Defining parameters
Level: | \( N \) | \(=\) | \( 12138 = 2 \cdot 3 \cdot 7 \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 12138.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 82 \) | ||
Sturm bound: | \(4896\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(12138))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2520 | 270 | 2250 |
Cusp forms | 2377 | 270 | 2107 |
Eisenstein series | 143 | 0 | 143 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(144\) | \(18\) | \(126\) | \(136\) | \(18\) | \(118\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(170\) | \(16\) | \(154\) | \(161\) | \(16\) | \(145\) | \(9\) | \(0\) | \(9\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(162\) | \(18\) | \(144\) | \(153\) | \(18\) | \(135\) | \(9\) | \(0\) | \(9\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(154\) | \(16\) | \(138\) | \(145\) | \(16\) | \(129\) | \(9\) | \(0\) | \(9\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(162\) | \(18\) | \(144\) | \(153\) | \(18\) | \(135\) | \(9\) | \(0\) | \(9\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(154\) | \(16\) | \(138\) | \(145\) | \(16\) | \(129\) | \(9\) | \(0\) | \(9\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(162\) | \(18\) | \(144\) | \(153\) | \(18\) | \(135\) | \(9\) | \(0\) | \(9\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(152\) | \(16\) | \(136\) | \(143\) | \(16\) | \(127\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(162\) | \(21\) | \(141\) | \(153\) | \(21\) | \(132\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(153\) | \(12\) | \(141\) | \(144\) | \(12\) | \(132\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(153\) | \(14\) | \(139\) | \(144\) | \(14\) | \(130\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(162\) | \(20\) | \(142\) | \(153\) | \(20\) | \(133\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(162\) | \(14\) | \(148\) | \(153\) | \(14\) | \(139\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(153\) | \(20\) | \(133\) | \(144\) | \(20\) | \(124\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(153\) | \(21\) | \(132\) | \(144\) | \(21\) | \(123\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(162\) | \(12\) | \(150\) | \(153\) | \(12\) | \(141\) | \(9\) | \(0\) | \(9\) | |||
Plus space | \(+\) | \(1244\) | \(120\) | \(1124\) | \(1173\) | \(120\) | \(1053\) | \(71\) | \(0\) | \(71\) | ||||||
Minus space | \(-\) | \(1276\) | \(150\) | \(1126\) | \(1204\) | \(150\) | \(1054\) | \(72\) | \(0\) | \(72\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(12138))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 7 | 17 | |||||||
12138.2.a.a | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-3\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-3q^{5}+q^{6}-q^{7}+\cdots\) | |
12138.2.a.b | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-3\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-3q^{5}+q^{6}-q^{7}+\cdots\) | |
12138.2.a.c | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-3\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-3q^{5}+q^{6}+q^{7}+\cdots\) | |
12138.2.a.d | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(-1\) | \(2\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+2q^{5}+q^{6}-q^{7}+\cdots\) | |
12138.2.a.e | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(-1\) | \(2\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+2q^{5}+q^{6}+q^{7}+\cdots\) | |
12138.2.a.f | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(-1\) | \(3\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+3q^{5}+q^{6}-q^{7}+\cdots\) | |
12138.2.a.g | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(1\) | \(-3\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-3q^{5}-q^{6}+q^{7}+\cdots\) | |
12138.2.a.h | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(1\) | \(-2\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-2q^{5}-q^{6}-q^{7}+\cdots\) | |
12138.2.a.i | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(1\) | \(-2\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-2q^{5}-q^{6}+q^{7}+\cdots\) | |
12138.2.a.j | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(1\) | \(-2\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-2q^{5}-q^{6}+q^{7}+\cdots\) | |
12138.2.a.k | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\) | |
12138.2.a.l | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
12138.2.a.m | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(1\) | \(2\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{3}+q^{4}+2q^{5}-q^{6}-q^{7}+\cdots\) | |
12138.2.a.n | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(1\) | \(3\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{3}+q^{4}+3q^{5}-q^{6}-q^{7}+\cdots\) | |
12138.2.a.o | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(1\) | \(3\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}+3q^{5}-q^{6}+q^{7}+\cdots\) | |
12138.2.a.p | $1$ | $96.922$ | \(\Q\) | None | \(-1\) | \(1\) | \(3\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}+3q^{5}-q^{6}+q^{7}+\cdots\) | |
12138.2.a.q | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(-1\) | \(-3\) | \(-1\) | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-3q^{5}-q^{6}-q^{7}+\cdots\) | |
12138.2.a.r | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(-1\) | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\) | |
12138.2.a.s | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
12138.2.a.t | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(-1\) | \(3\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+3q^{5}-q^{6}-q^{7}+\cdots\) | |
12138.2.a.u | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(-1\) | \(3\) | \(1\) | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+3q^{5}-q^{6}+q^{7}+\cdots\) | |
12138.2.a.v | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(1\) | \(-3\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-3q^{5}+q^{6}-q^{7}+\cdots\) | |
12138.2.a.w | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(1\) | \(-3\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-3q^{5}+q^{6}-q^{7}+\cdots\) | |
12138.2.a.x | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(1\) | \(-3\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-3q^{5}+q^{6}+q^{7}+\cdots\) | |
12138.2.a.y | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
12138.2.a.z | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\) | |
12138.2.a.ba | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(1\) | \(2\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}-q^{7}+\cdots\) | |
12138.2.a.bb | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(1\) | \(2\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}+q^{7}+\cdots\) | |
12138.2.a.bc | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(1\) | \(2\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}+q^{7}+\cdots\) | |
12138.2.a.bd | $1$ | $96.922$ | \(\Q\) | None | \(1\) | \(1\) | \(3\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+3q^{5}+q^{6}+q^{7}+\cdots\) | |
12138.2.a.be | $2$ | $96.922$ | \(\Q(\sqrt{41}) \) | None | \(-2\) | \(-2\) | \(-1\) | \(2\) | $+$ | $+$ | $-$ | $+$ | ||
12138.2.a.bf | $2$ | $96.922$ | \(\Q(\sqrt{13}) \) | None | \(-2\) | \(-2\) | \(0\) | \(-2\) | $+$ | $+$ | $+$ | $-$ | ||
12138.2.a.bg | $2$ | $96.922$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(-2\) | \(2\) | \(2\) | $+$ | $+$ | $-$ | $+$ | ||
12138.2.a.bh | $2$ | $96.922$ | \(\Q(\sqrt{13}) \) | None | \(-2\) | \(-2\) | \(2\) | \(2\) | $+$ | $+$ | $-$ | $-$ | ||
12138.2.a.bi | $2$ | $96.922$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(-2\) | \(2\) | \(2\) | $+$ | $+$ | $-$ | $+$ | ||
12138.2.a.bj | $2$ | $96.922$ | \(\Q(\sqrt{33}) \) | None | \(-2\) | \(-2\) | \(3\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | ||
12138.2.a.bk | $2$ | $96.922$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(2\) | \(-2\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
12138.2.a.bl | $2$ | $96.922$ | \(\Q(\sqrt{13}) \) | None | \(-2\) | \(2\) | \(-2\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | ||
12138.2.a.bm | $2$ | $96.922$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(2\) | \(-2\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | ||
12138.2.a.bn | $2$ | $96.922$ | \(\Q(\sqrt{13}) \) | None | \(-2\) | \(2\) | \(0\) | \(2\) | $+$ | $-$ | $-$ | $+$ | ||
12138.2.a.bo | $2$ | $96.922$ | \(\Q(\sqrt{6}) \) | None | \(2\) | \(-2\) | \(-4\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | ||
12138.2.a.bp | $2$ | $96.922$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(-2\) | \(-3\) | \(2\) | $-$ | $+$ | $-$ | $+$ | ||
12138.2.a.bq | $2$ | $96.922$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(-2\) | \(-2\) | \(2\) | $-$ | $+$ | $-$ | $+$ | ||
12138.2.a.br | $2$ | $96.922$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(-2\) | \(-1\) | \(2\) | $-$ | $+$ | $-$ | $+$ | ||
12138.2.a.bs | $2$ | $96.922$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(-2\) | \(0\) | \(2\) | $-$ | $+$ | $-$ | $+$ | ||
12138.2.a.bt | $2$ | $96.922$ | \(\Q(\sqrt{21}) \) | None | \(2\) | \(-2\) | \(2\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | ||
12138.2.a.bu | $2$ | $96.922$ | \(\Q(\sqrt{21}) \) | None | \(2\) | \(2\) | \(-2\) | \(2\) | $-$ | $-$ | $-$ | $-$ | ||
12138.2.a.bv | $2$ | $96.922$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(2\) | \(0\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | ||
12138.2.a.bw | $2$ | $96.922$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(2\) | \(1\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | ||
12138.2.a.bx | $2$ | $96.922$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(2\) | \(2\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | ||
12138.2.a.by | $4$ | $96.922$ | 4.4.7232.1 | None | \(-4\) | \(-4\) | \(-4\) | \(4\) | $+$ | $+$ | $-$ | $+$ | ||
12138.2.a.bz | $4$ | $96.922$ | 4.4.7232.1 | None | \(-4\) | \(4\) | \(4\) | \(-4\) | $+$ | $-$ | $+$ | $+$ | ||
12138.2.a.ca | $4$ | $96.922$ | 4.4.40293.1 | None | \(4\) | \(-4\) | \(-1\) | \(-4\) | $-$ | $+$ | $+$ | $+$ | ||
12138.2.a.cb | $4$ | $96.922$ | \(\Q(\zeta_{16})^+\) | None | \(4\) | \(-4\) | \(4\) | \(-4\) | $-$ | $+$ | $+$ | $-$ | ||
12138.2.a.cc | $4$ | $96.922$ | \(\Q(\zeta_{16})^+\) | None | \(4\) | \(4\) | \(-4\) | \(4\) | $-$ | $-$ | $-$ | $-$ | ||
12138.2.a.cd | $4$ | $96.922$ | 4.4.40293.1 | None | \(4\) | \(4\) | \(1\) | \(4\) | $-$ | $-$ | $-$ | $+$ | ||
12138.2.a.ce | $6$ | $96.922$ | 6.6.428564992.1 | None | \(-6\) | \(-6\) | \(2\) | \(-6\) | $+$ | $+$ | $+$ | $+$ | ||
12138.2.a.cf | $6$ | $96.922$ | 6.6.3916917.1 | None | \(-6\) | \(-6\) | \(3\) | \(-6\) | $+$ | $+$ | $+$ | $+$ | ||
12138.2.a.cg | $6$ | $96.922$ | 6.6.7328637.1 | None | \(-6\) | \(-6\) | \(3\) | \(-6\) | $+$ | $+$ | $+$ | $-$ | ||
12138.2.a.ch | $6$ | $96.922$ | 6.6.5911461.1 | None | \(-6\) | \(-6\) | \(3\) | \(6\) | $+$ | $+$ | $-$ | $-$ | ||
12138.2.a.ci | $6$ | $96.922$ | 6.6.1292517.1 | None | \(-6\) | \(-6\) | \(3\) | \(6\) | $+$ | $+$ | $-$ | $+$ | ||
12138.2.a.cj | $6$ | $96.922$ | 6.6.5911461.1 | None | \(-6\) | \(6\) | \(-3\) | \(-6\) | $+$ | $-$ | $+$ | $+$ | ||
12138.2.a.ck | $6$ | $96.922$ | 6.6.1292517.1 | None | \(-6\) | \(6\) | \(-3\) | \(-6\) | $+$ | $-$ | $+$ | $-$ | ||
12138.2.a.cl | $6$ | $96.922$ | 6.6.7328637.1 | None | \(-6\) | \(6\) | \(-3\) | \(6\) | $+$ | $-$ | $-$ | $+$ | ||
12138.2.a.cm | $6$ | $96.922$ | 6.6.3916917.1 | None | \(-6\) | \(6\) | \(-3\) | \(6\) | $+$ | $-$ | $-$ | $-$ | ||
12138.2.a.cn | $6$ | $96.922$ | 6.6.428564992.1 | None | \(-6\) | \(6\) | \(-2\) | \(6\) | $+$ | $-$ | $-$ | $+$ | ||
12138.2.a.co | $6$ | $96.922$ | 6.6.134742528.1 | None | \(6\) | \(-6\) | \(-6\) | \(-6\) | $-$ | $+$ | $+$ | $+$ | ||
12138.2.a.cp | $6$ | $96.922$ | 6.6.24334749.1 | None | \(6\) | \(-6\) | \(-3\) | \(-6\) | $-$ | $+$ | $+$ | $-$ | ||
12138.2.a.cq | $6$ | $96.922$ | 6.6.18298629.1 | None | \(6\) | \(-6\) | \(-3\) | \(6\) | $-$ | $+$ | $-$ | $+$ | ||
12138.2.a.cr | $6$ | $96.922$ | 6.6.1397493.1 | None | \(6\) | \(-6\) | \(9\) | \(-6\) | $-$ | $+$ | $+$ | $+$ | ||
12138.2.a.cs | $6$ | $96.922$ | 6.6.7328637.1 | None | \(6\) | \(-6\) | \(9\) | \(6\) | $-$ | $+$ | $-$ | $-$ | ||
12138.2.a.ct | $6$ | $96.922$ | 6.6.7328637.1 | None | \(6\) | \(6\) | \(-9\) | \(-6\) | $-$ | $-$ | $+$ | $+$ | ||
12138.2.a.cu | $6$ | $96.922$ | 6.6.1397493.1 | None | \(6\) | \(6\) | \(-9\) | \(6\) | $-$ | $-$ | $-$ | $-$ | ||
12138.2.a.cv | $6$ | $96.922$ | 6.6.18298629.1 | None | \(6\) | \(6\) | \(3\) | \(-6\) | $-$ | $-$ | $+$ | $-$ | ||
12138.2.a.cw | $6$ | $96.922$ | 6.6.24334749.1 | None | \(6\) | \(6\) | \(3\) | \(6\) | $-$ | $-$ | $-$ | $+$ | ||
12138.2.a.cx | $6$ | $96.922$ | 6.6.134742528.1 | None | \(6\) | \(6\) | \(6\) | \(6\) | $-$ | $-$ | $-$ | $+$ | ||
12138.2.a.cy | $8$ | $96.922$ | 8.8.\(\cdots\).1 | None | \(-8\) | \(-8\) | \(-12\) | \(-8\) | $+$ | $+$ | $+$ | $-$ | ||
12138.2.a.cz | $8$ | $96.922$ | 8.8.\(\cdots\).1 | None | \(-8\) | \(-8\) | \(-4\) | \(8\) | $+$ | $+$ | $-$ | $-$ | ||
12138.2.a.da | $8$ | $96.922$ | 8.8.\(\cdots\).1 | None | \(-8\) | \(8\) | \(4\) | \(-8\) | $+$ | $-$ | $+$ | $-$ | ||
12138.2.a.db | $8$ | $96.922$ | 8.8.\(\cdots\).1 | None | \(-8\) | \(8\) | \(12\) | \(8\) | $+$ | $-$ | $-$ | $-$ | ||
12138.2.a.dc | $12$ | $96.922$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(12\) | \(-12\) | \(-4\) | \(12\) | $-$ | $+$ | $-$ | $-$ | ||
12138.2.a.dd | $12$ | $96.922$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(12\) | \(12\) | \(4\) | \(-12\) | $-$ | $-$ | $+$ | $-$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(12138))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(12138)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(357))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(578))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(714))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(867))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1734))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2023))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4046))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6069))\)\(^{\oplus 2}\)