gp:[N,k,chi] = [12138,2,Mod(1,12138)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(12138, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("12138.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage:traces = [1,-1,1,1,-1,-1,1,-1,1,1,-3,1,-3,-1,-1,1,0,-1,6,-1,1,3,2,-1,-4,
3,1,1,-6,1,-4,-1,-3,0,-1,1,11,-6,-3,1,-12,-1,3,-3,-1,-2,12,1,1,4,0,-3,
5,-1,3,-1,6,6,4,-1,6,4,1,1,3,3,9,0,2,1,-12,-1,-15,-11,-4,6,-3,3,11,-1,
1,12,7,1,0,-3,-6,3,-13,1,-3,2,-4,-12,-6,-1,-11,-1,-3,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
\( p \) |
Sign
|
\(2\) |
\( +1 \) |
\(3\) |
\( -1 \) |
\(7\) |
\( -1 \) |
\(17\) |
\( +1 \) |
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.