Properties

Label 1215.2.a.n
Level $1215$
Weight $2$
Character orbit 1215.a
Self dual yes
Analytic conductor $9.702$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1215,2,Mod(1,1215)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1215.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1215, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1215 = 3^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1215.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,7,2,0,-3,12,0,1,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.70182384559\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{21})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + (\beta + 3) q^{4} + q^{5} + ( - \beta - 1) q^{7} + (2 \beta + 5) q^{8} + \beta q^{10} + ( - \beta + 4) q^{11} + (2 \beta - 3) q^{13} + ( - 2 \beta - 5) q^{14} + (5 \beta + 4) q^{16}+ \cdots + (2 \beta + 15) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 7 q^{4} + 2 q^{5} - 3 q^{7} + 12 q^{8} + q^{10} + 7 q^{11} - 4 q^{13} - 12 q^{14} + 13 q^{16} + q^{17} + 11 q^{19} + 7 q^{20} - 7 q^{22} + 2 q^{25} + 19 q^{26} - 21 q^{28} - 10 q^{29} + 35 q^{32}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.79129
2.79129
−1.79129 0 1.20871 1.00000 0 0.791288 1.41742 0 −1.79129
1.2 2.79129 0 5.79129 1.00000 0 −3.79129 10.5826 0 2.79129
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1215.2.a.n yes 2
3.b odd 2 1 1215.2.a.l 2
5.b even 2 1 6075.2.a.bl 2
9.c even 3 2 1215.2.e.k 4
9.d odd 6 2 1215.2.e.m 4
15.d odd 2 1 6075.2.a.bp 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1215.2.a.l 2 3.b odd 2 1
1215.2.a.n yes 2 1.a even 1 1 trivial
1215.2.e.k 4 9.c even 3 2
1215.2.e.m 4 9.d odd 6 2
6075.2.a.bl 2 5.b even 2 1
6075.2.a.bp 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1215))\):

\( T_{2}^{2} - T_{2} - 5 \) Copy content Toggle raw display
\( T_{7}^{2} + 3T_{7} - 3 \) Copy content Toggle raw display
\( T_{11}^{2} - 7T_{11} + 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 5 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 3T - 3 \) Copy content Toggle raw display
$11$ \( T^{2} - 7T + 7 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 17 \) Copy content Toggle raw display
$17$ \( T^{2} - T - 5 \) Copy content Toggle raw display
$19$ \( T^{2} - 11T + 25 \) Copy content Toggle raw display
$23$ \( T^{2} - 21 \) Copy content Toggle raw display
$29$ \( (T + 5)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 11T + 25 \) Copy content Toggle raw display
$41$ \( T^{2} - 5T - 41 \) Copy content Toggle raw display
$43$ \( (T + 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - T - 5 \) Copy content Toggle raw display
$53$ \( T^{2} + 5T + 1 \) Copy content Toggle raw display
$59$ \( T^{2} - 10T + 4 \) Copy content Toggle raw display
$61$ \( T^{2} - 2T - 188 \) Copy content Toggle raw display
$67$ \( T^{2} - 3T - 3 \) Copy content Toggle raw display
$71$ \( T^{2} + 10T - 59 \) Copy content Toggle raw display
$73$ \( T^{2} + 10T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} + 15T + 51 \) Copy content Toggle raw display
$83$ \( T^{2} + 9T - 27 \) Copy content Toggle raw display
$89$ \( (T - 9)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 5T + 1 \) Copy content Toggle raw display
show more
show less