Properties

Label 1210.3.d.c.241.4
Level $1210$
Weight $3$
Character 1210.241
Analytic conductor $32.970$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1210,3,Mod(241,1210)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1210, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1210.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1210 = 2 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1210.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9701119876\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 92 x^{14} - 504 x^{13} + 3078 x^{12} - 12280 x^{11} + 49836 x^{10} - 147672 x^{9} + \cdots + 339856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.4
Root \(0.500000 + 1.09141i\) of defining polynomial
Character \(\chi\) \(=\) 1210.241
Dual form 1210.3.d.c.241.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -1.40090 q^{3} -2.00000 q^{4} -2.23607 q^{5} +1.98117i q^{6} -12.9437i q^{7} +2.82843i q^{8} -7.03748 q^{9} +3.16228i q^{10} +2.80180 q^{12} -13.2743i q^{13} -18.3052 q^{14} +3.13251 q^{15} +4.00000 q^{16} -22.4912i q^{17} +9.95250i q^{18} -20.9333i q^{19} +4.47214 q^{20} +18.1329i q^{21} -3.64326 q^{23} -3.96234i q^{24} +5.00000 q^{25} -18.7727 q^{26} +22.4669 q^{27} +25.8875i q^{28} -0.408409i q^{29} -4.43004i q^{30} -14.7219 q^{31} -5.65685i q^{32} -31.8073 q^{34} +28.9431i q^{35} +14.0750 q^{36} +72.6033 q^{37} -29.6041 q^{38} +18.5960i q^{39} -6.32456i q^{40} +15.5499i q^{41} +25.6438 q^{42} -83.0551i q^{43} +15.7363 q^{45} +5.15234i q^{46} -66.4284 q^{47} -5.60360 q^{48} -118.541 q^{49} -7.07107i q^{50} +31.5079i q^{51} +26.5486i q^{52} -52.2639 q^{53} -31.7730i q^{54} +36.6104 q^{56} +29.3254i q^{57} -0.577578 q^{58} +23.6028 q^{59} -6.26502 q^{60} +56.9548i q^{61} +20.8199i q^{62} +91.0913i q^{63} -8.00000 q^{64} +29.6823i q^{65} +65.4437 q^{67} +44.9823i q^{68} +5.10384 q^{69} +40.9317 q^{70} -33.5584 q^{71} -19.9050i q^{72} -17.1197i q^{73} -102.677i q^{74} -7.00450 q^{75} +41.8666i q^{76} +26.2987 q^{78} -70.8035i q^{79} -8.94427 q^{80} +31.8634 q^{81} +21.9908 q^{82} +93.3805i q^{83} -36.2658i q^{84} +50.2918i q^{85} -117.458 q^{86} +0.572141i q^{87} -24.2634 q^{89} -22.2545i q^{90} -171.819 q^{91} +7.28652 q^{92} +20.6239 q^{93} +93.9440i q^{94} +46.8082i q^{95} +7.92469i q^{96} +77.6721 q^{97} +167.642i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{3} - 32 q^{4} + 40 q^{9} + 32 q^{12} + 16 q^{14} + 40 q^{15} + 64 q^{16} + 108 q^{23} + 80 q^{25} - 292 q^{27} - 268 q^{31} - 16 q^{34} - 80 q^{36} + 44 q^{37} - 280 q^{38} - 16 q^{42} - 476 q^{47}+ \cdots + 296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1210\mathbb{Z}\right)^\times\).

\(n\) \(727\) \(1091\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) −1.40090 −0.466967 −0.233483 0.972361i \(-0.575012\pi\)
−0.233483 + 0.972361i \(0.575012\pi\)
\(4\) −2.00000 −0.500000
\(5\) −2.23607 −0.447214
\(6\) 1.98117i 0.330195i
\(7\) − 12.9437i − 1.84911i −0.381053 0.924553i \(-0.624438\pi\)
0.381053 0.924553i \(-0.375562\pi\)
\(8\) 2.82843i 0.353553i
\(9\) −7.03748 −0.781942
\(10\) 3.16228i 0.316228i
\(11\) 0 0
\(12\) 2.80180 0.233483
\(13\) − 13.2743i − 1.02110i −0.859848 0.510551i \(-0.829442\pi\)
0.859848 0.510551i \(-0.170558\pi\)
\(14\) −18.3052 −1.30752
\(15\) 3.13251 0.208834
\(16\) 4.00000 0.250000
\(17\) − 22.4912i − 1.32301i −0.749941 0.661505i \(-0.769918\pi\)
0.749941 0.661505i \(-0.230082\pi\)
\(18\) 9.95250i 0.552917i
\(19\) − 20.9333i − 1.10175i −0.834587 0.550876i \(-0.814294\pi\)
0.834587 0.550876i \(-0.185706\pi\)
\(20\) 4.47214 0.223607
\(21\) 18.1329i 0.863471i
\(22\) 0 0
\(23\) −3.64326 −0.158403 −0.0792013 0.996859i \(-0.525237\pi\)
−0.0792013 + 0.996859i \(0.525237\pi\)
\(24\) − 3.96234i − 0.165098i
\(25\) 5.00000 0.200000
\(26\) −18.7727 −0.722028
\(27\) 22.4669 0.832108
\(28\) 25.8875i 0.924553i
\(29\) − 0.408409i − 0.0140831i −0.999975 0.00704154i \(-0.997759\pi\)
0.999975 0.00704154i \(-0.00224141\pi\)
\(30\) − 4.43004i − 0.147668i
\(31\) −14.7219 −0.474900 −0.237450 0.971400i \(-0.576312\pi\)
−0.237450 + 0.971400i \(0.576312\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) −31.8073 −0.935509
\(35\) 28.9431i 0.826946i
\(36\) 14.0750 0.390971
\(37\) 72.6033 1.96225 0.981126 0.193368i \(-0.0619411\pi\)
0.981126 + 0.193368i \(0.0619411\pi\)
\(38\) −29.6041 −0.779056
\(39\) 18.5960i 0.476820i
\(40\) − 6.32456i − 0.158114i
\(41\) 15.5499i 0.379265i 0.981855 + 0.189633i \(0.0607297\pi\)
−0.981855 + 0.189633i \(0.939270\pi\)
\(42\) 25.6438 0.610566
\(43\) − 83.0551i − 1.93151i −0.259449 0.965757i \(-0.583541\pi\)
0.259449 0.965757i \(-0.416459\pi\)
\(44\) 0 0
\(45\) 15.7363 0.349695
\(46\) 5.15234i 0.112007i
\(47\) −66.4284 −1.41337 −0.706686 0.707528i \(-0.749810\pi\)
−0.706686 + 0.707528i \(0.749810\pi\)
\(48\) −5.60360 −0.116742
\(49\) −118.541 −2.41919
\(50\) − 7.07107i − 0.141421i
\(51\) 31.5079i 0.617802i
\(52\) 26.5486i 0.510551i
\(53\) −52.2639 −0.986112 −0.493056 0.869998i \(-0.664120\pi\)
−0.493056 + 0.869998i \(0.664120\pi\)
\(54\) − 31.7730i − 0.588389i
\(55\) 0 0
\(56\) 36.6104 0.653758
\(57\) 29.3254i 0.514481i
\(58\) −0.577578 −0.00995824
\(59\) 23.6028 0.400048 0.200024 0.979791i \(-0.435898\pi\)
0.200024 + 0.979791i \(0.435898\pi\)
\(60\) −6.26502 −0.104417
\(61\) 56.9548i 0.933685i 0.884341 + 0.466842i \(0.154608\pi\)
−0.884341 + 0.466842i \(0.845392\pi\)
\(62\) 20.8199i 0.335805i
\(63\) 91.0913i 1.44589i
\(64\) −8.00000 −0.125000
\(65\) 29.6823i 0.456650i
\(66\) 0 0
\(67\) 65.4437 0.976771 0.488386 0.872628i \(-0.337586\pi\)
0.488386 + 0.872628i \(0.337586\pi\)
\(68\) 44.9823i 0.661505i
\(69\) 5.10384 0.0739687
\(70\) 40.9317 0.584739
\(71\) −33.5584 −0.472654 −0.236327 0.971674i \(-0.575944\pi\)
−0.236327 + 0.971674i \(0.575944\pi\)
\(72\) − 19.9050i − 0.276458i
\(73\) − 17.1197i − 0.234517i −0.993101 0.117258i \(-0.962589\pi\)
0.993101 0.117258i \(-0.0374106\pi\)
\(74\) − 102.677i − 1.38752i
\(75\) −7.00450 −0.0933934
\(76\) 41.8666i 0.550876i
\(77\) 0 0
\(78\) 26.2987 0.337163
\(79\) − 70.8035i − 0.896247i −0.893972 0.448123i \(-0.852092\pi\)
0.893972 0.448123i \(-0.147908\pi\)
\(80\) −8.94427 −0.111803
\(81\) 31.8634 0.393375
\(82\) 21.9908 0.268181
\(83\) 93.3805i 1.12507i 0.826775 + 0.562533i \(0.190173\pi\)
−0.826775 + 0.562533i \(0.809827\pi\)
\(84\) − 36.2658i − 0.431736i
\(85\) 50.2918i 0.591668i
\(86\) −117.458 −1.36579
\(87\) 0.572141i 0.00657633i
\(88\) 0 0
\(89\) −24.2634 −0.272622 −0.136311 0.990666i \(-0.543525\pi\)
−0.136311 + 0.990666i \(0.543525\pi\)
\(90\) − 22.2545i − 0.247272i
\(91\) −171.819 −1.88812
\(92\) 7.28652 0.0792013
\(93\) 20.6239 0.221762
\(94\) 93.9440i 0.999404i
\(95\) 46.8082i 0.492718i
\(96\) 7.92469i 0.0825488i
\(97\) 77.6721 0.800743 0.400371 0.916353i \(-0.368881\pi\)
0.400371 + 0.916353i \(0.368881\pi\)
\(98\) 167.642i 1.71063i
\(99\) 0 0
\(100\) −10.0000 −0.100000
\(101\) 63.0549i 0.624306i 0.950032 + 0.312153i \(0.101050\pi\)
−0.950032 + 0.312153i \(0.898950\pi\)
\(102\) 44.5589 0.436852
\(103\) 33.8999 0.329125 0.164562 0.986367i \(-0.447379\pi\)
0.164562 + 0.986367i \(0.447379\pi\)
\(104\) 37.5454 0.361014
\(105\) − 40.5464i − 0.386156i
\(106\) 73.9124i 0.697286i
\(107\) 58.9331i 0.550777i 0.961333 + 0.275388i \(0.0888064\pi\)
−0.961333 + 0.275388i \(0.911194\pi\)
\(108\) −44.9338 −0.416054
\(109\) 170.424i 1.56352i 0.623579 + 0.781760i \(0.285678\pi\)
−0.623579 + 0.781760i \(0.714322\pi\)
\(110\) 0 0
\(111\) −101.710 −0.916307
\(112\) − 51.7750i − 0.462277i
\(113\) −22.4704 −0.198853 −0.0994264 0.995045i \(-0.531701\pi\)
−0.0994264 + 0.995045i \(0.531701\pi\)
\(114\) 41.4724 0.363793
\(115\) 8.14657 0.0708398
\(116\) 0.816818i 0.00704154i
\(117\) 93.4177i 0.798442i
\(118\) − 33.3794i − 0.282877i
\(119\) −291.120 −2.44639
\(120\) 8.86007i 0.0738339i
\(121\) 0 0
\(122\) 80.5462 0.660215
\(123\) − 21.7838i − 0.177104i
\(124\) 29.4438 0.237450
\(125\) −11.1803 −0.0894427
\(126\) 128.823 1.02240
\(127\) − 49.6601i − 0.391024i −0.980701 0.195512i \(-0.937363\pi\)
0.980701 0.195512i \(-0.0626369\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 116.352i 0.901953i
\(130\) 41.9771 0.322901
\(131\) − 120.711i − 0.921456i −0.887541 0.460728i \(-0.847588\pi\)
0.887541 0.460728i \(-0.152412\pi\)
\(132\) 0 0
\(133\) −270.955 −2.03726
\(134\) − 92.5513i − 0.690682i
\(135\) −50.2375 −0.372130
\(136\) 63.6146 0.467755
\(137\) −164.807 −1.20297 −0.601485 0.798884i \(-0.705424\pi\)
−0.601485 + 0.798884i \(0.705424\pi\)
\(138\) − 7.21792i − 0.0523038i
\(139\) 114.360i 0.822735i 0.911470 + 0.411368i \(0.134949\pi\)
−0.911470 + 0.411368i \(0.865051\pi\)
\(140\) − 57.8862i − 0.413473i
\(141\) 93.0596 0.659997
\(142\) 47.4588i 0.334217i
\(143\) 0 0
\(144\) −28.1499 −0.195486
\(145\) 0.913231i 0.00629814i
\(146\) −24.2109 −0.165828
\(147\) 166.064 1.12968
\(148\) −145.207 −0.981126
\(149\) − 4.26385i − 0.0286164i −0.999898 0.0143082i \(-0.995445\pi\)
0.999898 0.0143082i \(-0.00455460\pi\)
\(150\) 9.90586i 0.0660391i
\(151\) − 63.7963i − 0.422492i −0.977433 0.211246i \(-0.932248\pi\)
0.977433 0.211246i \(-0.0677521\pi\)
\(152\) 59.2083 0.389528
\(153\) 158.281i 1.03452i
\(154\) 0 0
\(155\) 32.9192 0.212382
\(156\) − 37.1920i − 0.238410i
\(157\) 13.8309 0.0880946 0.0440473 0.999029i \(-0.485975\pi\)
0.0440473 + 0.999029i \(0.485975\pi\)
\(158\) −100.131 −0.633742
\(159\) 73.2166 0.460482
\(160\) 12.6491i 0.0790569i
\(161\) 47.1574i 0.292903i
\(162\) − 45.0617i − 0.278158i
\(163\) 151.812 0.931362 0.465681 0.884953i \(-0.345809\pi\)
0.465681 + 0.884953i \(0.345809\pi\)
\(164\) − 31.0997i − 0.189633i
\(165\) 0 0
\(166\) 132.060 0.795542
\(167\) 104.443i 0.625407i 0.949851 + 0.312703i \(0.101235\pi\)
−0.949851 + 0.312703i \(0.898765\pi\)
\(168\) −51.2876 −0.305283
\(169\) −7.20745 −0.0426476
\(170\) 71.1233 0.418372
\(171\) 147.317i 0.861506i
\(172\) 166.110i 0.965757i
\(173\) 177.042i 1.02336i 0.859176 + 0.511681i \(0.170977\pi\)
−0.859176 + 0.511681i \(0.829023\pi\)
\(174\) 0.809129 0.00465017
\(175\) − 64.7187i − 0.369821i
\(176\) 0 0
\(177\) −33.0652 −0.186809
\(178\) 34.3136i 0.192773i
\(179\) −73.9295 −0.413014 −0.206507 0.978445i \(-0.566210\pi\)
−0.206507 + 0.978445i \(0.566210\pi\)
\(180\) −31.4726 −0.174848
\(181\) 113.155 0.625164 0.312582 0.949891i \(-0.398806\pi\)
0.312582 + 0.949891i \(0.398806\pi\)
\(182\) 242.989i 1.33511i
\(183\) − 79.7879i − 0.436000i
\(184\) − 10.3047i − 0.0560037i
\(185\) −162.346 −0.877546
\(186\) − 29.1666i − 0.156810i
\(187\) 0 0
\(188\) 132.857 0.706686
\(189\) − 290.806i − 1.53866i
\(190\) 66.1968 0.348404
\(191\) 330.451 1.73011 0.865055 0.501677i \(-0.167283\pi\)
0.865055 + 0.501677i \(0.167283\pi\)
\(192\) 11.2072 0.0583708
\(193\) 67.5028i 0.349755i 0.984590 + 0.174878i \(0.0559530\pi\)
−0.984590 + 0.174878i \(0.944047\pi\)
\(194\) − 109.845i − 0.566211i
\(195\) − 41.5819i − 0.213241i
\(196\) 237.081 1.20960
\(197\) − 297.157i − 1.50841i −0.656637 0.754206i \(-0.728022\pi\)
0.656637 0.754206i \(-0.271978\pi\)
\(198\) 0 0
\(199\) 268.728 1.35039 0.675197 0.737638i \(-0.264059\pi\)
0.675197 + 0.737638i \(0.264059\pi\)
\(200\) 14.1421i 0.0707107i
\(201\) −91.6801 −0.456120
\(202\) 89.1730 0.441451
\(203\) −5.28634 −0.0260411
\(204\) − 63.0158i − 0.308901i
\(205\) − 34.7706i − 0.169613i
\(206\) − 47.9417i − 0.232727i
\(207\) 25.6393 0.123862
\(208\) − 53.0973i − 0.255275i
\(209\) 0 0
\(210\) −57.3413 −0.273054
\(211\) − 214.310i − 1.01569i −0.861450 0.507843i \(-0.830443\pi\)
0.861450 0.507843i \(-0.169557\pi\)
\(212\) 104.528 0.493056
\(213\) 47.0120 0.220714
\(214\) 83.3440 0.389458
\(215\) 185.717i 0.863799i
\(216\) 63.5460i 0.294195i
\(217\) 190.556i 0.878140i
\(218\) 241.016 1.10558
\(219\) 23.9830i 0.109512i
\(220\) 0 0
\(221\) −298.555 −1.35093
\(222\) 143.840i 0.647927i
\(223\) 135.355 0.606975 0.303488 0.952835i \(-0.401849\pi\)
0.303488 + 0.952835i \(0.401849\pi\)
\(224\) −73.2209 −0.326879
\(225\) −35.1874 −0.156388
\(226\) 31.7779i 0.140610i
\(227\) − 176.290i − 0.776609i −0.921531 0.388304i \(-0.873061\pi\)
0.921531 0.388304i \(-0.126939\pi\)
\(228\) − 58.6509i − 0.257241i
\(229\) −190.449 −0.831654 −0.415827 0.909444i \(-0.636508\pi\)
−0.415827 + 0.909444i \(0.636508\pi\)
\(230\) − 11.5210i − 0.0500913i
\(231\) 0 0
\(232\) 1.15516 0.00497912
\(233\) − 12.7100i − 0.0545494i −0.999628 0.0272747i \(-0.991317\pi\)
0.999628 0.0272747i \(-0.00868289\pi\)
\(234\) 132.113 0.564584
\(235\) 148.539 0.632079
\(236\) −47.2057 −0.200024
\(237\) 99.1887i 0.418518i
\(238\) 411.706i 1.72986i
\(239\) 35.7470i 0.149569i 0.997200 + 0.0747845i \(0.0238269\pi\)
−0.997200 + 0.0747845i \(0.976173\pi\)
\(240\) 12.5300 0.0522085
\(241\) 68.2311i 0.283117i 0.989930 + 0.141558i \(0.0452113\pi\)
−0.989930 + 0.141558i \(0.954789\pi\)
\(242\) 0 0
\(243\) −246.840 −1.01580
\(244\) − 113.910i − 0.466842i
\(245\) 265.065 1.08190
\(246\) −30.8070 −0.125232
\(247\) −277.875 −1.12500
\(248\) − 41.6398i − 0.167902i
\(249\) − 130.817i − 0.525369i
\(250\) 15.8114i 0.0632456i
\(251\) −18.4384 −0.0734596 −0.0367298 0.999325i \(-0.511694\pi\)
−0.0367298 + 0.999325i \(0.511694\pi\)
\(252\) − 182.183i − 0.722947i
\(253\) 0 0
\(254\) −70.2300 −0.276496
\(255\) − 70.4538i − 0.276289i
\(256\) 16.0000 0.0625000
\(257\) 20.7937 0.0809095 0.0404548 0.999181i \(-0.487119\pi\)
0.0404548 + 0.999181i \(0.487119\pi\)
\(258\) 164.546 0.637777
\(259\) − 939.759i − 3.62841i
\(260\) − 59.3645i − 0.228325i
\(261\) 2.87417i 0.0110121i
\(262\) −170.711 −0.651568
\(263\) 227.802i 0.866167i 0.901354 + 0.433083i \(0.142574\pi\)
−0.901354 + 0.433083i \(0.857426\pi\)
\(264\) 0 0
\(265\) 116.866 0.441003
\(266\) 383.188i 1.44056i
\(267\) 33.9906 0.127306
\(268\) −130.887 −0.488386
\(269\) 253.579 0.942672 0.471336 0.881954i \(-0.343772\pi\)
0.471336 + 0.881954i \(0.343772\pi\)
\(270\) 71.0466i 0.263136i
\(271\) − 103.650i − 0.382473i −0.981544 0.191237i \(-0.938750\pi\)
0.981544 0.191237i \(-0.0612498\pi\)
\(272\) − 89.9647i − 0.330752i
\(273\) 240.702 0.881692
\(274\) 233.072i 0.850628i
\(275\) 0 0
\(276\) −10.2077 −0.0369844
\(277\) − 329.481i − 1.18946i −0.803924 0.594732i \(-0.797258\pi\)
0.803924 0.594732i \(-0.202742\pi\)
\(278\) 161.730 0.581762
\(279\) 103.605 0.371344
\(280\) −81.8634 −0.292369
\(281\) − 436.320i − 1.55274i −0.630278 0.776370i \(-0.717059\pi\)
0.630278 0.776370i \(-0.282941\pi\)
\(282\) − 131.606i − 0.466689i
\(283\) 273.197i 0.965361i 0.875796 + 0.482681i \(0.160337\pi\)
−0.875796 + 0.482681i \(0.839663\pi\)
\(284\) 67.1168 0.236327
\(285\) − 65.5737i − 0.230083i
\(286\) 0 0
\(287\) 201.274 0.701302
\(288\) 39.8100i 0.138229i
\(289\) −216.853 −0.750355
\(290\) 1.29150 0.00445346
\(291\) −108.811 −0.373920
\(292\) 34.2394i 0.117258i
\(293\) − 247.912i − 0.846116i −0.906103 0.423058i \(-0.860957\pi\)
0.906103 0.423058i \(-0.139043\pi\)
\(294\) − 234.849i − 0.798807i
\(295\) −52.7775 −0.178907
\(296\) 205.353i 0.693761i
\(297\) 0 0
\(298\) −6.02999 −0.0202349
\(299\) 48.3618i 0.161745i
\(300\) 14.0090 0.0466967
\(301\) −1075.04 −3.57157
\(302\) −90.2216 −0.298747
\(303\) − 88.3336i − 0.291530i
\(304\) − 83.7331i − 0.275438i
\(305\) − 127.355i − 0.417556i
\(306\) 223.843 0.731514
\(307\) − 382.783i − 1.24685i −0.781884 0.623425i \(-0.785741\pi\)
0.781884 0.623425i \(-0.214259\pi\)
\(308\) 0 0
\(309\) −47.4903 −0.153690
\(310\) − 46.5547i − 0.150177i
\(311\) 202.814 0.652134 0.326067 0.945347i \(-0.394277\pi\)
0.326067 + 0.945347i \(0.394277\pi\)
\(312\) −52.5974 −0.168581
\(313\) −95.6903 −0.305720 −0.152860 0.988248i \(-0.548848\pi\)
−0.152860 + 0.988248i \(0.548848\pi\)
\(314\) − 19.5598i − 0.0622923i
\(315\) − 203.686i − 0.646623i
\(316\) 141.607i 0.448123i
\(317\) −187.943 −0.592881 −0.296441 0.955051i \(-0.595800\pi\)
−0.296441 + 0.955051i \(0.595800\pi\)
\(318\) − 103.544i − 0.325610i
\(319\) 0 0
\(320\) 17.8885 0.0559017
\(321\) − 82.5594i − 0.257194i
\(322\) 66.6906 0.207114
\(323\) −470.814 −1.45763
\(324\) −63.7268 −0.196688
\(325\) − 66.3716i − 0.204220i
\(326\) − 214.695i − 0.658573i
\(327\) − 238.747i − 0.730112i
\(328\) −43.9817 −0.134091
\(329\) 859.833i 2.61347i
\(330\) 0 0
\(331\) −283.782 −0.857349 −0.428674 0.903459i \(-0.641019\pi\)
−0.428674 + 0.903459i \(0.641019\pi\)
\(332\) − 186.761i − 0.562533i
\(333\) −510.944 −1.53437
\(334\) 147.705 0.442230
\(335\) −146.337 −0.436825
\(336\) 72.5316i 0.215868i
\(337\) 498.268i 1.47854i 0.673409 + 0.739270i \(0.264829\pi\)
−0.673409 + 0.739270i \(0.735171\pi\)
\(338\) 10.1929i 0.0301564i
\(339\) 31.4787 0.0928576
\(340\) − 100.584i − 0.295834i
\(341\) 0 0
\(342\) 208.338 0.609177
\(343\) 900.115i 2.62424i
\(344\) 234.915 0.682893
\(345\) −11.4125 −0.0330798
\(346\) 250.375 0.723626
\(347\) 247.160i 0.712276i 0.934433 + 0.356138i \(0.115907\pi\)
−0.934433 + 0.356138i \(0.884093\pi\)
\(348\) − 1.14428i − 0.00328816i
\(349\) − 566.031i − 1.62187i −0.585139 0.810933i \(-0.698960\pi\)
0.585139 0.810933i \(-0.301040\pi\)
\(350\) −91.5261 −0.261503
\(351\) − 298.233i − 0.849666i
\(352\) 0 0
\(353\) 206.341 0.584536 0.292268 0.956336i \(-0.405590\pi\)
0.292268 + 0.956336i \(0.405590\pi\)
\(354\) 46.7613i 0.132094i
\(355\) 75.0389 0.211377
\(356\) 48.5268 0.136311
\(357\) 407.830 1.14238
\(358\) 104.552i 0.292045i
\(359\) − 618.192i − 1.72198i −0.508619 0.860992i \(-0.669844\pi\)
0.508619 0.860992i \(-0.330156\pi\)
\(360\) 44.5089i 0.123636i
\(361\) −77.2022 −0.213856
\(362\) − 160.025i − 0.442058i
\(363\) 0 0
\(364\) 343.639 0.944062
\(365\) 38.2809i 0.104879i
\(366\) −112.837 −0.308298
\(367\) −616.708 −1.68040 −0.840202 0.542274i \(-0.817563\pi\)
−0.840202 + 0.542274i \(0.817563\pi\)
\(368\) −14.5730 −0.0396006
\(369\) − 109.432i − 0.296563i
\(370\) 229.592i 0.620519i
\(371\) 676.491i 1.82343i
\(372\) −41.2478 −0.110881
\(373\) − 661.539i − 1.77356i −0.462188 0.886782i \(-0.652936\pi\)
0.462188 0.886782i \(-0.347064\pi\)
\(374\) 0 0
\(375\) 15.6625 0.0417668
\(376\) − 187.888i − 0.499702i
\(377\) −5.42135 −0.0143802
\(378\) −411.262 −1.08799
\(379\) 113.126 0.298486 0.149243 0.988801i \(-0.452316\pi\)
0.149243 + 0.988801i \(0.452316\pi\)
\(380\) − 93.6165i − 0.246359i
\(381\) 69.5689i 0.182595i
\(382\) − 467.328i − 1.22337i
\(383\) 625.977 1.63440 0.817202 0.576352i \(-0.195524\pi\)
0.817202 + 0.576352i \(0.195524\pi\)
\(384\) − 15.8494i − 0.0412744i
\(385\) 0 0
\(386\) 95.4634 0.247314
\(387\) 584.498i 1.51033i
\(388\) −155.344 −0.400371
\(389\) 242.609 0.623674 0.311837 0.950136i \(-0.399056\pi\)
0.311837 + 0.950136i \(0.399056\pi\)
\(390\) −58.8057 −0.150784
\(391\) 81.9411i 0.209568i
\(392\) − 335.283i − 0.855315i
\(393\) 169.104i 0.430290i
\(394\) −420.244 −1.06661
\(395\) 158.321i 0.400814i
\(396\) 0 0
\(397\) −477.057 −1.20165 −0.600827 0.799379i \(-0.705162\pi\)
−0.600827 + 0.799379i \(0.705162\pi\)
\(398\) − 380.039i − 0.954872i
\(399\) 379.581 0.951331
\(400\) 20.0000 0.0500000
\(401\) −333.453 −0.831553 −0.415777 0.909467i \(-0.636490\pi\)
−0.415777 + 0.909467i \(0.636490\pi\)
\(402\) 129.655i 0.322525i
\(403\) 195.423i 0.484921i
\(404\) − 126.110i − 0.312153i
\(405\) −71.2487 −0.175923
\(406\) 7.47602i 0.0184138i
\(407\) 0 0
\(408\) −89.1178 −0.218426
\(409\) − 13.6989i − 0.0334937i −0.999860 0.0167468i \(-0.994669\pi\)
0.999860 0.0167468i \(-0.00533094\pi\)
\(410\) −49.1730 −0.119934
\(411\) 230.878 0.561747
\(412\) −67.7997 −0.164562
\(413\) − 305.509i − 0.739731i
\(414\) − 36.2595i − 0.0875834i
\(415\) − 208.805i − 0.503145i
\(416\) −75.0909 −0.180507
\(417\) − 160.207i − 0.384190i
\(418\) 0 0
\(419\) −21.0470 −0.0502316 −0.0251158 0.999685i \(-0.507995\pi\)
−0.0251158 + 0.999685i \(0.507995\pi\)
\(420\) 81.0928i 0.193078i
\(421\) −357.356 −0.848828 −0.424414 0.905468i \(-0.639520\pi\)
−0.424414 + 0.905468i \(0.639520\pi\)
\(422\) −303.080 −0.718198
\(423\) 467.489 1.10517
\(424\) − 147.825i − 0.348643i
\(425\) − 112.456i − 0.264602i
\(426\) − 66.4850i − 0.156068i
\(427\) 737.208 1.72648
\(428\) − 117.866i − 0.275388i
\(429\) 0 0
\(430\) 262.643 0.610798
\(431\) 439.263i 1.01917i 0.860420 + 0.509586i \(0.170201\pi\)
−0.860420 + 0.509586i \(0.829799\pi\)
\(432\) 89.8676 0.208027
\(433\) −259.257 −0.598745 −0.299373 0.954136i \(-0.596777\pi\)
−0.299373 + 0.954136i \(0.596777\pi\)
\(434\) 269.488 0.620939
\(435\) − 1.27935i − 0.00294102i
\(436\) − 340.847i − 0.781760i
\(437\) 76.2653i 0.174520i
\(438\) 33.9171 0.0774364
\(439\) − 531.988i − 1.21182i −0.795534 0.605909i \(-0.792810\pi\)
0.795534 0.605909i \(-0.207190\pi\)
\(440\) 0 0
\(441\) 834.227 1.89167
\(442\) 422.220i 0.955250i
\(443\) 405.912 0.916281 0.458140 0.888880i \(-0.348516\pi\)
0.458140 + 0.888880i \(0.348516\pi\)
\(444\) 203.420 0.458153
\(445\) 54.2546 0.121920
\(446\) − 191.422i − 0.429196i
\(447\) 5.97323i 0.0133629i
\(448\) 103.550i 0.231138i
\(449\) −566.274 −1.26119 −0.630595 0.776112i \(-0.717189\pi\)
−0.630595 + 0.776112i \(0.717189\pi\)
\(450\) 49.7625i 0.110583i
\(451\) 0 0
\(452\) 44.9407 0.0994264
\(453\) 89.3723i 0.197290i
\(454\) −249.312 −0.549145
\(455\) 384.200 0.844395
\(456\) −82.9449 −0.181897
\(457\) − 343.900i − 0.752517i −0.926515 0.376258i \(-0.877211\pi\)
0.926515 0.376258i \(-0.122789\pi\)
\(458\) 269.335i 0.588068i
\(459\) − 505.307i − 1.10089i
\(460\) −16.2931 −0.0354199
\(461\) − 545.981i − 1.18434i −0.805813 0.592170i \(-0.798271\pi\)
0.805813 0.592170i \(-0.201729\pi\)
\(462\) 0 0
\(463\) 318.490 0.687883 0.343941 0.938991i \(-0.388238\pi\)
0.343941 + 0.938991i \(0.388238\pi\)
\(464\) − 1.63364i − 0.00352077i
\(465\) −46.1165 −0.0991752
\(466\) −17.9747 −0.0385723
\(467\) 10.2324 0.0219110 0.0109555 0.999940i \(-0.496513\pi\)
0.0109555 + 0.999940i \(0.496513\pi\)
\(468\) − 186.835i − 0.399221i
\(469\) − 847.086i − 1.80615i
\(470\) − 210.065i − 0.446947i
\(471\) −19.3756 −0.0411372
\(472\) 66.7589i 0.141438i
\(473\) 0 0
\(474\) 140.274 0.295937
\(475\) − 104.666i − 0.220350i
\(476\) 582.240 1.22319
\(477\) 367.806 0.771082
\(478\) 50.5539 0.105761
\(479\) 364.015i 0.759947i 0.924997 + 0.379973i \(0.124067\pi\)
−0.924997 + 0.379973i \(0.875933\pi\)
\(480\) − 17.7201i − 0.0369170i
\(481\) − 963.760i − 2.00366i
\(482\) 96.4933 0.200194
\(483\) − 66.0628i − 0.136776i
\(484\) 0 0
\(485\) −173.680 −0.358103
\(486\) 349.084i 0.718280i
\(487\) 215.800 0.443121 0.221560 0.975147i \(-0.428885\pi\)
0.221560 + 0.975147i \(0.428885\pi\)
\(488\) −161.092 −0.330107
\(489\) −212.674 −0.434915
\(490\) − 374.858i − 0.765017i
\(491\) 830.488i 1.69142i 0.533641 + 0.845711i \(0.320823\pi\)
−0.533641 + 0.845711i \(0.679177\pi\)
\(492\) 43.5676i 0.0885521i
\(493\) −9.18560 −0.0186320
\(494\) 392.975i 0.795495i
\(495\) 0 0
\(496\) −58.8876 −0.118725
\(497\) 434.371i 0.873987i
\(498\) −185.003 −0.371492
\(499\) −201.822 −0.404453 −0.202227 0.979339i \(-0.564818\pi\)
−0.202227 + 0.979339i \(0.564818\pi\)
\(500\) 22.3607 0.0447214
\(501\) − 146.314i − 0.292044i
\(502\) 26.0758i 0.0519438i
\(503\) 540.336i 1.07423i 0.843510 + 0.537113i \(0.180485\pi\)
−0.843510 + 0.537113i \(0.819515\pi\)
\(504\) −257.645 −0.511201
\(505\) − 140.995i − 0.279198i
\(506\) 0 0
\(507\) 10.0969 0.0199150
\(508\) 99.3202i 0.195512i
\(509\) 441.188 0.866773 0.433387 0.901208i \(-0.357318\pi\)
0.433387 + 0.901208i \(0.357318\pi\)
\(510\) −99.6367 −0.195366
\(511\) −221.593 −0.433646
\(512\) − 22.6274i − 0.0441942i
\(513\) − 470.306i − 0.916776i
\(514\) − 29.4068i − 0.0572117i
\(515\) −75.8024 −0.147189
\(516\) − 232.704i − 0.450976i
\(517\) 0 0
\(518\) −1329.02 −2.56568
\(519\) − 248.018i − 0.477876i
\(520\) −83.9541 −0.161450
\(521\) −887.995 −1.70441 −0.852203 0.523212i \(-0.824734\pi\)
−0.852203 + 0.523212i \(0.824734\pi\)
\(522\) 4.06469 0.00778676
\(523\) 723.040i 1.38249i 0.722622 + 0.691243i \(0.242937\pi\)
−0.722622 + 0.691243i \(0.757063\pi\)
\(524\) 241.422i 0.460728i
\(525\) 90.6645i 0.172694i
\(526\) 322.161 0.612473
\(527\) 331.113i 0.628297i
\(528\) 0 0
\(529\) −515.727 −0.974909
\(530\) − 165.273i − 0.311836i
\(531\) −166.104 −0.312814
\(532\) 541.910 1.01863
\(533\) 206.414 0.387268
\(534\) − 48.0700i − 0.0900187i
\(535\) − 131.778i − 0.246315i
\(536\) 185.103i 0.345341i
\(537\) 103.568 0.192864
\(538\) − 358.614i − 0.666570i
\(539\) 0 0
\(540\) 100.475 0.186065
\(541\) − 156.074i − 0.288492i −0.989542 0.144246i \(-0.953924\pi\)
0.989542 0.144246i \(-0.0460757\pi\)
\(542\) −146.584 −0.270450
\(543\) −158.519 −0.291931
\(544\) −127.229 −0.233877
\(545\) − 381.079i − 0.699227i
\(546\) − 340.404i − 0.623450i
\(547\) 70.4507i 0.128795i 0.997924 + 0.0643973i \(0.0205125\pi\)
−0.997924 + 0.0643973i \(0.979487\pi\)
\(548\) 329.614 0.601485
\(549\) − 400.818i − 0.730087i
\(550\) 0 0
\(551\) −8.54934 −0.0155160
\(552\) 14.4358i 0.0261519i
\(553\) −916.463 −1.65726
\(554\) −465.957 −0.841078
\(555\) 227.431 0.409785
\(556\) − 228.720i − 0.411368i
\(557\) − 65.2295i − 0.117109i −0.998284 0.0585543i \(-0.981351\pi\)
0.998284 0.0585543i \(-0.0186491\pi\)
\(558\) − 146.520i − 0.262580i
\(559\) −1102.50 −1.97227
\(560\) 115.772i 0.206736i
\(561\) 0 0
\(562\) −617.049 −1.09795
\(563\) 83.5605i 0.148420i 0.997243 + 0.0742100i \(0.0236435\pi\)
−0.997243 + 0.0742100i \(0.976356\pi\)
\(564\) −186.119 −0.329999
\(565\) 50.2452 0.0889296
\(566\) 386.359 0.682614
\(567\) − 412.432i − 0.727393i
\(568\) − 94.9175i − 0.167108i
\(569\) − 465.539i − 0.818170i −0.912496 0.409085i \(-0.865848\pi\)
0.912496 0.409085i \(-0.134152\pi\)
\(570\) −92.7352 −0.162693
\(571\) 523.333i 0.916520i 0.888818 + 0.458260i \(0.151527\pi\)
−0.888818 + 0.458260i \(0.848473\pi\)
\(572\) 0 0
\(573\) −462.929 −0.807904
\(574\) − 284.644i − 0.495895i
\(575\) −18.2163 −0.0316805
\(576\) 56.2998 0.0977428
\(577\) 609.950 1.05711 0.528553 0.848900i \(-0.322735\pi\)
0.528553 + 0.848900i \(0.322735\pi\)
\(578\) 306.676i 0.530581i
\(579\) − 94.5647i − 0.163324i
\(580\) − 1.82646i − 0.00314907i
\(581\) 1208.69 2.08037
\(582\) 153.882i 0.264402i
\(583\) 0 0
\(584\) 48.4219 0.0829142
\(585\) − 208.888i − 0.357074i
\(586\) −350.601 −0.598295
\(587\) 102.776 0.175087 0.0875433 0.996161i \(-0.472098\pi\)
0.0875433 + 0.996161i \(0.472098\pi\)
\(588\) −332.127 −0.564842
\(589\) 308.178i 0.523222i
\(590\) 74.6387i 0.126506i
\(591\) 416.288i 0.704379i
\(592\) 290.413 0.490563
\(593\) 1035.02i 1.74539i 0.488265 + 0.872695i \(0.337630\pi\)
−0.488265 + 0.872695i \(0.662370\pi\)
\(594\) 0 0
\(595\) 650.964 1.09406
\(596\) 8.52769i 0.0143082i
\(597\) −376.462 −0.630589
\(598\) 68.3939 0.114371
\(599\) 177.980 0.297129 0.148564 0.988903i \(-0.452535\pi\)
0.148564 + 0.988903i \(0.452535\pi\)
\(600\) − 19.8117i − 0.0330195i
\(601\) 199.308i 0.331627i 0.986157 + 0.165813i \(0.0530249\pi\)
−0.986157 + 0.165813i \(0.946975\pi\)
\(602\) 1520.34i 2.52548i
\(603\) −460.559 −0.763779
\(604\) 127.593i 0.211246i
\(605\) 0 0
\(606\) −124.923 −0.206143
\(607\) − 363.011i − 0.598041i −0.954247 0.299021i \(-0.903340\pi\)
0.954247 0.299021i \(-0.0966600\pi\)
\(608\) −118.417 −0.194764
\(609\) 7.40564 0.0121603
\(610\) −180.107 −0.295257
\(611\) 881.792i 1.44320i
\(612\) − 316.562i − 0.517258i
\(613\) − 257.811i − 0.420573i −0.977640 0.210286i \(-0.932560\pi\)
0.977640 0.210286i \(-0.0674397\pi\)
\(614\) −541.336 −0.881655
\(615\) 48.7101i 0.0792034i
\(616\) 0 0
\(617\) 516.144 0.836538 0.418269 0.908323i \(-0.362637\pi\)
0.418269 + 0.908323i \(0.362637\pi\)
\(618\) 67.1615i 0.108676i
\(619\) 625.277 1.01014 0.505070 0.863078i \(-0.331467\pi\)
0.505070 + 0.863078i \(0.331467\pi\)
\(620\) −65.8383 −0.106191
\(621\) −81.8527 −0.131808
\(622\) − 286.822i − 0.461128i
\(623\) 314.059i 0.504108i
\(624\) 74.3840i 0.119205i
\(625\) 25.0000 0.0400000
\(626\) 135.327i 0.216177i
\(627\) 0 0
\(628\) −27.6617 −0.0440473
\(629\) − 1632.93i − 2.59608i
\(630\) −288.056 −0.457232
\(631\) −28.5483 −0.0452429 −0.0226214 0.999744i \(-0.507201\pi\)
−0.0226214 + 0.999744i \(0.507201\pi\)
\(632\) 200.263 0.316871
\(633\) 300.227i 0.474292i
\(634\) 265.792i 0.419230i
\(635\) 111.043i 0.174871i
\(636\) −146.433 −0.230241
\(637\) 1573.54i 2.47024i
\(638\) 0 0
\(639\) 236.167 0.369588
\(640\) − 25.2982i − 0.0395285i
\(641\) 1203.45 1.87745 0.938725 0.344667i \(-0.112008\pi\)
0.938725 + 0.344667i \(0.112008\pi\)
\(642\) −116.757 −0.181864
\(643\) −382.227 −0.594444 −0.297222 0.954808i \(-0.596060\pi\)
−0.297222 + 0.954808i \(0.596060\pi\)
\(644\) − 94.3148i − 0.146452i
\(645\) − 260.171i − 0.403366i
\(646\) 665.831i 1.03070i
\(647\) 593.833 0.917825 0.458913 0.888481i \(-0.348239\pi\)
0.458913 + 0.888481i \(0.348239\pi\)
\(648\) 90.1233i 0.139079i
\(649\) 0 0
\(650\) −93.8636 −0.144406
\(651\) − 266.951i − 0.410062i
\(652\) −303.624 −0.465681
\(653\) −175.019 −0.268023 −0.134011 0.990980i \(-0.542786\pi\)
−0.134011 + 0.990980i \(0.542786\pi\)
\(654\) −337.639 −0.516267
\(655\) 269.918i 0.412088i
\(656\) 62.1995i 0.0948163i
\(657\) 120.480i 0.183379i
\(658\) 1215.99 1.84801
\(659\) − 455.063i − 0.690536i −0.938504 0.345268i \(-0.887788\pi\)
0.938504 0.345268i \(-0.112212\pi\)
\(660\) 0 0
\(661\) −803.041 −1.21489 −0.607444 0.794362i \(-0.707805\pi\)
−0.607444 + 0.794362i \(0.707805\pi\)
\(662\) 401.329i 0.606237i
\(663\) 418.246 0.630838
\(664\) −264.120 −0.397771
\(665\) 605.874 0.911089
\(666\) 722.585i 1.08496i
\(667\) 1.48794i 0.00223079i
\(668\) − 208.886i − 0.312703i
\(669\) −189.620 −0.283437
\(670\) 206.951i 0.308882i
\(671\) 0 0
\(672\) 102.575 0.152642
\(673\) 534.545i 0.794271i 0.917760 + 0.397136i \(0.129996\pi\)
−0.917760 + 0.397136i \(0.870004\pi\)
\(674\) 704.658 1.04549
\(675\) 112.335 0.166422
\(676\) 14.4149 0.0213238
\(677\) − 47.3543i − 0.0699473i −0.999388 0.0349736i \(-0.988865\pi\)
0.999388 0.0349736i \(-0.0111347\pi\)
\(678\) − 44.5176i − 0.0656602i
\(679\) − 1005.37i − 1.48066i
\(680\) −142.247 −0.209186
\(681\) 246.965i 0.362651i
\(682\) 0 0
\(683\) 496.885 0.727504 0.363752 0.931496i \(-0.381496\pi\)
0.363752 + 0.931496i \(0.381496\pi\)
\(684\) − 294.635i − 0.430753i
\(685\) 368.519 0.537984
\(686\) 1272.96 1.85562
\(687\) 266.800 0.388355
\(688\) − 332.220i − 0.482878i
\(689\) 693.768i 1.00692i
\(690\) 16.1398i 0.0233910i
\(691\) 164.013 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(692\) − 354.083i − 0.511681i
\(693\) 0 0
\(694\) 349.537 0.503655
\(695\) − 255.717i − 0.367938i
\(696\) −1.61826 −0.00232508
\(697\) 349.735 0.501772
\(698\) −800.489 −1.14683
\(699\) 17.8055i 0.0254728i
\(700\) 129.437i 0.184911i
\(701\) − 221.274i − 0.315654i −0.987467 0.157827i \(-0.949551\pi\)
0.987467 0.157827i \(-0.0504489\pi\)
\(702\) −421.765 −0.600805
\(703\) − 1519.83i − 2.16191i
\(704\) 0 0
\(705\) −208.088 −0.295160
\(706\) − 291.810i − 0.413329i
\(707\) 816.166 1.15441
\(708\) 66.1304 0.0934046
\(709\) −648.300 −0.914387 −0.457193 0.889367i \(-0.651145\pi\)
−0.457193 + 0.889367i \(0.651145\pi\)
\(710\) − 106.121i − 0.149466i
\(711\) 498.278i 0.700813i
\(712\) − 68.6273i − 0.0963866i
\(713\) 53.6357 0.0752253
\(714\) − 576.759i − 0.807785i
\(715\) 0 0
\(716\) 147.859 0.206507
\(717\) − 50.0780i − 0.0698437i
\(718\) −874.256 −1.21763
\(719\) 1163.11 1.61768 0.808842 0.588026i \(-0.200095\pi\)
0.808842 + 0.588026i \(0.200095\pi\)
\(720\) 62.9451 0.0874238
\(721\) − 438.791i − 0.608587i
\(722\) 109.180i 0.151219i
\(723\) − 95.5849i − 0.132206i
\(724\) −226.309 −0.312582
\(725\) − 2.04205i − 0.00281661i
\(726\) 0 0
\(727\) 574.840 0.790702 0.395351 0.918530i \(-0.370623\pi\)
0.395351 + 0.918530i \(0.370623\pi\)
\(728\) − 485.979i − 0.667553i
\(729\) 59.0271 0.0809700
\(730\) 54.1373 0.0741607
\(731\) −1868.01 −2.55541
\(732\) 159.576i 0.218000i
\(733\) 901.359i 1.22968i 0.788650 + 0.614842i \(0.210780\pi\)
−0.788650 + 0.614842i \(0.789220\pi\)
\(734\) 872.157i 1.18822i
\(735\) −371.329 −0.505210
\(736\) 20.6094i 0.0280019i
\(737\) 0 0
\(738\) −154.760 −0.209702
\(739\) − 298.550i − 0.403992i −0.979386 0.201996i \(-0.935257\pi\)
0.979386 0.201996i \(-0.0647427\pi\)
\(740\) 324.692 0.438773
\(741\) 389.275 0.525338
\(742\) 956.703 1.28936
\(743\) 521.760i 0.702234i 0.936332 + 0.351117i \(0.114198\pi\)
−0.936332 + 0.351117i \(0.885802\pi\)
\(744\) 58.3332i 0.0784049i
\(745\) 9.53425i 0.0127977i
\(746\) −935.558 −1.25410
\(747\) − 657.163i − 0.879737i
\(748\) 0 0
\(749\) 762.815 1.01844
\(750\) − 22.1502i − 0.0295336i
\(751\) −591.409 −0.787496 −0.393748 0.919219i \(-0.628822\pi\)
−0.393748 + 0.919219i \(0.628822\pi\)
\(752\) −265.714 −0.353343
\(753\) 25.8303 0.0343032
\(754\) 7.66695i 0.0101684i
\(755\) 142.653i 0.188944i
\(756\) 581.612i 0.769328i
\(757\) −744.808 −0.983894 −0.491947 0.870625i \(-0.663715\pi\)
−0.491947 + 0.870625i \(0.663715\pi\)
\(758\) − 159.984i − 0.211061i
\(759\) 0 0
\(760\) −132.394 −0.174202
\(761\) 1208.91i 1.58858i 0.607542 + 0.794288i \(0.292156\pi\)
−0.607542 + 0.794288i \(0.707844\pi\)
\(762\) 98.3852 0.129114
\(763\) 2205.92 2.89112
\(764\) −660.902 −0.865055
\(765\) − 353.927i − 0.462650i
\(766\) − 885.265i − 1.15570i
\(767\) − 313.311i − 0.408489i
\(768\) −22.4144 −0.0291854
\(769\) 897.903i 1.16762i 0.811889 + 0.583812i \(0.198439\pi\)
−0.811889 + 0.583812i \(0.801561\pi\)
\(770\) 0 0
\(771\) −29.1300 −0.0377821
\(772\) − 135.006i − 0.174878i
\(773\) 349.472 0.452098 0.226049 0.974116i \(-0.427419\pi\)
0.226049 + 0.974116i \(0.427419\pi\)
\(774\) 826.606 1.06797
\(775\) −73.6095 −0.0949800
\(776\) 219.690i 0.283105i
\(777\) 1316.51i 1.69435i
\(778\) − 343.101i − 0.441004i
\(779\) 325.510 0.417856
\(780\) 83.1638i 0.106620i
\(781\) 0 0
\(782\) 115.882 0.148187
\(783\) − 9.17569i − 0.0117186i
\(784\) −474.162 −0.604799
\(785\) −30.9267 −0.0393971
\(786\) 239.149 0.304261
\(787\) − 34.9579i − 0.0444192i −0.999753 0.0222096i \(-0.992930\pi\)
0.999753 0.0222096i \(-0.00707012\pi\)
\(788\) 594.315i 0.754206i
\(789\) − 319.128i − 0.404471i
\(790\) 223.900 0.283418
\(791\) 290.851i 0.367700i
\(792\) 0 0
\(793\) 756.035 0.953386
\(794\) 674.660i 0.849698i
\(795\) −163.717 −0.205934
\(796\) −537.457 −0.675197
\(797\) −1210.15 −1.51839 −0.759194 0.650865i \(-0.774406\pi\)
−0.759194 + 0.650865i \(0.774406\pi\)
\(798\) − 536.809i − 0.672692i
\(799\) 1494.05i 1.86990i
\(800\) − 28.2843i − 0.0353553i
\(801\) 170.753 0.213175
\(802\) 471.574i 0.587997i
\(803\) 0 0
\(804\) 183.360 0.228060
\(805\) − 105.447i − 0.130990i
\(806\) 276.370 0.342891
\(807\) −355.238 −0.440196
\(808\) −178.346 −0.220725
\(809\) 302.846i 0.374346i 0.982327 + 0.187173i \(0.0599326\pi\)
−0.982327 + 0.187173i \(0.940067\pi\)
\(810\) 100.761i 0.124396i
\(811\) 327.385i 0.403681i 0.979418 + 0.201841i \(0.0646923\pi\)
−0.979418 + 0.201841i \(0.935308\pi\)
\(812\) 10.5727 0.0130206
\(813\) 145.204i 0.178602i
\(814\) 0 0
\(815\) −339.462 −0.416518
\(816\) 126.032i 0.154450i
\(817\) −1738.62 −2.12805
\(818\) −19.3732 −0.0236836
\(819\) 1209.18 1.47640
\(820\) 69.5412i 0.0848063i
\(821\) − 924.430i − 1.12598i −0.826464 0.562990i \(-0.809651\pi\)
0.826464 0.562990i \(-0.190349\pi\)
\(822\) − 326.511i − 0.397215i
\(823\) 1423.92 1.73015 0.865077 0.501639i \(-0.167269\pi\)
0.865077 + 0.501639i \(0.167269\pi\)
\(824\) 95.8833i 0.116363i
\(825\) 0 0
\(826\) −432.055 −0.523069
\(827\) − 699.822i − 0.846218i −0.906079 0.423109i \(-0.860939\pi\)
0.906079 0.423109i \(-0.139061\pi\)
\(828\) −51.2787 −0.0619308
\(829\) 924.763 1.11552 0.557758 0.830004i \(-0.311662\pi\)
0.557758 + 0.830004i \(0.311662\pi\)
\(830\) −295.295 −0.355777
\(831\) 461.571i 0.555440i
\(832\) 106.195i 0.127638i
\(833\) 2666.12i 3.20062i
\(834\) −226.567 −0.271663
\(835\) − 233.542i − 0.279690i
\(836\) 0 0
\(837\) −330.755 −0.395168
\(838\) 29.7650i 0.0355191i
\(839\) −280.474 −0.334295 −0.167148 0.985932i \(-0.553456\pi\)
−0.167148 + 0.985932i \(0.553456\pi\)
\(840\) 114.683 0.136527
\(841\) 840.833 0.999802
\(842\) 505.378i 0.600212i
\(843\) 611.241i 0.725078i
\(844\) 428.619i 0.507843i
\(845\) 16.1164 0.0190726
\(846\) − 661.129i − 0.781476i
\(847\) 0 0
\(848\) −209.056 −0.246528
\(849\) − 382.722i − 0.450792i
\(850\) −159.037 −0.187102
\(851\) −264.513 −0.310826
\(852\) −94.0240 −0.110357
\(853\) 1430.22i 1.67669i 0.545138 + 0.838346i \(0.316477\pi\)
−0.545138 + 0.838346i \(0.683523\pi\)
\(854\) − 1042.57i − 1.22081i
\(855\) − 329.412i − 0.385277i
\(856\) −166.688 −0.194729
\(857\) 1486.03i 1.73399i 0.498321 + 0.866993i \(0.333950\pi\)
−0.498321 + 0.866993i \(0.666050\pi\)
\(858\) 0 0
\(859\) 488.310 0.568463 0.284232 0.958756i \(-0.408262\pi\)
0.284232 + 0.958756i \(0.408262\pi\)
\(860\) − 371.434i − 0.431900i
\(861\) −281.964 −0.327485
\(862\) 621.212 0.720664
\(863\) 1604.50 1.85921 0.929607 0.368552i \(-0.120146\pi\)
0.929607 + 0.368552i \(0.120146\pi\)
\(864\) − 127.092i − 0.147097i
\(865\) − 395.877i − 0.457661i
\(866\) 366.644i 0.423377i
\(867\) 303.789 0.350391
\(868\) − 381.113i − 0.439070i
\(869\) 0 0
\(870\) −1.80927 −0.00207962
\(871\) − 868.720i − 0.997382i
\(872\) −482.031 −0.552788
\(873\) −546.615 −0.626134
\(874\) 107.855 0.123404
\(875\) 144.715i 0.165389i
\(876\) − 47.9661i − 0.0547558i
\(877\) − 64.7531i − 0.0738348i −0.999318 0.0369174i \(-0.988246\pi\)
0.999318 0.0369174i \(-0.0117538\pi\)
\(878\) −752.345 −0.856885
\(879\) 347.300i 0.395108i
\(880\) 0 0
\(881\) −1367.56 −1.55228 −0.776139 0.630562i \(-0.782825\pi\)
−0.776139 + 0.630562i \(0.782825\pi\)
\(882\) − 1179.77i − 1.33761i
\(883\) 232.780 0.263624 0.131812 0.991275i \(-0.457921\pi\)
0.131812 + 0.991275i \(0.457921\pi\)
\(884\) 597.110 0.675463
\(885\) 73.9361 0.0835436
\(886\) − 574.047i − 0.647908i
\(887\) − 601.378i − 0.677991i −0.940788 0.338995i \(-0.889913\pi\)
0.940788 0.338995i \(-0.110087\pi\)
\(888\) − 287.679i − 0.323963i
\(889\) −642.788 −0.723046
\(890\) − 76.7276i − 0.0862108i
\(891\) 0 0
\(892\) −270.711 −0.303488
\(893\) 1390.57i 1.55718i
\(894\) 8.44742 0.00944901
\(895\) 165.311 0.184706
\(896\) 146.442 0.163439
\(897\) − 67.7500i − 0.0755295i
\(898\) 800.833i 0.891796i
\(899\) 6.01256i 0.00668805i
\(900\) 70.3748 0.0781942
\(901\) 1175.48i 1.30464i
\(902\) 0 0
\(903\) 1506.03 1.66781
\(904\) − 63.5558i − 0.0703051i
\(905\) −253.022 −0.279582
\(906\) 126.391 0.139505
\(907\) −1463.63 −1.61371 −0.806853 0.590753i \(-0.798831\pi\)
−0.806853 + 0.590753i \(0.798831\pi\)
\(908\) 352.580i 0.388304i
\(909\) − 443.747i − 0.488171i
\(910\) − 543.341i − 0.597078i
\(911\) 771.742 0.847137 0.423569 0.905864i \(-0.360777\pi\)
0.423569 + 0.905864i \(0.360777\pi\)
\(912\) 117.302i 0.128620i
\(913\) 0 0
\(914\) −486.348 −0.532110
\(915\) 178.411i 0.194985i
\(916\) 380.897 0.415827
\(917\) −1562.45 −1.70387
\(918\) −714.612 −0.778444
\(919\) 162.755i 0.177100i 0.996072 + 0.0885500i \(0.0282233\pi\)
−0.996072 + 0.0885500i \(0.971777\pi\)
\(920\) 23.0420i 0.0250456i
\(921\) 536.240i 0.582237i
\(922\) −772.134 −0.837455
\(923\) 445.465i 0.482627i
\(924\) 0 0
\(925\) 363.017 0.392451
\(926\) − 450.413i − 0.486407i
\(927\) −238.570 −0.257357
\(928\) −2.31031 −0.00248956
\(929\) 246.591 0.265437 0.132719 0.991154i \(-0.457629\pi\)
0.132719 + 0.991154i \(0.457629\pi\)
\(930\) 65.2185i 0.0701274i
\(931\) 2481.44i 2.66535i
\(932\) 25.4200i 0.0272747i
\(933\) −284.122 −0.304525
\(934\) − 14.4709i − 0.0154934i
\(935\) 0 0
\(936\) −264.225 −0.282292
\(937\) − 1215.07i − 1.29677i −0.761314 0.648383i \(-0.775446\pi\)
0.761314 0.648383i \(-0.224554\pi\)
\(938\) −1197.96 −1.27714
\(939\) 134.053 0.142761
\(940\) −297.077 −0.316039
\(941\) 1228.67i 1.30571i 0.757482 + 0.652856i \(0.226429\pi\)
−0.757482 + 0.652856i \(0.773571\pi\)
\(942\) 27.4013i 0.0290884i
\(943\) − 56.6522i − 0.0600766i
\(944\) 94.4113 0.100012
\(945\) 650.262i 0.688108i
\(946\) 0 0
\(947\) −1697.66 −1.79267 −0.896336 0.443376i \(-0.853781\pi\)
−0.896336 + 0.443376i \(0.853781\pi\)
\(948\) − 198.377i − 0.209259i
\(949\) −227.253 −0.239465
\(950\) −148.021 −0.155811
\(951\) 263.290 0.276856
\(952\) − 823.412i − 0.864928i
\(953\) − 1470.02i − 1.54252i −0.636521 0.771260i \(-0.719627\pi\)
0.636521 0.771260i \(-0.280373\pi\)
\(954\) − 520.157i − 0.545238i
\(955\) −738.911 −0.773729
\(956\) − 71.4940i − 0.0747845i
\(957\) 0 0
\(958\) 514.794 0.537364
\(959\) 2133.22i 2.22442i
\(960\) −25.0601 −0.0261042
\(961\) −744.266 −0.774470
\(962\) −1362.96 −1.41680
\(963\) − 414.741i − 0.430675i
\(964\) − 136.462i − 0.141558i
\(965\) − 150.941i − 0.156415i
\(966\) −93.4269 −0.0967153
\(967\) − 1224.68i − 1.26648i −0.773956 0.633239i \(-0.781725\pi\)
0.773956 0.633239i \(-0.218275\pi\)
\(968\) 0 0
\(969\) 659.563 0.680664
\(970\) 245.621i 0.253217i
\(971\) −1724.54 −1.77605 −0.888025 0.459795i \(-0.847923\pi\)
−0.888025 + 0.459795i \(0.847923\pi\)
\(972\) 493.679 0.507900
\(973\) 1480.25 1.52132
\(974\) − 305.187i − 0.313334i
\(975\) 92.9800i 0.0953641i
\(976\) 227.819i 0.233421i
\(977\) −1501.88 −1.53724 −0.768620 0.639705i \(-0.779056\pi\)
−0.768620 + 0.639705i \(0.779056\pi\)
\(978\) 300.766i 0.307532i
\(979\) 0 0
\(980\) −530.129 −0.540948
\(981\) − 1199.35i − 1.22258i
\(982\) 1174.49 1.19602
\(983\) −459.772 −0.467723 −0.233862 0.972270i \(-0.575136\pi\)
−0.233862 + 0.972270i \(0.575136\pi\)
\(984\) 61.6140 0.0626158
\(985\) 664.464i 0.674583i
\(986\) 12.9904i 0.0131748i
\(987\) − 1204.54i − 1.22041i
\(988\) 555.750 0.562500
\(989\) 302.591i 0.305957i
\(990\) 0 0
\(991\) 112.519 0.113541 0.0567703 0.998387i \(-0.481920\pi\)
0.0567703 + 0.998387i \(0.481920\pi\)
\(992\) 83.2796i 0.0839512i
\(993\) 397.551 0.400353
\(994\) 614.294 0.618002
\(995\) −600.895 −0.603914
\(996\) 261.634i 0.262684i
\(997\) − 227.895i − 0.228580i −0.993447 0.114290i \(-0.963541\pi\)
0.993447 0.114290i \(-0.0364594\pi\)
\(998\) 285.419i 0.285991i
\(999\) 1631.17 1.63281
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1210.3.d.c.241.4 16
11.4 even 5 110.3.h.b.61.3 16
11.8 odd 10 110.3.h.b.101.3 yes 16
11.10 odd 2 inner 1210.3.d.c.241.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.3.h.b.61.3 16 11.4 even 5
110.3.h.b.101.3 yes 16 11.8 odd 10
1210.3.d.c.241.4 16 1.1 even 1 trivial
1210.3.d.c.241.12 16 11.10 odd 2 inner