i \(0.574337\pi\)
\(422\) 0 0
\(423\) − 12.7544i − 0.0301522i
\(424\) 0 0
\(425\) −111.388 −0.262089
\(426\) 0 0
\(427\) − 264.228i − 0.618800i
\(428\) 0 0
\(429\) 19.1799 0.0447084
\(430\) 0 0
\(431\) − 360.926i − 0.837415i −0.908121 0.418707i \(-0.862483\pi\)
0.908121 0.418707i \(-0.137517\pi\)
\(432\) 0 0
\(433\) −440.213 −1.01666 −0.508329 0.861163i \(-0.669737\pi\)
−0.508329 + 0.861163i \(0.669737\pi\)
\(434\) 0 0
\(435\) − 10.2557i − 0.0235764i
\(436\) 0 0
\(437\) −91.2350 −0.208776
\(438\) 0 0
\(439\) − 43.6477i − 0.0994254i −0.998764 0.0497127i \(-0.984169\pi\)
0.998764 0.0497127i \(-0.0158306\pi\)
\(440\) 0 0
\(441\) 301.031 0.682611
\(442\) 0 0
\(443\) − 31.5928i − 0.0713155i −0.999364 0.0356578i \(-0.988647\pi\)
0.999364 0.0356578i \(-0.0113526\pi\)
\(444\) 0 0
\(445\) −618.232 −1.38928
\(446\) 0 0
\(447\) − 14.7486i − 0.0329946i
\(448\) 0 0
\(449\) 622.909 1.38732 0.693662 0.720300i \(-0.255996\pi\)
0.693662 + 0.720300i \(0.255996\pi\)
\(450\) 0 0
\(451\) 312.615i 0.693159i
\(452\) 0 0
\(453\) −31.9040 −0.0704283
\(454\) 0 0
\(455\) − 158.119i − 0.347515i
\(456\) 0 0
\(457\) −103.548 −0.226582 −0.113291 0.993562i \(-0.536139\pi\)
−0.113291 + 0.993562i \(0.536139\pi\)
\(458\) 0 0
\(459\) − 47.1874i − 0.102805i
\(460\) 0 0
\(461\) 572.581 1.24204 0.621021 0.783794i \(-0.286718\pi\)
0.621021 + 0.783794i \(0.286718\pi\)
\(462\) 0 0
\(463\) 461.054i 0.995797i 0.867235 + 0.497898i \(0.165895\pi\)
−0.867235 + 0.497898i \(0.834105\pi\)
\(464\) 0 0
\(465\) 36.0704 0.0775706
\(466\) 0 0
\(467\) 489.721i 1.04865i 0.851517 + 0.524326i \(0.175683\pi\)
−0.851517 + 0.524326i \(0.824317\pi\)
\(468\) 0 0
\(469\) 279.396 0.595727
\(470\) 0 0
\(471\) 36.4069i 0.0772970i
\(472\) 0 0
\(473\) −264.265 −0.558701
\(474\) 0 0
\(475\) − 53.8433i − 0.113354i
\(476\) 0 0
\(477\) 39.5805 0.0829779
\(478\) 0 0
\(479\) 650.528i 1.35810i 0.734094 + 0.679048i \(0.237607\pi\)
−0.734094 + 0.679048i \(0.762393\pi\)
\(480\) 0 0
\(481\) 19.3551 0.0402393
\(482\) 0 0
\(483\) − 23.8615i − 0.0494027i
\(484\) 0 0
\(485\) −898.958 −1.85352
\(486\) 0 0
\(487\) − 168.062i − 0.345097i −0.985001 0.172549i \(-0.944800\pi\)
0.985001 0.172549i \(-0.0552002\pi\)
\(488\) 0 0
\(489\) −37.5326 −0.0767537
\(490\) 0 0
\(491\) − 620.584i − 1.26392i −0.775001 0.631960i \(-0.782251\pi\)
0.775001 0.631960i \(-0.217749\pi\)
\(492\) 0 0
\(493\) −51.8029 −0.105077
\(494\) 0 0
\(495\) − 539.672i − 1.09025i
\(496\) 0 0
\(497\) −185.013 −0.372261
\(498\) 0 0
\(499\) 413.259i 0.828175i 0.910237 + 0.414088i \(0.135899\pi\)
−0.910237 + 0.414088i \(0.864101\pi\)
\(500\) 0 0
\(501\) −94.5306 −0.188684
\(502\) 0 0
\(503\) 603.658i 1.20012i 0.799957 + 0.600058i \(0.204856\pi\)
−0.799957 + 0.600058i \(0.795144\pi\)
\(504\) 0 0
\(505\) −444.205 −0.879613
\(506\) 0 0
\(507\) − 36.5293i − 0.0720500i
\(508\) 0 0
\(509\) −97.7927 −0.192127 −0.0960635 0.995375i \(-0.530625\pi\)
−0.0960635 + 0.995375i \(0.530625\pi\)
\(510\) 0 0
\(511\) − 462.568i − 0.905221i
\(512\) 0 0
\(513\) 22.8098 0.0444635
\(514\) 0 0
\(515\) 37.8569i 0.0735086i
\(516\) 0 0
\(517\) 14.1716 0.0274111
\(518\) 0 0
\(519\) − 29.1302i − 0.0561275i
\(520\) 0 0
\(521\) 83.1379 0.159574 0.0797868 0.996812i \(-0.474576\pi\)
0.0797868 + 0.996812i \(0.474576\pi\)
\(522\) 0 0
\(523\) − 334.055i − 0.638729i −0.947632 0.319365i \(-0.896531\pi\)
0.947632 0.319365i \(-0.103469\pi\)
\(524\) 0 0
\(525\) 14.0821 0.0268231
\(526\) 0 0
\(527\) − 182.195i − 0.345722i
\(528\) 0 0
\(529\) 90.9035 0.171840
\(530\) 0 0
\(531\) − 545.894i − 1.02805i
\(532\) 0 0
\(533\) −209.215 −0.392523
\(534\) 0 0
\(535\) 494.311i 0.923945i
\(536\) 0 0
\(537\) 57.7427 0.107528
\(538\) 0 0
\(539\) 334.480i 0.620557i
\(540\) 0 0
\(541\) 374.174 0.691634 0.345817 0.938302i \(-0.387602\pi\)
0.345817 + 0.938302i \(0.387602\pi\)
\(542\) 0 0
\(543\) 62.5170i 0.115133i
\(544\) 0 0
\(545\) −963.230 −1.76739
\(546\) 0 0
\(547\) 1008.55i 1.84379i 0.387437 + 0.921896i \(0.373361\pi\)
−0.387437 + 0.921896i \(0.626639\pi\)
\(548\) 0 0
\(549\) 603.540 1.09934
\(550\) 0 0
\(551\) − 25.0408i − 0.0454462i
\(552\) 0 0
\(553\) −145.018 −0.262239
\(554\) 0 0
\(555\) 5.21247i 0.00939184i
\(556\) 0 0
\(557\) 192.766 0.346079 0.173039 0.984915i \(-0.444641\pi\)
0.173039 + 0.984915i \(0.444641\pi\)
\(558\) 0 0
\(559\) − 176.857i − 0.316382i
\(560\) 0 0
\(561\) 26.0904 0.0465070
\(562\) 0 0
\(563\) 413.982i 0.735315i 0.929961 + 0.367658i \(0.119840\pi\)
−0.929961 + 0.367658i \(0.880160\pi\)
\(564\) 0 0
\(565\) 342.045 0.605390
\(566\) 0 0
\(567\) − 307.165i − 0.541737i
\(568\) 0 0
\(569\) 387.260 0.680597 0.340298 0.940317i \(-0.389472\pi\)
0.340298 + 0.940317i \(0.389472\pi\)
\(570\) 0 0
\(571\) − 893.702i − 1.56515i −0.622555 0.782576i \(-0.713905\pi\)
0.622555 0.782576i \(-0.286095\pi\)
\(572\) 0 0
\(573\) 52.5965 0.0917915
\(574\) 0 0
\(575\) − 258.547i − 0.449648i
\(576\) 0 0
\(577\) 170.975 0.296317 0.148158 0.988964i \(-0.452665\pi\)
0.148158 + 0.988964i \(0.452665\pi\)
\(578\) 0 0
\(579\) − 38.7717i − 0.0669633i
\(580\) 0 0
\(581\) −5.35783 −0.00922173
\(582\) 0 0
\(583\) 43.9784i 0.0754347i
\(584\) 0 0
\(585\) 361.171 0.617386
\(586\) 0 0
\(587\) − 155.528i − 0.264954i −0.991186 0.132477i \(-0.957707\pi\)
0.991186 0.132477i \(-0.0422931\pi\)
\(588\) 0 0
\(589\) 88.0708 0.149526
\(590\) 0 0
\(591\) − 11.2323i − 0.0190056i
\(592\) 0 0
\(593\) 1120.14 1.88893 0.944465 0.328611i \(-0.106581\pi\)
0.944465 + 0.328611i \(0.106581\pi\)
\(594\) 0 0
\(595\) − 215.090i − 0.361495i
\(596\) 0 0
\(597\) −56.4764 −0.0946004
\(598\) 0 0
\(599\) 780.665i 1.30328i 0.758528 + 0.651640i \(0.225919\pi\)
−0.758528 + 0.651640i \(0.774081\pi\)
\(600\) 0 0
\(601\) −1164.58 −1.93774 −0.968868 0.247576i \(-0.920366\pi\)
−0.968868 + 0.247576i \(0.920366\pi\)
\(602\) 0 0
\(603\) 638.188i 1.05835i
\(604\) 0 0
\(605\) −139.875 −0.231199
\(606\) 0 0
\(607\) 1089.36i 1.79467i 0.441355 + 0.897333i \(0.354498\pi\)
−0.441355 + 0.897333i \(0.645502\pi\)
\(608\) 0 0
\(609\) 6.54915 0.0107539
\(610\) 0 0
\(611\) 9.48420i 0.0155224i
\(612\) 0 0
\(613\) 437.827 0.714236 0.357118 0.934059i \(-0.383759\pi\)
0.357118 + 0.934059i \(0.383759\pi\)
\(614\) 0 0
\(615\) − 56.3430i − 0.0916147i
\(616\) 0 0
\(617\) 290.046 0.470090 0.235045 0.971984i \(-0.424476\pi\)
0.235045 + 0.971984i \(0.424476\pi\)
\(618\) 0 0
\(619\) − 366.321i − 0.591795i −0.955220 0.295897i \(-0.904381\pi\)
0.955220 0.295897i \(-0.0956186\pi\)
\(620\) 0 0
\(621\) 109.529 0.176375
\(622\) 0 0
\(623\) − 394.793i − 0.633696i
\(624\) 0 0
\(625\) −781.228 −1.24997
\(626\) 0 0
\(627\) 12.6118i 0.0201145i
\(628\) 0 0
\(629\) 26.3288 0.0418582
\(630\) 0 0
\(631\) 718.973i 1.13942i 0.821846 + 0.569709i \(0.192944\pi\)
−0.821846 + 0.569709i \(0.807056\pi\)
\(632\) 0 0
\(633\) 87.1089 0.137613
\(634\) 0 0
\(635\) − 1249.20i − 1.96725i
\(636\) 0 0
\(637\) −223.848 −0.351410
\(638\) 0 0
\(639\) − 422.602i − 0.661349i
\(640\) 0 0
\(641\) −740.418 −1.15510 −0.577549 0.816356i \(-0.695991\pi\)
−0.577549 + 0.816356i \(0.695991\pi\)
\(642\) 0 0
\(643\) − 312.874i − 0.486585i −0.969953 0.243293i \(-0.921772\pi\)
0.969953 0.243293i \(-0.0782275\pi\)
\(644\) 0 0
\(645\) 47.6290 0.0738434
\(646\) 0 0
\(647\) − 858.982i − 1.32764i −0.747893 0.663819i \(-0.768934\pi\)
0.747893 0.663819i \(-0.231066\pi\)
\(648\) 0 0
\(649\) 606.551 0.934593
\(650\) 0 0
\(651\) 23.0339i 0.0353824i
\(652\) 0 0
\(653\) 151.224 0.231584 0.115792 0.993274i \(-0.463059\pi\)
0.115792 + 0.993274i \(0.463059\pi\)
\(654\) 0 0
\(655\) − 71.9462i − 0.109842i
\(656\) 0 0
\(657\) 1056.58 1.60819
\(658\) 0 0
\(659\) 626.555i 0.950767i 0.879779 + 0.475383i \(0.157691\pi\)
−0.879779 + 0.475383i \(0.842309\pi\)
\(660\) 0 0
\(661\) 959.618 1.45177 0.725884 0.687817i \(-0.241431\pi\)
0.725884 + 0.687817i \(0.241431\pi\)
\(662\) 0 0
\(663\) 17.4608i 0.0263361i
\(664\) 0 0
\(665\) 103.971 0.156348
\(666\) 0 0
\(667\) − 120.242i − 0.180273i
\(668\) 0 0
\(669\) −3.35552 −0.00501573
\(670\) 0 0
\(671\) 670.602i 0.999407i
\(672\) 0 0
\(673\) 965.229 1.43422 0.717109 0.696961i \(-0.245465\pi\)
0.717109 + 0.696961i \(0.245465\pi\)
\(674\) 0 0
\(675\) 64.6397i 0.0957625i
\(676\) 0 0
\(677\) 372.816 0.550688 0.275344 0.961346i \(-0.411208\pi\)
0.275344 + 0.961346i \(0.411208\pi\)
\(678\) 0 0
\(679\) − 574.059i − 0.845448i
\(680\) 0 0
\(681\) −84.1982 −0.123639
\(682\) 0 0
\(683\) − 964.540i − 1.41221i −0.708107 0.706105i \(-0.750450\pi\)
0.708107 0.706105i \(-0.249550\pi\)
\(684\) 0 0
\(685\) 731.840 1.06838
\(686\) 0 0
\(687\) 113.085i 0.164607i
\(688\) 0 0
\(689\) −29.4322 −0.0427172
\(690\) 0 0
\(691\) 620.354i 0.897762i 0.893591 + 0.448881i \(0.148177\pi\)
−0.893591 + 0.448881i \(0.851823\pi\)
\(692\) 0 0
\(693\) 344.625 0.497295
\(694\) 0 0
\(695\) 1490.92i 2.14521i
\(696\) 0 0
\(697\) −284.595 −0.408314
\(698\) 0 0
\(699\) − 65.8230i − 0.0941674i
\(700\) 0 0
\(701\) 945.055 1.34815 0.674076 0.738662i \(-0.264542\pi\)
0.674076 + 0.738662i \(0.264542\pi\)
\(702\) 0 0
\(703\) 12.7270i 0.0181038i
\(704\) 0 0
\(705\) −2.55416 −0.00362293
\(706\) 0 0
\(707\) − 283.662i − 0.401219i
\(708\) 0 0
\(709\) −475.441 −0.670580 −0.335290 0.942115i \(-0.608834\pi\)
−0.335290 + 0.942115i \(0.608834\pi\)
\(710\) 0 0
\(711\) − 331.246i − 0.465887i
\(712\) 0 0
\(713\) 422.902 0.593131
\(714\) 0 0
\(715\) 401.302i 0.561261i
\(716\) 0 0
\(717\) 65.4374 0.0912655
\(718\) 0 0
\(719\) − 969.029i − 1.34775i −0.738847 0.673873i \(-0.764629\pi\)
0.738847 0.673873i \(-0.235371\pi\)
\(720\) 0 0
\(721\) −24.1748 −0.0335296
\(722\) 0 0
\(723\) 32.1541i 0.0444732i
\(724\) 0 0
\(725\) 70.9622 0.0978789
\(726\) 0 0
\(727\) − 584.964i − 0.804627i −0.915502 0.402314i \(-0.868206\pi\)
0.915502 0.402314i \(-0.131794\pi\)
\(728\) 0 0
\(729\) 687.860 0.943566
\(730\) 0 0
\(731\) − 240.579i − 0.329110i
\(732\) 0 0
\(733\) −90.7544 −0.123812 −0.0619061 0.998082i \(-0.519718\pi\)
−0.0619061 + 0.998082i \(0.519718\pi\)
\(734\) 0 0
\(735\) − 60.2839i − 0.0820189i
\(736\) 0 0
\(737\) −709.099 −0.962143
\(738\) 0 0
\(739\) 689.042i 0.932398i 0.884680 + 0.466199i \(0.154377\pi\)
−0.884680 + 0.466199i \(0.845623\pi\)
\(740\) 0 0
\(741\) −8.44032 −0.0113905
\(742\) 0 0
\(743\) 505.348i 0.680146i 0.940399 + 0.340073i \(0.110452\pi\)
−0.940399 + 0.340073i \(0.889548\pi\)
\(744\) 0 0
\(745\) 308.586 0.414209
\(746\) 0 0
\(747\) − 12.2382i − 0.0163831i
\(748\) 0 0
\(749\) −315.659 −0.421440
\(750\) 0 0
\(751\) 1275.11i 1.69788i 0.528489 + 0.848940i \(0.322759\pi\)
−0.528489 + 0.848940i \(0.677241\pi\)
\(752\) 0 0
\(753\) −0.740690 −0.000983651 0
\(754\) 0 0
\(755\) − 667.529i − 0.884145i
\(756\) 0 0
\(757\) −142.904 −0.188776 −0.0943882 0.995535i \(-0.530089\pi\)
−0.0943882 + 0.995535i \(0.530089\pi\)
\(758\) 0 0
\(759\) 60.5598i 0.0797889i
\(760\) 0 0
\(761\) −35.4430 −0.0465742 −0.0232871 0.999729i \(-0.507413\pi\)
−0.0232871 + 0.999729i \(0.507413\pi\)
\(762\) 0 0
\(763\) − 615.103i − 0.806163i
\(764\) 0 0
\(765\) 491.301 0.642223
\(766\) 0 0
\(767\) 405.929i 0.529242i
\(768\) 0 0
\(769\) −407.706 −0.530177 −0.265089 0.964224i \(-0.585401\pi\)
−0.265089 + 0.964224i \(0.585401\pi\)
\(770\) 0 0
\(771\) 64.8235i 0.0840771i
\(772\) 0 0
\(773\) 962.961 1.24575 0.622873 0.782323i \(-0.285965\pi\)
0.622873 + 0.782323i \(0.285965\pi\)
\(774\) 0 0
\(775\) 249.580i 0.322039i
\(776\) 0 0
\(777\) −3.32860 −0.00428391
\(778\) 0 0
\(779\) − 137.569i − 0.176597i
\(780\) 0 0
\(781\) 469.559 0.601228
\(782\) 0 0
\(783\) 30.0619i 0.0383932i
\(784\) 0 0
\(785\) −761.743 −0.970373
\(786\) 0 0
\(787\) − 890.213i − 1.13115i −0.824698 0.565574i \(-0.808655\pi\)
0.824698 0.565574i \(-0.191345\pi\)
\(788\) 0 0
\(789\) −89.9331 −0.113984
\(790\) 0 0
\(791\) 218.424i 0.276137i
\(792\) 0 0
\(793\) −448.795 −0.565946
\(794\) 0 0
\(795\) − 7.92630i − 0.00997019i
\(796\) 0 0
\(797\) −869.224 −1.09062 −0.545310 0.838235i \(-0.683588\pi\)
−0.545310 + 0.838235i \(0.683588\pi\)
\(798\) 0 0
\(799\) 12.9014i 0.0161469i
\(800\) 0 0
\(801\) 901.773 1.12581
\(802\) 0 0
\(803\) 1173.98i 1.46200i
\(804\) 0 0
\(805\) 499.255 0.620192
\(806\) 0 0
\(807\) − 0.996563i − 0.00123490i
\(808\) 0 0
\(809\) −708.028 −0.875189 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(810\) 0 0
\(811\) − 179.169i − 0.220923i −0.993880 0.110462i \(-0.964767\pi\)
0.993880 0.110462i \(-0.0352329\pi\)
\(812\) 0 0
\(813\) −6.44479 −0.00792717
\(814\) 0 0
\(815\) − 785.295i − 0.963552i
\(816\) 0 0
\(817\) 116.293 0.142341
\(818\) 0 0
\(819\) 230.638i 0.281609i
\(820\) 0 0
\(821\) −21.2430 −0.0258746 −0.0129373 0.999916i \(-0.504118\pi\)
−0.0129373 + 0.999916i \(0.504118\pi\)
\(822\) 0 0
\(823\) 257.671i 0.313088i 0.987671 + 0.156544i \(0.0500353\pi\)
−0.987671 + 0.156544i \(0.949965\pi\)
\(824\) 0 0
\(825\) −35.7400 −0.0433212
\(826\) 0 0
\(827\) 81.0005i 0.0979450i 0.998800 + 0.0489725i \(0.0155947\pi\)
−0.998800 + 0.0489725i \(0.984405\pi\)
\(828\) 0 0
\(829\) 209.389 0.252580 0.126290 0.991993i \(-0.459693\pi\)
0.126290 + 0.991993i \(0.459693\pi\)
\(830\) 0 0
\(831\) 45.3287i 0.0545472i
\(832\) 0 0
\(833\) −304.501 −0.365547
\(834\) 0 0
\(835\) − 1977.87i − 2.36870i
\(836\) 0 0
\(837\) −105.730 −0.126321
\(838\) 0 0
\(839\) 271.665i 0.323796i 0.986807 + 0.161898i \(0.0517616\pi\)
−0.986807 + 0.161898i \(0.948238\pi\)
\(840\) 0 0
\(841\) −807.998 −0.960758
\(842\) 0 0
\(843\) − 11.2768i − 0.0133769i
\(844\) 0 0
\(845\) 764.304 0.904502
\(846\) 0 0
\(847\) − 89.3220i − 0.105457i
\(848\) 0 0
\(849\) 125.065 0.147309
\(850\) 0 0
\(851\) 61.1130i 0.0718132i
\(852\) 0 0
\(853\) 1320.35 1.54789 0.773943 0.633255i \(-0.218282\pi\)
0.773943 + 0.633255i \(0.218282\pi\)
\(854\) 0 0
\(855\) 237.488i 0.277764i
\(856\) 0 0
\(857\) −569.084 −0.664042 −0.332021 0.943272i \(-0.607730\pi\)
−0.332021 + 0.943272i \(0.607730\pi\)
\(858\) 0 0
\(859\) − 1146.46i − 1.33465i −0.744767 0.667325i \(-0.767439\pi\)
0.744767 0.667325i \(-0.232561\pi\)
\(860\) 0 0
\(861\) 35.9797 0.0417883
\(862\) 0 0
\(863\) 352.061i 0.407951i 0.978976 + 0.203975i \(0.0653862\pi\)
−0.978976 + 0.203975i \(0.934614\pi\)
\(864\) 0 0
\(865\) 609.491 0.704614
\(866\) 0 0
\(867\) − 60.6657i − 0.0699719i
\(868\) 0 0
\(869\) 368.052 0.423535
\(870\) 0 0
\(871\) − 474.559i − 0.544843i
\(872\) 0 0
\(873\) 1311.25 1.50200
\(874\) 0 0
\(875\) − 301.677i − 0.344773i
\(876\) 0 0
\(877\) −1084.47 −1.23657 −0.618285 0.785954i \(-0.712172\pi\)
−0.618285 + 0.785954i \(0.712172\pi\)
\(878\) 0 0
\(879\) − 31.0264i − 0.0352974i
\(880\) 0 0
\(881\) −487.061 −0.552851 −0.276425 0.961035i \(-0.589150\pi\)
−0.276425 + 0.961035i \(0.589150\pi\)
\(882\) 0 0
\(883\) 1006.35i 1.13969i 0.821753 + 0.569844i \(0.192997\pi\)
−0.821753 + 0.569844i \(0.807003\pi\)
\(884\) 0 0
\(885\) −109.320 −0.123525
\(886\) 0 0
\(887\) − 891.277i − 1.00482i −0.864629 0.502411i \(-0.832447\pi\)
0.864629 0.502411i \(-0.167553\pi\)
\(888\) 0 0
\(889\) 797.720 0.897322
\(890\) 0 0
\(891\) 779.576i 0.874945i
\(892\) 0 0
\(893\) −6.23635 −0.00698359
\(894\) 0 0
\(895\) 1208.15i 1.34989i
\(896\) 0 0
\(897\) −40.5291 −0.0451830
\(898\) 0 0
\(899\) 116.072i 0.129112i
\(900\) 0 0
\(901\) −40.0366 −0.0444358
\(902\) 0 0
\(903\) 30.4151i 0.0336823i
\(904\) 0 0
\(905\) −1308.05 −1.44535
\(906\) 0 0
\(907\) 747.223i 0.823841i 0.911220 + 0.411920i \(0.135142\pi\)
−0.911220 + 0.411920i \(0.864858\pi\)
\(908\) 0 0
\(909\) 647.931 0.712795
\(910\) 0 0
\(911\) − 1015.04i − 1.11420i −0.830444 0.557102i \(-0.811913\pi\)
0.830444 0.557102i \(-0.188087\pi\)
\(912\) 0 0
\(913\) 13.5980 0.0148938
\(914\) 0 0
\(915\) − 120.864i − 0.132091i
\(916\) 0 0
\(917\) 45.9437 0.0501022
\(918\) 0 0
\(919\) − 482.292i − 0.524801i −0.964959 0.262401i \(-0.915486\pi\)
0.964959 0.262401i \(-0.0845142\pi\)
\(920\) 0 0
\(921\) 98.0041 0.106411
\(922\) 0 0
\(923\) 314.248i 0.340464i
\(924\) 0 0
\(925\) −36.0665 −0.0389908
\(926\) 0 0
\(927\) − 55.2193i − 0.0595678i
\(928\) 0 0
\(929\) 196.255 0.211254 0.105627 0.994406i \(-0.466315\pi\)
0.105627 + 0.994406i \(0.466315\pi\)
\(930\) 0 0
\(931\) − 147.192i − 0.158101i
\(932\) 0 0
\(933\) −142.137 −0.152344
\(934\) 0 0
\(935\) 545.891i 0.583841i
\(936\) 0 0
\(937\) 1142.75 1.21958 0.609789 0.792564i \(-0.291254\pi\)
0.609789 + 0.792564i \(0.291254\pi\)
\(938\) 0 0
\(939\) 75.6708i 0.0805866i
\(940\) 0 0
\(941\) −1256.87 −1.33568 −0.667840 0.744305i \(-0.732781\pi\)
−0.667840 + 0.744305i \(0.732781\pi\)
\(942\) 0 0
\(943\) − 660.587i − 0.700516i
\(944\) 0 0
\(945\) −124.819 −0.132084
\(946\) 0 0
\(947\) − 231.526i − 0.244484i −0.992500 0.122242i \(-0.960992\pi\)
0.992500 0.122242i \(-0.0390084\pi\)
\(948\) 0 0
\(949\) −785.679 −0.827902
\(950\) 0 0
\(951\) − 148.620i − 0.156278i
\(952\) 0 0
\(953\) 1322.16 1.38736 0.693680 0.720283i \(-0.255988\pi\)
0.693680 + 0.720283i \(0.255988\pi\)
\(954\) 0 0
\(955\) 1100.48i 1.15233i
\(956\) 0 0
\(957\) −16.6215 −0.0173684
\(958\) 0 0
\(959\) 467.341i 0.487321i
\(960\) 0 0
\(961\) 552.765 0.575197
\(962\) 0 0
\(963\) − 721.017i − 0.748720i
\(964\) 0 0
\(965\) 811.222 0.840645
\(966\) 0 0
\(967\) − 1726.27i − 1.78518i −0.450866 0.892592i \(-0.648885\pi\)
0.450866 0.892592i \(-0.351115\pi\)
\(968\) 0 0
\(969\) −11.4814 −0.0118487
\(970\) 0 0
\(971\) 1585.66i 1.63302i 0.577333 + 0.816509i \(0.304093\pi\)
−0.577333 + 0.816509i \(0.695907\pi\)
\(972\) 0 0
\(973\) −952.078 −0.978498
\(974\) 0 0
\(975\) − 23.9187i − 0.0245320i
\(976\) 0 0
\(977\) 1329.32 1.36062 0.680308 0.732926i \(-0.261846\pi\)
0.680308 + 0.732926i \(0.261846\pi\)
\(978\) 0 0
\(979\) 1001.97i 1.02346i
\(980\) 0 0
\(981\) 1405.00 1.43221
\(982\) 0 0
\(983\) − 756.159i − 0.769236i −0.923076 0.384618i \(-0.874333\pi\)
0.923076 0.384618i \(-0.125667\pi\)
\(984\) 0 0
\(985\) 235.014 0.238593
\(986\) 0 0
\(987\) − 1.63105i − 0.00165253i
\(988\) 0 0
\(989\) 558.420 0.564631
\(990\) 0 0
\(991\) 1732.49i 1.74822i 0.485726 + 0.874111i \(0.338555\pi\)
−0.485726 + 0.874111i \(0.661445\pi\)
\(992\) 0 0
\(993\) 142.002 0.143003
\(994\) 0 0
\(995\) − 1181.66i − 1.18760i
\(996\) 0 0
\(997\) −1622.76 −1.62764 −0.813821 0.581116i \(-0.802616\pi\)
−0.813821 + 0.581116i \(0.802616\pi\)
\(998\) 0 0
\(999\) − 15.2789i − 0.0152942i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.3.d.e.191.9 16
4.3 odd 2 inner 1216.3.d.e.191.8 16
8.3 odd 2 608.3.d.a.191.9 yes 16
8.5 even 2 608.3.d.a.191.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.3.d.a.191.8 16 8.5 even 2
608.3.d.a.191.9 yes 16 8.3 odd 2
1216.3.d.e.191.8 16 4.3 odd 2 inner
1216.3.d.e.191.9 16 1.1 even 1 trivial