Properties

Label 1216.3.d.e.191.10
Level $1216$
Weight $3$
Character 1216.191
Analytic conductor $33.134$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1216,3,Mod(191,1216)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1216, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1216.191"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1216.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.1336001462\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 30 x^{14} + 116 x^{13} + 707 x^{12} - 2372 x^{11} - 7342 x^{10} + 12048 x^{9} + \cdots + 19859428 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{26} \)
Twist minimal: no (minimal twist has level 608)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.10
Root \(-2.45546 - 0.645214i\) of defining polynomial
Character \(\chi\) \(=\) 1216.191
Dual form 1216.3.d.e.191.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.29043i q^{3} +5.91093 q^{5} +0.267056i q^{7} +7.33480 q^{9} -7.46730i q^{11} +6.08281 q^{13} +7.62763i q^{15} +19.9294 q^{17} -4.35890i q^{19} -0.344616 q^{21} -10.7394i q^{23} +9.93909 q^{25} +21.0789i q^{27} -3.72524 q^{29} -43.7175i q^{31} +9.63601 q^{33} +1.57855i q^{35} -39.3891 q^{37} +7.84943i q^{39} +56.2327 q^{41} +17.5075i q^{43} +43.3555 q^{45} -70.1950i q^{47} +48.9287 q^{49} +25.7175i q^{51} -34.4075 q^{53} -44.1387i q^{55} +5.62484 q^{57} +53.2026i q^{59} -20.1622 q^{61} +1.95880i q^{63} +35.9551 q^{65} -41.5979i q^{67} +13.8584 q^{69} +20.3326i q^{71} -76.1222 q^{73} +12.8257i q^{75} +1.99419 q^{77} +60.8144i q^{79} +38.8124 q^{81} +27.1475i q^{83} +117.801 q^{85} -4.80715i q^{87} +17.0268 q^{89} +1.62445i q^{91} +56.4143 q^{93} -25.7651i q^{95} -13.3618 q^{97} -54.7711i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{5} - 40 q^{9} - 40 q^{13} - 32 q^{17} + 96 q^{21} + 88 q^{25} - 144 q^{29} + 88 q^{33} + 56 q^{37} - 104 q^{41} - 40 q^{45} - 144 q^{49} + 320 q^{53} - 8 q^{61} + 336 q^{65} - 392 q^{69} + 72 q^{77}+ \cdots - 240 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.29043i 0.430143i 0.976598 + 0.215071i \(0.0689984\pi\)
−0.976598 + 0.215071i \(0.931002\pi\)
\(4\) 0 0
\(5\) 5.91093 1.18219 0.591093 0.806603i \(-0.298697\pi\)
0.591093 + 0.806603i \(0.298697\pi\)
\(6\) 0 0
\(7\) 0.267056i 0.0381509i 0.999818 + 0.0190754i \(0.00607227\pi\)
−0.999818 + 0.0190754i \(0.993928\pi\)
\(8\) 0 0
\(9\) 7.33480 0.814977
\(10\) 0 0
\(11\) − 7.46730i − 0.678846i −0.940634 0.339423i \(-0.889768\pi\)
0.940634 0.339423i \(-0.110232\pi\)
\(12\) 0 0
\(13\) 6.08281 0.467909 0.233954 0.972248i \(-0.424833\pi\)
0.233954 + 0.972248i \(0.424833\pi\)
\(14\) 0 0
\(15\) 7.62763i 0.508508i
\(16\) 0 0
\(17\) 19.9294 1.17232 0.586159 0.810196i \(-0.300639\pi\)
0.586159 + 0.810196i \(0.300639\pi\)
\(18\) 0 0
\(19\) − 4.35890i − 0.229416i
\(20\) 0 0
\(21\) −0.344616 −0.0164103
\(22\) 0 0
\(23\) − 10.7394i − 0.466931i −0.972365 0.233465i \(-0.924993\pi\)
0.972365 0.233465i \(-0.0750065\pi\)
\(24\) 0 0
\(25\) 9.93909 0.397564
\(26\) 0 0
\(27\) 21.0789i 0.780699i
\(28\) 0 0
\(29\) −3.72524 −0.128457 −0.0642283 0.997935i \(-0.520459\pi\)
−0.0642283 + 0.997935i \(0.520459\pi\)
\(30\) 0 0
\(31\) − 43.7175i − 1.41024i −0.709087 0.705121i \(-0.750893\pi\)
0.709087 0.705121i \(-0.249107\pi\)
\(32\) 0 0
\(33\) 9.63601 0.292000
\(34\) 0 0
\(35\) 1.57855i 0.0451014i
\(36\) 0 0
\(37\) −39.3891 −1.06457 −0.532286 0.846565i \(-0.678667\pi\)
−0.532286 + 0.846565i \(0.678667\pi\)
\(38\) 0 0
\(39\) 7.84943i 0.201267i
\(40\) 0 0
\(41\) 56.2327 1.37153 0.685764 0.727824i \(-0.259468\pi\)
0.685764 + 0.727824i \(0.259468\pi\)
\(42\) 0 0
\(43\) 17.5075i 0.407152i 0.979059 + 0.203576i \(0.0652564\pi\)
−0.979059 + 0.203576i \(0.934744\pi\)
\(44\) 0 0
\(45\) 43.3555 0.963455
\(46\) 0 0
\(47\) − 70.1950i − 1.49351i −0.665099 0.746755i \(-0.731611\pi\)
0.665099 0.746755i \(-0.268389\pi\)
\(48\) 0 0
\(49\) 48.9287 0.998545
\(50\) 0 0
\(51\) 25.7175i 0.504264i
\(52\) 0 0
\(53\) −34.4075 −0.649198 −0.324599 0.945852i \(-0.605229\pi\)
−0.324599 + 0.945852i \(0.605229\pi\)
\(54\) 0 0
\(55\) − 44.1387i − 0.802522i
\(56\) 0 0
\(57\) 5.62484 0.0986815
\(58\) 0 0
\(59\) 53.2026i 0.901739i 0.892590 + 0.450870i \(0.148886\pi\)
−0.892590 + 0.450870i \(0.851114\pi\)
\(60\) 0 0
\(61\) −20.1622 −0.330527 −0.165264 0.986249i \(-0.552848\pi\)
−0.165264 + 0.986249i \(0.552848\pi\)
\(62\) 0 0
\(63\) 1.95880i 0.0310921i
\(64\) 0 0
\(65\) 35.9551 0.553155
\(66\) 0 0
\(67\) − 41.5979i − 0.620865i −0.950595 0.310432i \(-0.899526\pi\)
0.950595 0.310432i \(-0.100474\pi\)
\(68\) 0 0
\(69\) 13.8584 0.200847
\(70\) 0 0
\(71\) 20.3326i 0.286375i 0.989696 + 0.143187i \(0.0457352\pi\)
−0.989696 + 0.143187i \(0.954265\pi\)
\(72\) 0 0
\(73\) −76.1222 −1.04277 −0.521385 0.853322i \(-0.674584\pi\)
−0.521385 + 0.853322i \(0.674584\pi\)
\(74\) 0 0
\(75\) 12.8257i 0.171009i
\(76\) 0 0
\(77\) 1.99419 0.0258985
\(78\) 0 0
\(79\) 60.8144i 0.769803i 0.922958 + 0.384901i \(0.125765\pi\)
−0.922958 + 0.384901i \(0.874235\pi\)
\(80\) 0 0
\(81\) 38.8124 0.479166
\(82\) 0 0
\(83\) 27.1475i 0.327078i 0.986537 + 0.163539i \(0.0522910\pi\)
−0.986537 + 0.163539i \(0.947709\pi\)
\(84\) 0 0
\(85\) 117.801 1.38590
\(86\) 0 0
\(87\) − 4.80715i − 0.0552546i
\(88\) 0 0
\(89\) 17.0268 0.191312 0.0956560 0.995414i \(-0.469505\pi\)
0.0956560 + 0.995414i \(0.469505\pi\)
\(90\) 0 0
\(91\) 1.62445i 0.0178511i
\(92\) 0 0
\(93\) 56.4143 0.606605
\(94\) 0 0
\(95\) − 25.7651i − 0.271212i
\(96\) 0 0
\(97\) −13.3618 −0.137751 −0.0688753 0.997625i \(-0.521941\pi\)
−0.0688753 + 0.997625i \(0.521941\pi\)
\(98\) 0 0
\(99\) − 54.7711i − 0.553244i
\(100\) 0 0
\(101\) −38.2500 −0.378712 −0.189356 0.981908i \(-0.560640\pi\)
−0.189356 + 0.981908i \(0.560640\pi\)
\(102\) 0 0
\(103\) 96.1718i 0.933707i 0.884335 + 0.466854i \(0.154613\pi\)
−0.884335 + 0.466854i \(0.845387\pi\)
\(104\) 0 0
\(105\) −2.03700 −0.0194000
\(106\) 0 0
\(107\) 87.7396i 0.819996i 0.912086 + 0.409998i \(0.134471\pi\)
−0.912086 + 0.409998i \(0.865529\pi\)
\(108\) 0 0
\(109\) 21.3065 0.195472 0.0977361 0.995212i \(-0.468840\pi\)
0.0977361 + 0.995212i \(0.468840\pi\)
\(110\) 0 0
\(111\) − 50.8288i − 0.457917i
\(112\) 0 0
\(113\) 173.285 1.53349 0.766746 0.641951i \(-0.221875\pi\)
0.766746 + 0.641951i \(0.221875\pi\)
\(114\) 0 0
\(115\) − 63.4799i − 0.551999i
\(116\) 0 0
\(117\) 44.6162 0.381335
\(118\) 0 0
\(119\) 5.32227i 0.0447249i
\(120\) 0 0
\(121\) 65.2394 0.539169
\(122\) 0 0
\(123\) 72.5642i 0.589953i
\(124\) 0 0
\(125\) −89.0240 −0.712192
\(126\) 0 0
\(127\) − 152.379i − 1.19984i −0.800061 0.599919i \(-0.795199\pi\)
0.800061 0.599919i \(-0.204801\pi\)
\(128\) 0 0
\(129\) −22.5922 −0.175133
\(130\) 0 0
\(131\) 88.0861i 0.672413i 0.941788 + 0.336207i \(0.109144\pi\)
−0.941788 + 0.336207i \(0.890856\pi\)
\(132\) 0 0
\(133\) 1.16407 0.00875241
\(134\) 0 0
\(135\) 124.596i 0.922931i
\(136\) 0 0
\(137\) 182.128 1.32940 0.664701 0.747109i \(-0.268559\pi\)
0.664701 + 0.747109i \(0.268559\pi\)
\(138\) 0 0
\(139\) − 89.8380i − 0.646316i −0.946345 0.323158i \(-0.895255\pi\)
0.946345 0.323158i \(-0.104745\pi\)
\(140\) 0 0
\(141\) 90.5816 0.642422
\(142\) 0 0
\(143\) − 45.4222i − 0.317638i
\(144\) 0 0
\(145\) −22.0196 −0.151860
\(146\) 0 0
\(147\) 63.1389i 0.429516i
\(148\) 0 0
\(149\) 163.173 1.09512 0.547559 0.836767i \(-0.315557\pi\)
0.547559 + 0.836767i \(0.315557\pi\)
\(150\) 0 0
\(151\) 276.245i 1.82944i 0.404092 + 0.914718i \(0.367588\pi\)
−0.404092 + 0.914718i \(0.632412\pi\)
\(152\) 0 0
\(153\) 146.178 0.955412
\(154\) 0 0
\(155\) − 258.411i − 1.66717i
\(156\) 0 0
\(157\) 192.553 1.22645 0.613227 0.789907i \(-0.289871\pi\)
0.613227 + 0.789907i \(0.289871\pi\)
\(158\) 0 0
\(159\) − 44.4003i − 0.279247i
\(160\) 0 0
\(161\) 2.86802 0.0178138
\(162\) 0 0
\(163\) − 194.586i − 1.19378i −0.802323 0.596890i \(-0.796403\pi\)
0.802323 0.596890i \(-0.203597\pi\)
\(164\) 0 0
\(165\) 56.9578 0.345199
\(166\) 0 0
\(167\) − 61.3776i − 0.367530i −0.982970 0.183765i \(-0.941171\pi\)
0.982970 0.183765i \(-0.0588286\pi\)
\(168\) 0 0
\(169\) −131.999 −0.781062
\(170\) 0 0
\(171\) − 31.9716i − 0.186969i
\(172\) 0 0
\(173\) 50.3767 0.291195 0.145597 0.989344i \(-0.453490\pi\)
0.145597 + 0.989344i \(0.453490\pi\)
\(174\) 0 0
\(175\) 2.65429i 0.0151674i
\(176\) 0 0
\(177\) −68.6541 −0.387876
\(178\) 0 0
\(179\) 267.545i 1.49467i 0.664450 + 0.747333i \(0.268666\pi\)
−0.664450 + 0.747333i \(0.731334\pi\)
\(180\) 0 0
\(181\) −125.695 −0.694449 −0.347224 0.937782i \(-0.612876\pi\)
−0.347224 + 0.937782i \(0.612876\pi\)
\(182\) 0 0
\(183\) − 26.0178i − 0.142174i
\(184\) 0 0
\(185\) −232.826 −1.25852
\(186\) 0 0
\(187\) − 148.819i − 0.795823i
\(188\) 0 0
\(189\) −5.62924 −0.0297843
\(190\) 0 0
\(191\) 226.780i 1.18733i 0.804713 + 0.593665i \(0.202319\pi\)
−0.804713 + 0.593665i \(0.797681\pi\)
\(192\) 0 0
\(193\) 22.0673 0.114339 0.0571693 0.998365i \(-0.481793\pi\)
0.0571693 + 0.998365i \(0.481793\pi\)
\(194\) 0 0
\(195\) 46.3974i 0.237935i
\(196\) 0 0
\(197\) 161.881 0.821733 0.410866 0.911696i \(-0.365226\pi\)
0.410866 + 0.911696i \(0.365226\pi\)
\(198\) 0 0
\(199\) 339.840i 1.70774i 0.520488 + 0.853869i \(0.325750\pi\)
−0.520488 + 0.853869i \(0.674250\pi\)
\(200\) 0 0
\(201\) 53.6791 0.267060
\(202\) 0 0
\(203\) − 0.994848i − 0.00490073i
\(204\) 0 0
\(205\) 332.387 1.62140
\(206\) 0 0
\(207\) − 78.7713i − 0.380538i
\(208\) 0 0
\(209\) −32.5492 −0.155738
\(210\) 0 0
\(211\) 228.731i 1.08403i 0.840367 + 0.542017i \(0.182339\pi\)
−0.840367 + 0.542017i \(0.817661\pi\)
\(212\) 0 0
\(213\) −26.2378 −0.123182
\(214\) 0 0
\(215\) 103.486i 0.481329i
\(216\) 0 0
\(217\) 11.6750 0.0538020
\(218\) 0 0
\(219\) − 98.2302i − 0.448540i
\(220\) 0 0
\(221\) 121.227 0.548538
\(222\) 0 0
\(223\) − 87.6629i − 0.393107i −0.980493 0.196554i \(-0.937025\pi\)
0.980493 0.196554i \(-0.0629749\pi\)
\(224\) 0 0
\(225\) 72.9012 0.324005
\(226\) 0 0
\(227\) − 120.628i − 0.531401i −0.964056 0.265701i \(-0.914397\pi\)
0.964056 0.265701i \(-0.0856033\pi\)
\(228\) 0 0
\(229\) −66.0305 −0.288343 −0.144171 0.989553i \(-0.546052\pi\)
−0.144171 + 0.989553i \(0.546052\pi\)
\(230\) 0 0
\(231\) 2.57335i 0.0111401i
\(232\) 0 0
\(233\) −132.586 −0.569039 −0.284520 0.958670i \(-0.591834\pi\)
−0.284520 + 0.958670i \(0.591834\pi\)
\(234\) 0 0
\(235\) − 414.918i − 1.76561i
\(236\) 0 0
\(237\) −78.4766 −0.331125
\(238\) 0 0
\(239\) − 55.7666i − 0.233333i −0.993171 0.116666i \(-0.962779\pi\)
0.993171 0.116666i \(-0.0372209\pi\)
\(240\) 0 0
\(241\) −318.825 −1.32292 −0.661462 0.749979i \(-0.730064\pi\)
−0.661462 + 0.749979i \(0.730064\pi\)
\(242\) 0 0
\(243\) 239.794i 0.986808i
\(244\) 0 0
\(245\) 289.214 1.18047
\(246\) 0 0
\(247\) − 26.5144i − 0.107346i
\(248\) 0 0
\(249\) −35.0318 −0.140690
\(250\) 0 0
\(251\) − 426.271i − 1.69829i −0.528160 0.849145i \(-0.677118\pi\)
0.528160 0.849145i \(-0.322882\pi\)
\(252\) 0 0
\(253\) −80.1944 −0.316974
\(254\) 0 0
\(255\) 152.014i 0.596133i
\(256\) 0 0
\(257\) 41.3425 0.160866 0.0804330 0.996760i \(-0.474370\pi\)
0.0804330 + 0.996760i \(0.474370\pi\)
\(258\) 0 0
\(259\) − 10.5191i − 0.0406143i
\(260\) 0 0
\(261\) −27.3239 −0.104689
\(262\) 0 0
\(263\) − 160.784i − 0.611345i −0.952137 0.305672i \(-0.901119\pi\)
0.952137 0.305672i \(-0.0988812\pi\)
\(264\) 0 0
\(265\) −203.380 −0.767472
\(266\) 0 0
\(267\) 21.9718i 0.0822914i
\(268\) 0 0
\(269\) −242.404 −0.901131 −0.450565 0.892743i \(-0.648778\pi\)
−0.450565 + 0.892743i \(0.648778\pi\)
\(270\) 0 0
\(271\) − 241.924i − 0.892708i −0.894856 0.446354i \(-0.852722\pi\)
0.894856 0.446354i \(-0.147278\pi\)
\(272\) 0 0
\(273\) −2.09624 −0.00767852
\(274\) 0 0
\(275\) − 74.2182i − 0.269884i
\(276\) 0 0
\(277\) −153.558 −0.554361 −0.277180 0.960818i \(-0.589400\pi\)
−0.277180 + 0.960818i \(0.589400\pi\)
\(278\) 0 0
\(279\) − 320.659i − 1.14932i
\(280\) 0 0
\(281\) −204.158 −0.726540 −0.363270 0.931684i \(-0.618340\pi\)
−0.363270 + 0.931684i \(0.618340\pi\)
\(282\) 0 0
\(283\) 170.889i 0.603846i 0.953332 + 0.301923i \(0.0976286\pi\)
−0.953332 + 0.301923i \(0.902371\pi\)
\(284\) 0 0
\(285\) 33.2481 0.116660
\(286\) 0 0
\(287\) 15.0173i 0.0523250i
\(288\) 0 0
\(289\) 108.181 0.374329
\(290\) 0 0
\(291\) − 17.2425i − 0.0592524i
\(292\) 0 0
\(293\) −573.341 −1.95680 −0.978398 0.206732i \(-0.933717\pi\)
−0.978398 + 0.206732i \(0.933717\pi\)
\(294\) 0 0
\(295\) 314.477i 1.06602i
\(296\) 0 0
\(297\) 157.402 0.529974
\(298\) 0 0
\(299\) − 65.3258i − 0.218481i
\(300\) 0 0
\(301\) −4.67549 −0.0155332
\(302\) 0 0
\(303\) − 49.3588i − 0.162900i
\(304\) 0 0
\(305\) −119.177 −0.390745
\(306\) 0 0
\(307\) 500.022i 1.62874i 0.580348 + 0.814369i \(0.302917\pi\)
−0.580348 + 0.814369i \(0.697083\pi\)
\(308\) 0 0
\(309\) −124.103 −0.401627
\(310\) 0 0
\(311\) − 260.716i − 0.838316i −0.907913 0.419158i \(-0.862325\pi\)
0.907913 0.419158i \(-0.137675\pi\)
\(312\) 0 0
\(313\) −356.299 −1.13833 −0.569167 0.822222i \(-0.692734\pi\)
−0.569167 + 0.822222i \(0.692734\pi\)
\(314\) 0 0
\(315\) 11.5783i 0.0367566i
\(316\) 0 0
\(317\) −253.417 −0.799422 −0.399711 0.916641i \(-0.630890\pi\)
−0.399711 + 0.916641i \(0.630890\pi\)
\(318\) 0 0
\(319\) 27.8175i 0.0872022i
\(320\) 0 0
\(321\) −113.222 −0.352715
\(322\) 0 0
\(323\) − 86.8702i − 0.268948i
\(324\) 0 0
\(325\) 60.4576 0.186023
\(326\) 0 0
\(327\) 27.4945i 0.0840809i
\(328\) 0 0
\(329\) 18.7460 0.0569787
\(330\) 0 0
\(331\) − 97.6458i − 0.295003i −0.989062 0.147501i \(-0.952877\pi\)
0.989062 0.147501i \(-0.0471230\pi\)
\(332\) 0 0
\(333\) −288.911 −0.867601
\(334\) 0 0
\(335\) − 245.883i − 0.733978i
\(336\) 0 0
\(337\) −177.673 −0.527218 −0.263609 0.964630i \(-0.584913\pi\)
−0.263609 + 0.964630i \(0.584913\pi\)
\(338\) 0 0
\(339\) 223.611i 0.659620i
\(340\) 0 0
\(341\) −326.452 −0.957337
\(342\) 0 0
\(343\) 26.1524i 0.0762462i
\(344\) 0 0
\(345\) 81.9162 0.237438
\(346\) 0 0
\(347\) 45.2992i 0.130545i 0.997867 + 0.0652726i \(0.0207917\pi\)
−0.997867 + 0.0652726i \(0.979208\pi\)
\(348\) 0 0
\(349\) −165.193 −0.473332 −0.236666 0.971591i \(-0.576055\pi\)
−0.236666 + 0.971591i \(0.576055\pi\)
\(350\) 0 0
\(351\) 128.219i 0.365296i
\(352\) 0 0
\(353\) −4.32169 −0.0122428 −0.00612138 0.999981i \(-0.501949\pi\)
−0.00612138 + 0.999981i \(0.501949\pi\)
\(354\) 0 0
\(355\) 120.185i 0.338548i
\(356\) 0 0
\(357\) −6.86800 −0.0192381
\(358\) 0 0
\(359\) − 11.7180i − 0.0326407i −0.999867 0.0163204i \(-0.994805\pi\)
0.999867 0.0163204i \(-0.00519516\pi\)
\(360\) 0 0
\(361\) −19.0000 −0.0526316
\(362\) 0 0
\(363\) 84.1867i 0.231919i
\(364\) 0 0
\(365\) −449.953 −1.23275
\(366\) 0 0
\(367\) − 169.090i − 0.460736i −0.973104 0.230368i \(-0.926007\pi\)
0.973104 0.230368i \(-0.0739931\pi\)
\(368\) 0 0
\(369\) 412.455 1.11776
\(370\) 0 0
\(371\) − 9.18872i − 0.0247674i
\(372\) 0 0
\(373\) −127.448 −0.341683 −0.170841 0.985299i \(-0.554649\pi\)
−0.170841 + 0.985299i \(0.554649\pi\)
\(374\) 0 0
\(375\) − 114.879i − 0.306344i
\(376\) 0 0
\(377\) −22.6599 −0.0601059
\(378\) 0 0
\(379\) − 553.575i − 1.46062i −0.683116 0.730310i \(-0.739376\pi\)
0.683116 0.730310i \(-0.260624\pi\)
\(380\) 0 0
\(381\) 196.635 0.516101
\(382\) 0 0
\(383\) 437.773i 1.14301i 0.820598 + 0.571506i \(0.193641\pi\)
−0.820598 + 0.571506i \(0.806359\pi\)
\(384\) 0 0
\(385\) 11.7875 0.0306169
\(386\) 0 0
\(387\) 128.414i 0.331820i
\(388\) 0 0
\(389\) −331.056 −0.851043 −0.425522 0.904948i \(-0.639909\pi\)
−0.425522 + 0.904948i \(0.639909\pi\)
\(390\) 0 0
\(391\) − 214.030i − 0.547391i
\(392\) 0 0
\(393\) −113.669 −0.289234
\(394\) 0 0
\(395\) 359.470i 0.910050i
\(396\) 0 0
\(397\) −242.339 −0.610426 −0.305213 0.952284i \(-0.598728\pi\)
−0.305213 + 0.952284i \(0.598728\pi\)
\(398\) 0 0
\(399\) 1.50215i 0.00376478i
\(400\) 0 0
\(401\) −249.083 −0.621155 −0.310578 0.950548i \(-0.600522\pi\)
−0.310578 + 0.950548i \(0.600522\pi\)
\(402\) 0 0
\(403\) − 265.925i − 0.659865i
\(404\) 0 0
\(405\) 229.417 0.566463
\(406\) 0 0
\(407\) 294.131i 0.722679i
\(408\) 0 0
\(409\) 601.314 1.47021 0.735103 0.677955i \(-0.237134\pi\)
0.735103 + 0.677955i \(0.237134\pi\)
\(410\) 0 0
\(411\) 235.023i 0.571833i
\(412\) 0 0
\(413\) −14.2081 −0.0344021
\(414\) 0 0
\(415\) 160.467i 0.386667i
\(416\) 0 0
\(417\) 115.929 0.278008
\(418\) 0 0
\(419\) 788.737i 1.88243i 0.337811 + 0.941214i \(0.390314\pi\)
−0.337811 + 0.941214i \(0.609686\pi\)
\(420\) 0 0
\(421\) 487.237 1.15733 0.578666 0.815564i \(-0.303573\pi\)
0.578666 + 0.815564i \(0.303573\pi\)
\(422\) 0 0
\(423\) − 514.866i − 1.21718i
\(424\) 0 0
\(425\) 198.080 0.466071
\(426\) 0 0
\(427\) − 5.38443i − 0.0126099i
\(428\) 0 0
\(429\) 58.6140 0.136629
\(430\) 0 0
\(431\) − 389.242i − 0.903113i −0.892242 0.451557i \(-0.850869\pi\)
0.892242 0.451557i \(-0.149131\pi\)
\(432\) 0 0
\(433\) 49.0481 0.113275 0.0566375 0.998395i \(-0.481962\pi\)
0.0566375 + 0.998395i \(0.481962\pi\)
\(434\) 0 0
\(435\) − 28.4147i − 0.0653212i
\(436\) 0 0
\(437\) −46.8120 −0.107121
\(438\) 0 0
\(439\) 629.258i 1.43339i 0.697387 + 0.716694i \(0.254346\pi\)
−0.697387 + 0.716694i \(0.745654\pi\)
\(440\) 0 0
\(441\) 358.882 0.813791
\(442\) 0 0
\(443\) − 261.774i − 0.590912i −0.955356 0.295456i \(-0.904528\pi\)
0.955356 0.295456i \(-0.0954716\pi\)
\(444\) 0 0
\(445\) 100.644 0.226166
\(446\) 0 0
\(447\) 210.562i 0.471057i
\(448\) 0 0
\(449\) −768.178 −1.71086 −0.855432 0.517915i \(-0.826708\pi\)
−0.855432 + 0.517915i \(0.826708\pi\)
\(450\) 0 0
\(451\) − 419.906i − 0.931056i
\(452\) 0 0
\(453\) −356.474 −0.786919
\(454\) 0 0
\(455\) 9.60202i 0.0211033i
\(456\) 0 0
\(457\) −753.743 −1.64933 −0.824665 0.565622i \(-0.808636\pi\)
−0.824665 + 0.565622i \(0.808636\pi\)
\(458\) 0 0
\(459\) 420.089i 0.915227i
\(460\) 0 0
\(461\) 204.768 0.444183 0.222091 0.975026i \(-0.428712\pi\)
0.222091 + 0.975026i \(0.428712\pi\)
\(462\) 0 0
\(463\) − 617.825i − 1.33439i −0.744881 0.667197i \(-0.767494\pi\)
0.744881 0.667197i \(-0.232506\pi\)
\(464\) 0 0
\(465\) 333.461 0.717120
\(466\) 0 0
\(467\) 425.268i 0.910638i 0.890328 + 0.455319i \(0.150475\pi\)
−0.890328 + 0.455319i \(0.849525\pi\)
\(468\) 0 0
\(469\) 11.1090 0.0236865
\(470\) 0 0
\(471\) 248.476i 0.527550i
\(472\) 0 0
\(473\) 130.734 0.276393
\(474\) 0 0
\(475\) − 43.3235i − 0.0912073i
\(476\) 0 0
\(477\) −252.372 −0.529081
\(478\) 0 0
\(479\) − 740.431i − 1.54578i −0.634537 0.772892i \(-0.718809\pi\)
0.634537 0.772892i \(-0.281191\pi\)
\(480\) 0 0
\(481\) −239.597 −0.498122
\(482\) 0 0
\(483\) 3.70097i 0.00766247i
\(484\) 0 0
\(485\) −78.9807 −0.162847
\(486\) 0 0
\(487\) − 51.8620i − 0.106493i −0.998581 0.0532465i \(-0.983043\pi\)
0.998581 0.0532465i \(-0.0169569\pi\)
\(488\) 0 0
\(489\) 251.099 0.513495
\(490\) 0 0
\(491\) − 668.327i − 1.36115i −0.732676 0.680577i \(-0.761729\pi\)
0.732676 0.680577i \(-0.238271\pi\)
\(492\) 0 0
\(493\) −74.2418 −0.150592
\(494\) 0 0
\(495\) − 323.748i − 0.654037i
\(496\) 0 0
\(497\) −5.42995 −0.0109254
\(498\) 0 0
\(499\) 695.701i 1.39419i 0.716979 + 0.697095i \(0.245524\pi\)
−0.716979 + 0.697095i \(0.754476\pi\)
\(500\) 0 0
\(501\) 79.2033 0.158090
\(502\) 0 0
\(503\) 480.062i 0.954397i 0.878795 + 0.477199i \(0.158348\pi\)
−0.878795 + 0.477199i \(0.841652\pi\)
\(504\) 0 0
\(505\) −226.093 −0.447709
\(506\) 0 0
\(507\) − 170.336i − 0.335968i
\(508\) 0 0
\(509\) −535.267 −1.05161 −0.525803 0.850607i \(-0.676235\pi\)
−0.525803 + 0.850607i \(0.676235\pi\)
\(510\) 0 0
\(511\) − 20.3289i − 0.0397826i
\(512\) 0 0
\(513\) 91.8807 0.179105
\(514\) 0 0
\(515\) 568.465i 1.10382i
\(516\) 0 0
\(517\) −524.167 −1.01386
\(518\) 0 0
\(519\) 65.0074i 0.125255i
\(520\) 0 0
\(521\) 636.008 1.22074 0.610372 0.792115i \(-0.291020\pi\)
0.610372 + 0.792115i \(0.291020\pi\)
\(522\) 0 0
\(523\) 106.122i 0.202910i 0.994840 + 0.101455i \(0.0323498\pi\)
−0.994840 + 0.101455i \(0.967650\pi\)
\(524\) 0 0
\(525\) −3.42517 −0.00652414
\(526\) 0 0
\(527\) − 871.264i − 1.65325i
\(528\) 0 0
\(529\) 413.665 0.781976
\(530\) 0 0
\(531\) 390.230i 0.734897i
\(532\) 0 0
\(533\) 342.053 0.641750
\(534\) 0 0
\(535\) 518.622i 0.969388i
\(536\) 0 0
\(537\) −345.248 −0.642919
\(538\) 0 0
\(539\) − 365.365i − 0.677858i
\(540\) 0 0
\(541\) −36.7012 −0.0678396 −0.0339198 0.999425i \(-0.510799\pi\)
−0.0339198 + 0.999425i \(0.510799\pi\)
\(542\) 0 0
\(543\) − 162.201i − 0.298712i
\(544\) 0 0
\(545\) 125.941 0.231085
\(546\) 0 0
\(547\) − 501.855i − 0.917468i −0.888574 0.458734i \(-0.848303\pi\)
0.888574 0.458734i \(-0.151697\pi\)
\(548\) 0 0
\(549\) −147.885 −0.269372
\(550\) 0 0
\(551\) 16.2379i 0.0294700i
\(552\) 0 0
\(553\) −16.2409 −0.0293686
\(554\) 0 0
\(555\) − 300.446i − 0.541343i
\(556\) 0 0
\(557\) −763.382 −1.37052 −0.685262 0.728297i \(-0.740312\pi\)
−0.685262 + 0.728297i \(0.740312\pi\)
\(558\) 0 0
\(559\) 106.495i 0.190510i
\(560\) 0 0
\(561\) 192.040 0.342317
\(562\) 0 0
\(563\) 734.286i 1.30424i 0.758117 + 0.652119i \(0.226120\pi\)
−0.758117 + 0.652119i \(0.773880\pi\)
\(564\) 0 0
\(565\) 1024.27 1.81287
\(566\) 0 0
\(567\) 10.3651i 0.0182806i
\(568\) 0 0
\(569\) −257.303 −0.452201 −0.226101 0.974104i \(-0.572598\pi\)
−0.226101 + 0.974104i \(0.572598\pi\)
\(570\) 0 0
\(571\) 315.894i 0.553230i 0.960981 + 0.276615i \(0.0892126\pi\)
−0.960981 + 0.276615i \(0.910787\pi\)
\(572\) 0 0
\(573\) −292.643 −0.510721
\(574\) 0 0
\(575\) − 106.740i − 0.185635i
\(576\) 0 0
\(577\) −110.448 −0.191419 −0.0957093 0.995409i \(-0.530512\pi\)
−0.0957093 + 0.995409i \(0.530512\pi\)
\(578\) 0 0
\(579\) 28.4763i 0.0491819i
\(580\) 0 0
\(581\) −7.24990 −0.0124783
\(582\) 0 0
\(583\) 256.931i 0.440705i
\(584\) 0 0
\(585\) 263.723 0.450809
\(586\) 0 0
\(587\) 756.449i 1.28867i 0.764744 + 0.644335i \(0.222866\pi\)
−0.764744 + 0.644335i \(0.777134\pi\)
\(588\) 0 0
\(589\) −190.560 −0.323532
\(590\) 0 0
\(591\) 208.896i 0.353462i
\(592\) 0 0
\(593\) −878.684 −1.48176 −0.740880 0.671637i \(-0.765591\pi\)
−0.740880 + 0.671637i \(0.765591\pi\)
\(594\) 0 0
\(595\) 31.4595i 0.0528732i
\(596\) 0 0
\(597\) −438.539 −0.734571
\(598\) 0 0
\(599\) 764.979i 1.27709i 0.769583 + 0.638547i \(0.220464\pi\)
−0.769583 + 0.638547i \(0.779536\pi\)
\(600\) 0 0
\(601\) −260.131 −0.432830 −0.216415 0.976301i \(-0.569436\pi\)
−0.216415 + 0.976301i \(0.569436\pi\)
\(602\) 0 0
\(603\) − 305.112i − 0.505991i
\(604\) 0 0
\(605\) 385.626 0.637398
\(606\) 0 0
\(607\) − 556.060i − 0.916078i −0.888932 0.458039i \(-0.848552\pi\)
0.888932 0.458039i \(-0.151448\pi\)
\(608\) 0 0
\(609\) 1.28378 0.00210801
\(610\) 0 0
\(611\) − 426.983i − 0.698826i
\(612\) 0 0
\(613\) 1030.55 1.68117 0.840583 0.541682i \(-0.182212\pi\)
0.840583 + 0.541682i \(0.182212\pi\)
\(614\) 0 0
\(615\) 428.922i 0.697434i
\(616\) 0 0
\(617\) −568.547 −0.921470 −0.460735 0.887538i \(-0.652414\pi\)
−0.460735 + 0.887538i \(0.652414\pi\)
\(618\) 0 0
\(619\) 173.986i 0.281075i 0.990075 + 0.140538i \(0.0448831\pi\)
−0.990075 + 0.140538i \(0.955117\pi\)
\(620\) 0 0
\(621\) 226.375 0.364532
\(622\) 0 0
\(623\) 4.54710i 0.00729871i
\(624\) 0 0
\(625\) −774.692 −1.23951
\(626\) 0 0
\(627\) − 42.0024i − 0.0669895i
\(628\) 0 0
\(629\) −785.002 −1.24802
\(630\) 0 0
\(631\) 969.221i 1.53601i 0.640446 + 0.768004i \(0.278750\pi\)
−0.640446 + 0.768004i \(0.721250\pi\)
\(632\) 0 0
\(633\) −295.161 −0.466289
\(634\) 0 0
\(635\) − 900.704i − 1.41843i
\(636\) 0 0
\(637\) 297.624 0.467228
\(638\) 0 0
\(639\) 149.136i 0.233389i
\(640\) 0 0
\(641\) −718.485 −1.12088 −0.560441 0.828195i \(-0.689368\pi\)
−0.560441 + 0.828195i \(0.689368\pi\)
\(642\) 0 0
\(643\) − 1117.36i − 1.73773i −0.495051 0.868864i \(-0.664851\pi\)
0.495051 0.868864i \(-0.335149\pi\)
\(644\) 0 0
\(645\) −133.541 −0.207040
\(646\) 0 0
\(647\) − 979.031i − 1.51319i −0.653887 0.756593i \(-0.726863\pi\)
0.653887 0.756593i \(-0.273137\pi\)
\(648\) 0 0
\(649\) 397.280 0.612142
\(650\) 0 0
\(651\) 15.0658i 0.0231425i
\(652\) 0 0
\(653\) −258.364 −0.395657 −0.197829 0.980237i \(-0.563389\pi\)
−0.197829 + 0.980237i \(0.563389\pi\)
\(654\) 0 0
\(655\) 520.671i 0.794917i
\(656\) 0 0
\(657\) −558.341 −0.849834
\(658\) 0 0
\(659\) − 722.618i − 1.09654i −0.836302 0.548269i \(-0.815287\pi\)
0.836302 0.548269i \(-0.184713\pi\)
\(660\) 0 0
\(661\) 552.320 0.835583 0.417792 0.908543i \(-0.362804\pi\)
0.417792 + 0.908543i \(0.362804\pi\)
\(662\) 0 0
\(663\) 156.434i 0.235949i
\(664\) 0 0
\(665\) 6.88074 0.0103470
\(666\) 0 0
\(667\) 40.0069i 0.0599803i
\(668\) 0 0
\(669\) 113.123 0.169092
\(670\) 0 0
\(671\) 150.557i 0.224377i
\(672\) 0 0
\(673\) 500.006 0.742952 0.371476 0.928443i \(-0.378852\pi\)
0.371476 + 0.928443i \(0.378852\pi\)
\(674\) 0 0
\(675\) 209.505i 0.310377i
\(676\) 0 0
\(677\) −889.777 −1.31429 −0.657147 0.753762i \(-0.728237\pi\)
−0.657147 + 0.753762i \(0.728237\pi\)
\(678\) 0 0
\(679\) − 3.56835i − 0.00525531i
\(680\) 0 0
\(681\) 155.662 0.228578
\(682\) 0 0
\(683\) − 774.698i − 1.13426i −0.823629 0.567129i \(-0.808054\pi\)
0.823629 0.567129i \(-0.191946\pi\)
\(684\) 0 0
\(685\) 1076.55 1.57160
\(686\) 0 0
\(687\) − 85.2075i − 0.124028i
\(688\) 0 0
\(689\) −209.294 −0.303765
\(690\) 0 0
\(691\) − 1138.21i − 1.64719i −0.567181 0.823593i \(-0.691966\pi\)
0.567181 0.823593i \(-0.308034\pi\)
\(692\) 0 0
\(693\) 14.6270 0.0211067
\(694\) 0 0
\(695\) − 531.026i − 0.764066i
\(696\) 0 0
\(697\) 1120.68 1.60787
\(698\) 0 0
\(699\) − 171.093i − 0.244768i
\(700\) 0 0
\(701\) 390.090 0.556476 0.278238 0.960512i \(-0.410250\pi\)
0.278238 + 0.960512i \(0.410250\pi\)
\(702\) 0 0
\(703\) 171.693i 0.244229i
\(704\) 0 0
\(705\) 535.421 0.759463
\(706\) 0 0
\(707\) − 10.2149i − 0.0144482i
\(708\) 0 0
\(709\) 1367.27 1.92844 0.964222 0.265096i \(-0.0854036\pi\)
0.964222 + 0.265096i \(0.0854036\pi\)
\(710\) 0 0
\(711\) 446.061i 0.627372i
\(712\) 0 0
\(713\) −469.500 −0.658485
\(714\) 0 0
\(715\) − 268.487i − 0.375507i
\(716\) 0 0
\(717\) 71.9627 0.100366
\(718\) 0 0
\(719\) − 361.674i − 0.503023i −0.967854 0.251512i \(-0.919072\pi\)
0.967854 0.251512i \(-0.0809276\pi\)
\(720\) 0 0
\(721\) −25.6833 −0.0356217
\(722\) 0 0
\(723\) − 411.420i − 0.569046i
\(724\) 0 0
\(725\) −37.0255 −0.0510696
\(726\) 0 0
\(727\) 217.765i 0.299539i 0.988721 + 0.149769i \(0.0478531\pi\)
−0.988721 + 0.149769i \(0.952147\pi\)
\(728\) 0 0
\(729\) 39.8743 0.0546973
\(730\) 0 0
\(731\) 348.915i 0.477311i
\(732\) 0 0
\(733\) 1400.53 1.91068 0.955338 0.295514i \(-0.0954909\pi\)
0.955338 + 0.295514i \(0.0954909\pi\)
\(734\) 0 0
\(735\) 373.210i 0.507768i
\(736\) 0 0
\(737\) −310.624 −0.421471
\(738\) 0 0
\(739\) 296.229i 0.400851i 0.979709 + 0.200426i \(0.0642325\pi\)
−0.979709 + 0.200426i \(0.935767\pi\)
\(740\) 0 0
\(741\) 34.2149 0.0461739
\(742\) 0 0
\(743\) 1104.49i 1.48653i 0.668998 + 0.743265i \(0.266724\pi\)
−0.668998 + 0.743265i \(0.733276\pi\)
\(744\) 0 0
\(745\) 964.502 1.29463
\(746\) 0 0
\(747\) 199.121i 0.266561i
\(748\) 0 0
\(749\) −23.4314 −0.0312836
\(750\) 0 0
\(751\) 526.925i 0.701631i 0.936445 + 0.350815i \(0.114096\pi\)
−0.936445 + 0.350815i \(0.885904\pi\)
\(752\) 0 0
\(753\) 550.072 0.730507
\(754\) 0 0
\(755\) 1632.86i 2.16273i
\(756\) 0 0
\(757\) 437.862 0.578418 0.289209 0.957266i \(-0.406608\pi\)
0.289209 + 0.957266i \(0.406608\pi\)
\(758\) 0 0
\(759\) − 103.485i − 0.136344i
\(760\) 0 0
\(761\) −1020.46 −1.34095 −0.670474 0.741933i \(-0.733909\pi\)
−0.670474 + 0.741933i \(0.733909\pi\)
\(762\) 0 0
\(763\) 5.69002i 0.00745743i
\(764\) 0 0
\(765\) 864.049 1.12948
\(766\) 0 0
\(767\) 323.622i 0.421932i
\(768\) 0 0
\(769\) 1317.04 1.71266 0.856331 0.516428i \(-0.172738\pi\)
0.856331 + 0.516428i \(0.172738\pi\)
\(770\) 0 0
\(771\) 53.3496i 0.0691953i
\(772\) 0 0
\(773\) −691.054 −0.893989 −0.446995 0.894537i \(-0.647506\pi\)
−0.446995 + 0.894537i \(0.647506\pi\)
\(774\) 0 0
\(775\) − 434.512i − 0.560661i
\(776\) 0 0
\(777\) 13.5741 0.0174699
\(778\) 0 0
\(779\) − 245.113i − 0.314650i
\(780\) 0 0
\(781\) 151.830 0.194404
\(782\) 0 0
\(783\) − 78.5239i − 0.100286i
\(784\) 0 0
\(785\) 1138.17 1.44990
\(786\) 0 0
\(787\) − 1253.37i − 1.59259i −0.604910 0.796294i \(-0.706791\pi\)
0.604910 0.796294i \(-0.293209\pi\)
\(788\) 0 0
\(789\) 207.480 0.262965
\(790\) 0 0
\(791\) 46.2767i 0.0585040i
\(792\) 0 0
\(793\) −122.643 −0.154657
\(794\) 0 0
\(795\) − 262.447i − 0.330122i
\(796\) 0 0
\(797\) −849.270 −1.06558 −0.532792 0.846246i \(-0.678857\pi\)
−0.532792 + 0.846246i \(0.678857\pi\)
\(798\) 0 0
\(799\) − 1398.94i − 1.75087i
\(800\) 0 0
\(801\) 124.888 0.155915
\(802\) 0 0
\(803\) 568.427i 0.707880i
\(804\) 0 0
\(805\) 16.9527 0.0210592
\(806\) 0 0
\(807\) − 312.805i − 0.387615i
\(808\) 0 0
\(809\) 579.347 0.716127 0.358063 0.933697i \(-0.383437\pi\)
0.358063 + 0.933697i \(0.383437\pi\)
\(810\) 0 0
\(811\) − 737.929i − 0.909901i −0.890517 0.454950i \(-0.849657\pi\)
0.890517 0.454950i \(-0.150343\pi\)
\(812\) 0 0
\(813\) 312.185 0.383992
\(814\) 0 0
\(815\) − 1150.18i − 1.41127i
\(816\) 0 0
\(817\) 76.3136 0.0934071
\(818\) 0 0
\(819\) 11.9150i 0.0145483i
\(820\) 0 0
\(821\) 1070.41 1.30379 0.651893 0.758311i \(-0.273975\pi\)
0.651893 + 0.758311i \(0.273975\pi\)
\(822\) 0 0
\(823\) − 242.250i − 0.294350i −0.989110 0.147175i \(-0.952982\pi\)
0.989110 0.147175i \(-0.0470181\pi\)
\(824\) 0 0
\(825\) 95.7732 0.116089
\(826\) 0 0
\(827\) 1036.50i 1.25333i 0.779289 + 0.626665i \(0.215580\pi\)
−0.779289 + 0.626665i \(0.784420\pi\)
\(828\) 0 0
\(829\) 1444.93 1.74298 0.871492 0.490409i \(-0.163153\pi\)
0.871492 + 0.490409i \(0.163153\pi\)
\(830\) 0 0
\(831\) − 198.155i − 0.238454i
\(832\) 0 0
\(833\) 975.119 1.17061
\(834\) 0 0
\(835\) − 362.799i − 0.434489i
\(836\) 0 0
\(837\) 921.516 1.10098
\(838\) 0 0
\(839\) 969.665i 1.15574i 0.816129 + 0.577870i \(0.196116\pi\)
−0.816129 + 0.577870i \(0.803884\pi\)
\(840\) 0 0
\(841\) −827.123 −0.983499
\(842\) 0 0
\(843\) − 263.451i − 0.312516i
\(844\) 0 0
\(845\) −780.239 −0.923360
\(846\) 0 0
\(847\) 17.4226i 0.0205697i
\(848\) 0 0
\(849\) −220.519 −0.259740
\(850\) 0 0
\(851\) 423.016i 0.497081i
\(852\) 0 0
\(853\) 866.287 1.01558 0.507788 0.861482i \(-0.330463\pi\)
0.507788 + 0.861482i \(0.330463\pi\)
\(854\) 0 0
\(855\) − 188.982i − 0.221032i
\(856\) 0 0
\(857\) 986.495 1.15110 0.575551 0.817766i \(-0.304788\pi\)
0.575551 + 0.817766i \(0.304788\pi\)
\(858\) 0 0
\(859\) 673.745i 0.784336i 0.919894 + 0.392168i \(0.128275\pi\)
−0.919894 + 0.392168i \(0.871725\pi\)
\(860\) 0 0
\(861\) −19.3787 −0.0225072
\(862\) 0 0
\(863\) 135.833i 0.157396i 0.996898 + 0.0786982i \(0.0250764\pi\)
−0.996898 + 0.0786982i \(0.974924\pi\)
\(864\) 0 0
\(865\) 297.773 0.344246
\(866\) 0 0
\(867\) 139.600i 0.161015i
\(868\) 0 0
\(869\) 454.120 0.522577
\(870\) 0 0
\(871\) − 253.032i − 0.290508i
\(872\) 0 0
\(873\) −98.0062 −0.112264
\(874\) 0 0
\(875\) − 23.7744i − 0.0271707i
\(876\) 0 0
\(877\) 144.984 0.165318 0.0826592 0.996578i \(-0.473659\pi\)
0.0826592 + 0.996578i \(0.473659\pi\)
\(878\) 0 0
\(879\) − 739.855i − 0.841701i
\(880\) 0 0
\(881\) 769.504 0.873444 0.436722 0.899597i \(-0.356139\pi\)
0.436722 + 0.899597i \(0.356139\pi\)
\(882\) 0 0
\(883\) − 422.222i − 0.478168i −0.970999 0.239084i \(-0.923153\pi\)
0.970999 0.239084i \(-0.0768471\pi\)
\(884\) 0 0
\(885\) −405.810 −0.458542
\(886\) 0 0
\(887\) − 74.4386i − 0.0839218i −0.999119 0.0419609i \(-0.986640\pi\)
0.999119 0.0419609i \(-0.0133605\pi\)
\(888\) 0 0
\(889\) 40.6938 0.0457748
\(890\) 0 0
\(891\) − 289.824i − 0.325279i
\(892\) 0 0
\(893\) −305.973 −0.342635
\(894\) 0 0
\(895\) 1581.44i 1.76697i
\(896\) 0 0
\(897\) 84.2982 0.0939779
\(898\) 0 0
\(899\) 162.858i 0.181155i
\(900\) 0 0
\(901\) −685.720 −0.761066
\(902\) 0 0
\(903\) − 6.03338i − 0.00668149i
\(904\) 0 0
\(905\) −742.976 −0.820968
\(906\) 0 0
\(907\) 1027.96i 1.13336i 0.823936 + 0.566682i \(0.191773\pi\)
−0.823936 + 0.566682i \(0.808227\pi\)
\(908\) 0 0
\(909\) −280.556 −0.308642
\(910\) 0 0
\(911\) 758.359i 0.832446i 0.909262 + 0.416223i \(0.136647\pi\)
−0.909262 + 0.416223i \(0.863353\pi\)
\(912\) 0 0
\(913\) 202.718 0.222035
\(914\) 0 0
\(915\) − 153.790i − 0.168076i
\(916\) 0 0
\(917\) −23.5239 −0.0256531
\(918\) 0 0
\(919\) 1498.27i 1.63033i 0.579230 + 0.815164i \(0.303353\pi\)
−0.579230 + 0.815164i \(0.696647\pi\)
\(920\) 0 0
\(921\) −645.243 −0.700589
\(922\) 0 0
\(923\) 123.679i 0.133997i
\(924\) 0 0
\(925\) −391.492 −0.423235
\(926\) 0 0
\(927\) 705.401i 0.760950i
\(928\) 0 0
\(929\) −1481.21 −1.59441 −0.797206 0.603707i \(-0.793690\pi\)
−0.797206 + 0.603707i \(0.793690\pi\)
\(930\) 0 0
\(931\) − 213.275i − 0.229082i
\(932\) 0 0
\(933\) 336.436 0.360595
\(934\) 0 0
\(935\) − 879.658i − 0.940810i
\(936\) 0 0
\(937\) −111.015 −0.118479 −0.0592394 0.998244i \(-0.518868\pi\)
−0.0592394 + 0.998244i \(0.518868\pi\)
\(938\) 0 0
\(939\) − 459.778i − 0.489646i
\(940\) 0 0
\(941\) 208.566 0.221643 0.110821 0.993840i \(-0.464652\pi\)
0.110821 + 0.993840i \(0.464652\pi\)
\(942\) 0 0
\(943\) − 603.905i − 0.640409i
\(944\) 0 0
\(945\) −33.2740 −0.0352106
\(946\) 0 0
\(947\) − 1239.20i − 1.30855i −0.756255 0.654277i \(-0.772973\pi\)
0.756255 0.654277i \(-0.227027\pi\)
\(948\) 0 0
\(949\) −463.037 −0.487921
\(950\) 0 0
\(951\) − 327.016i − 0.343865i
\(952\) 0 0
\(953\) 662.495 0.695168 0.347584 0.937649i \(-0.387002\pi\)
0.347584 + 0.937649i \(0.387002\pi\)
\(954\) 0 0
\(955\) 1340.48i 1.40364i
\(956\) 0 0
\(957\) −35.8965 −0.0375094
\(958\) 0 0
\(959\) 48.6384i 0.0507179i
\(960\) 0 0
\(961\) −950.222 −0.988784
\(962\) 0 0
\(963\) 643.552i 0.668278i
\(964\) 0 0
\(965\) 130.438 0.135169
\(966\) 0 0
\(967\) − 1213.54i − 1.25495i −0.778636 0.627476i \(-0.784088\pi\)
0.778636 0.627476i \(-0.215912\pi\)
\(968\) 0 0
\(969\) 112.100 0.115686
\(970\) 0 0
\(971\) − 416.270i − 0.428702i −0.976757 0.214351i \(-0.931236\pi\)
0.976757 0.214351i \(-0.0687637\pi\)
\(972\) 0 0
\(973\) 23.9918 0.0246575
\(974\) 0 0
\(975\) 78.0162i 0.0800166i
\(976\) 0 0
\(977\) 44.4465 0.0454929 0.0227464 0.999741i \(-0.492759\pi\)
0.0227464 + 0.999741i \(0.492759\pi\)
\(978\) 0 0
\(979\) − 127.144i − 0.129871i
\(980\) 0 0
\(981\) 156.279 0.159305
\(982\) 0 0
\(983\) − 691.898i − 0.703863i −0.936026 0.351932i \(-0.885525\pi\)
0.936026 0.351932i \(-0.114475\pi\)
\(984\) 0 0
\(985\) 956.869 0.971441
\(986\) 0 0
\(987\) 24.1904i 0.0245090i
\(988\) 0 0
\(989\) 188.020 0.190112
\(990\) 0 0
\(991\) 655.977i 0.661934i 0.943642 + 0.330967i \(0.107375\pi\)
−0.943642 + 0.330967i \(0.892625\pi\)
\(992\) 0 0
\(993\) 126.005 0.126893
\(994\) 0 0
\(995\) 2008.77i 2.01886i
\(996\) 0 0
\(997\) −274.866 −0.275693 −0.137846 0.990454i \(-0.544018\pi\)
−0.137846 + 0.990454i \(0.544018\pi\)
\(998\) 0 0
\(999\) − 830.279i − 0.831110i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.3.d.e.191.10 16
4.3 odd 2 inner 1216.3.d.e.191.7 16
8.3 odd 2 608.3.d.a.191.10 yes 16
8.5 even 2 608.3.d.a.191.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.3.d.a.191.7 16 8.5 even 2
608.3.d.a.191.10 yes 16 8.3 odd 2
1216.3.d.e.191.7 16 4.3 odd 2 inner
1216.3.d.e.191.10 16 1.1 even 1 trivial