Properties

Label 12138.2.a
Level $12138$
Weight $2$
Character orbit 12138.a
Rep. character $\chi_{12138}(1,\cdot)$
Character field $\Q$
Dimension $270$
Newform subspaces $82$
Sturm bound $4896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 12138 = 2 \cdot 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 12138.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 82 \)
Sturm bound: \(4896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(12138))\).

Total New Old
Modular forms 2520 270 2250
Cusp forms 2377 270 2107
Eisenstein series 143 0 143

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(144\)\(18\)\(126\)\(136\)\(18\)\(118\)\(8\)\(0\)\(8\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(170\)\(16\)\(154\)\(161\)\(16\)\(145\)\(9\)\(0\)\(9\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(162\)\(18\)\(144\)\(153\)\(18\)\(135\)\(9\)\(0\)\(9\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(154\)\(16\)\(138\)\(145\)\(16\)\(129\)\(9\)\(0\)\(9\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(162\)\(18\)\(144\)\(153\)\(18\)\(135\)\(9\)\(0\)\(9\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(154\)\(16\)\(138\)\(145\)\(16\)\(129\)\(9\)\(0\)\(9\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(162\)\(18\)\(144\)\(153\)\(18\)\(135\)\(9\)\(0\)\(9\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(152\)\(16\)\(136\)\(143\)\(16\)\(127\)\(9\)\(0\)\(9\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(162\)\(21\)\(141\)\(153\)\(21\)\(132\)\(9\)\(0\)\(9\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(153\)\(12\)\(141\)\(144\)\(12\)\(132\)\(9\)\(0\)\(9\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(153\)\(14\)\(139\)\(144\)\(14\)\(130\)\(9\)\(0\)\(9\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(162\)\(20\)\(142\)\(153\)\(20\)\(133\)\(9\)\(0\)\(9\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(162\)\(14\)\(148\)\(153\)\(14\)\(139\)\(9\)\(0\)\(9\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(153\)\(20\)\(133\)\(144\)\(20\)\(124\)\(9\)\(0\)\(9\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(153\)\(21\)\(132\)\(144\)\(21\)\(123\)\(9\)\(0\)\(9\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(162\)\(12\)\(150\)\(153\)\(12\)\(141\)\(9\)\(0\)\(9\)
Plus space\(+\)\(1244\)\(120\)\(1124\)\(1173\)\(120\)\(1053\)\(71\)\(0\)\(71\)
Minus space\(-\)\(1276\)\(150\)\(1126\)\(1204\)\(150\)\(1054\)\(72\)\(0\)\(72\)

Trace form

\( 270 q - 2 q^{2} + 270 q^{4} - 4 q^{5} - 2 q^{8} + 270 q^{9} - 4 q^{10} - 8 q^{11} - 20 q^{13} - 8 q^{15} + 270 q^{16} - 2 q^{18} - 16 q^{19} - 4 q^{20} - 2 q^{21} + 258 q^{25} - 4 q^{26} - 12 q^{29} - 8 q^{30}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(12138))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7 17
12138.2.a.a 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(-1\) \(-3\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-3q^{5}+q^{6}-q^{7}+\cdots\)
12138.2.a.b 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(-1\) \(-3\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-3q^{5}+q^{6}-q^{7}+\cdots\)
12138.2.a.c 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(-1\) \(-3\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-3q^{5}+q^{6}+q^{7}+\cdots\)
12138.2.a.d 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(-1\) \(2\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+2q^{5}+q^{6}-q^{7}+\cdots\)
12138.2.a.e 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(-1\) \(2\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+2q^{5}+q^{6}+q^{7}+\cdots\)
12138.2.a.f 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(-1\) \(3\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+3q^{5}+q^{6}-q^{7}+\cdots\)
12138.2.a.g 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(1\) \(-3\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-3q^{5}-q^{6}+q^{7}+\cdots\)
12138.2.a.h 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(1\) \(-2\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-2q^{5}-q^{6}-q^{7}+\cdots\)
12138.2.a.i 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(1\) \(-2\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-2q^{5}-q^{6}+q^{7}+\cdots\)
12138.2.a.j 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(1\) \(-2\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-2q^{5}-q^{6}+q^{7}+\cdots\)
12138.2.a.k 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(1\) \(-1\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\)
12138.2.a.l 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(1\) \(-1\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
12138.2.a.m 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(1\) \(2\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+2q^{5}-q^{6}-q^{7}+\cdots\)
12138.2.a.n 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(1\) \(3\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+3q^{5}-q^{6}-q^{7}+\cdots\)
12138.2.a.o 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(1\) \(3\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+3q^{5}-q^{6}+q^{7}+\cdots\)
12138.2.a.p 12138.a 1.a $1$ $96.922$ \(\Q\) None \(-1\) \(1\) \(3\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+3q^{5}-q^{6}+q^{7}+\cdots\)
12138.2.a.q 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(-1\) \(-3\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-3q^{5}-q^{6}-q^{7}+\cdots\)
12138.2.a.r 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(-1\) \(1\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\)
12138.2.a.s 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(-1\) \(1\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
12138.2.a.t 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(-1\) \(3\) \(-1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+3q^{5}-q^{6}-q^{7}+\cdots\)
12138.2.a.u 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(-1\) \(3\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+3q^{5}-q^{6}+q^{7}+\cdots\)
12138.2.a.v 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(1\) \(-3\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-3q^{5}+q^{6}-q^{7}+\cdots\)
12138.2.a.w 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(1\) \(-3\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-3q^{5}+q^{6}-q^{7}+\cdots\)
12138.2.a.x 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(1\) \(-3\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-3q^{5}+q^{6}+q^{7}+\cdots\)
12138.2.a.y 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(1\) \(-1\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\)
12138.2.a.z 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(1\) \(-1\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\)
12138.2.a.ba 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(1\) \(2\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}-q^{7}+\cdots\)
12138.2.a.bb 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(1\) \(2\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}+q^{7}+\cdots\)
12138.2.a.bc 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(1\) \(2\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}+q^{7}+\cdots\)
12138.2.a.bd 12138.a 1.a $1$ $96.922$ \(\Q\) None \(1\) \(1\) \(3\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+3q^{5}+q^{6}+q^{7}+\cdots\)
12138.2.a.be 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{41}) \) None \(-2\) \(-2\) \(-1\) \(2\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.bf 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{13}) \) None \(-2\) \(-2\) \(0\) \(-2\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
12138.2.a.bg 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{2}) \) None \(-2\) \(-2\) \(2\) \(2\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.bh 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{13}) \) None \(-2\) \(-2\) \(2\) \(2\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
12138.2.a.bi 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{2}) \) None \(-2\) \(-2\) \(2\) \(2\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.bj 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{33}) \) None \(-2\) \(-2\) \(3\) \(-2\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.bk 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{2}) \) None \(-2\) \(2\) \(-2\) \(-2\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
12138.2.a.bl 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{13}) \) None \(-2\) \(2\) \(-2\) \(-2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.bm 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{2}) \) None \(-2\) \(2\) \(-2\) \(-2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.bn 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{13}) \) None \(-2\) \(2\) \(0\) \(2\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.bo 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{6}) \) None \(2\) \(-2\) \(-4\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.bp 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{17}) \) None \(2\) \(-2\) \(-3\) \(2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.bq 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{2}) \) None \(2\) \(-2\) \(-2\) \(2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.br 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{17}) \) None \(2\) \(-2\) \(-1\) \(2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.bs 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{5}) \) None \(2\) \(-2\) \(0\) \(2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.bt 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{21}) \) None \(2\) \(-2\) \(2\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.bu 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{21}) \) None \(2\) \(2\) \(-2\) \(2\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
12138.2.a.bv 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{5}) \) None \(2\) \(2\) \(0\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
12138.2.a.bw 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{17}) \) None \(2\) \(2\) \(1\) \(-2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.bx 12138.a 1.a $2$ $96.922$ \(\Q(\sqrt{2}) \) None \(2\) \(2\) \(2\) \(-2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.by 12138.a 1.a $4$ $96.922$ 4.4.7232.1 None \(-4\) \(-4\) \(-4\) \(4\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.bz 12138.a 1.a $4$ $96.922$ 4.4.7232.1 None \(-4\) \(4\) \(4\) \(-4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.ca 12138.a 1.a $4$ $96.922$ 4.4.40293.1 None \(4\) \(-4\) \(-1\) \(-4\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.cb 12138.a 1.a $4$ $96.922$ \(\Q(\zeta_{16})^+\) None \(4\) \(-4\) \(4\) \(-4\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
12138.2.a.cc 12138.a 1.a $4$ $96.922$ \(\Q(\zeta_{16})^+\) None \(4\) \(4\) \(-4\) \(4\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
12138.2.a.cd 12138.a 1.a $4$ $96.922$ 4.4.40293.1 None \(4\) \(4\) \(1\) \(4\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.ce 12138.a 1.a $6$ $96.922$ 6.6.428564992.1 None \(-6\) \(-6\) \(2\) \(-6\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.cf 12138.a 1.a $6$ $96.922$ 6.6.3916917.1 None \(-6\) \(-6\) \(3\) \(-6\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.cg 12138.a 1.a $6$ $96.922$ 6.6.7328637.1 None \(-6\) \(-6\) \(3\) \(-6\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
12138.2.a.ch 12138.a 1.a $6$ $96.922$ 6.6.5911461.1 None \(-6\) \(-6\) \(3\) \(6\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
12138.2.a.ci 12138.a 1.a $6$ $96.922$ 6.6.1292517.1 None \(-6\) \(-6\) \(3\) \(6\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.cj 12138.a 1.a $6$ $96.922$ 6.6.5911461.1 None \(-6\) \(6\) \(-3\) \(-6\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.ck 12138.a 1.a $6$ $96.922$ 6.6.1292517.1 None \(-6\) \(6\) \(-3\) \(-6\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
12138.2.a.cl 12138.a 1.a $6$ $96.922$ 6.6.7328637.1 None \(-6\) \(6\) \(-3\) \(6\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.cm 12138.a 1.a $6$ $96.922$ 6.6.3916917.1 None \(-6\) \(6\) \(-3\) \(6\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
12138.2.a.cn 12138.a 1.a $6$ $96.922$ 6.6.428564992.1 None \(-6\) \(6\) \(-2\) \(6\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.co 12138.a 1.a $6$ $96.922$ 6.6.134742528.1 None \(6\) \(-6\) \(-6\) \(-6\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.cp 12138.a 1.a $6$ $96.922$ 6.6.24334749.1 None \(6\) \(-6\) \(-3\) \(-6\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
12138.2.a.cq 12138.a 1.a $6$ $96.922$ 6.6.18298629.1 None \(6\) \(-6\) \(-3\) \(6\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.cr 12138.a 1.a $6$ $96.922$ 6.6.1397493.1 None \(6\) \(-6\) \(9\) \(-6\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.cs 12138.a 1.a $6$ $96.922$ 6.6.7328637.1 None \(6\) \(-6\) \(9\) \(6\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
12138.2.a.ct 12138.a 1.a $6$ $96.922$ 6.6.7328637.1 None \(6\) \(6\) \(-9\) \(-6\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
12138.2.a.cu 12138.a 1.a $6$ $96.922$ 6.6.1397493.1 None \(6\) \(6\) \(-9\) \(6\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
12138.2.a.cv 12138.a 1.a $6$ $96.922$ 6.6.18298629.1 None \(6\) \(6\) \(3\) \(-6\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
12138.2.a.cw 12138.a 1.a $6$ $96.922$ 6.6.24334749.1 None \(6\) \(6\) \(3\) \(6\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.cx 12138.a 1.a $6$ $96.922$ 6.6.134742528.1 None \(6\) \(6\) \(6\) \(6\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
12138.2.a.cy 12138.a 1.a $8$ $96.922$ 8.8.\(\cdots\).1 None \(-8\) \(-8\) \(-12\) \(-8\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
12138.2.a.cz 12138.a 1.a $8$ $96.922$ 8.8.\(\cdots\).1 None \(-8\) \(-8\) \(-4\) \(8\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
12138.2.a.da 12138.a 1.a $8$ $96.922$ 8.8.\(\cdots\).1 None \(-8\) \(8\) \(4\) \(-8\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
12138.2.a.db 12138.a 1.a $8$ $96.922$ 8.8.\(\cdots\).1 None \(-8\) \(8\) \(12\) \(8\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
12138.2.a.dc 12138.a 1.a $12$ $96.922$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(12\) \(-12\) \(-4\) \(12\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
12138.2.a.dd 12138.a 1.a $12$ $96.922$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(12\) \(12\) \(4\) \(-12\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(12138))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(12138)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(357))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(578))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(714))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(867))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1734))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2023))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4046))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6069))\)\(^{\oplus 2}\)