Properties

Label 1210.3.d.c.241.2
Level $1210$
Weight $3$
Character 1210.241
Analytic conductor $32.970$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1210,3,Mod(241,1210)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1210, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1210.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1210 = 2 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1210.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9701119876\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 92 x^{14} - 504 x^{13} + 3078 x^{12} - 12280 x^{11} + 49836 x^{10} - 147672 x^{9} + \cdots + 339856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.2
Root \(0.500000 + 3.59455i\) of defining polynomial
Character \(\chi\) \(=\) 1210.241
Dual form 1210.3.d.c.241.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -5.33478 q^{3} -2.00000 q^{4} +2.23607 q^{5} +7.54452i q^{6} -8.94509i q^{7} +2.82843i q^{8} +19.4599 q^{9} -3.16228i q^{10} +10.6696 q^{12} +15.5829i q^{13} -12.6503 q^{14} -11.9289 q^{15} +4.00000 q^{16} +9.36447i q^{17} -27.5204i q^{18} -25.9807i q^{19} -4.47214 q^{20} +47.7201i q^{21} +1.85528 q^{23} -15.0890i q^{24} +5.00000 q^{25} +22.0375 q^{26} -55.8012 q^{27} +17.8902i q^{28} -14.2031i q^{29} +16.8701i q^{30} -40.1533 q^{31} -5.65685i q^{32} +13.2434 q^{34} -20.0018i q^{35} -38.9198 q^{36} -30.0873 q^{37} -36.7423 q^{38} -83.1312i q^{39} +6.32456i q^{40} +55.9700i q^{41} +67.4864 q^{42} +38.9779i q^{43} +43.5136 q^{45} -2.62376i q^{46} -65.8830 q^{47} -21.3391 q^{48} -31.0146 q^{49} -7.07107i q^{50} -49.9574i q^{51} -31.1658i q^{52} -91.2982 q^{53} +78.9148i q^{54} +25.3005 q^{56} +138.602i q^{57} -20.0863 q^{58} +20.4895 q^{59} +23.8579 q^{60} -47.9471i q^{61} +56.7854i q^{62} -174.070i q^{63} -8.00000 q^{64} +34.8444i q^{65} +70.6355 q^{67} -18.7289i q^{68} -9.89751 q^{69} -28.2869 q^{70} +100.504 q^{71} +55.0409i q^{72} +49.3326i q^{73} +42.5499i q^{74} -26.6739 q^{75} +51.9615i q^{76} -117.565 q^{78} -25.4652i q^{79} +8.94427 q^{80} +122.548 q^{81} +79.1535 q^{82} +45.5564i q^{83} -95.4402i q^{84} +20.9396i q^{85} +55.1231 q^{86} +75.7706i q^{87} +139.002 q^{89} -61.5376i q^{90} +139.390 q^{91} -3.71056 q^{92} +214.209 q^{93} +93.1727i q^{94} -58.0947i q^{95} +30.1781i q^{96} +101.737 q^{97} +43.8613i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{3} - 32 q^{4} + 40 q^{9} + 32 q^{12} + 16 q^{14} + 40 q^{15} + 64 q^{16} + 108 q^{23} + 80 q^{25} - 292 q^{27} - 268 q^{31} - 16 q^{34} - 80 q^{36} + 44 q^{37} - 280 q^{38} - 16 q^{42} - 476 q^{47}+ \cdots + 296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1210\mathbb{Z}\right)^\times\).

\(n\) \(727\) \(1091\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) −5.33478 −1.77826 −0.889130 0.457654i \(-0.848690\pi\)
−0.889130 + 0.457654i \(0.848690\pi\)
\(4\) −2.00000 −0.500000
\(5\) 2.23607 0.447214
\(6\) 7.54452i 1.25742i
\(7\) − 8.94509i − 1.27787i −0.769261 0.638935i \(-0.779375\pi\)
0.769261 0.638935i \(-0.220625\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 19.4599 2.16221
\(10\) − 3.16228i − 0.316228i
\(11\) 0 0
\(12\) 10.6696 0.889130
\(13\) 15.5829i 1.19868i 0.800493 + 0.599341i \(0.204571\pi\)
−0.800493 + 0.599341i \(0.795429\pi\)
\(14\) −12.6503 −0.903590
\(15\) −11.9289 −0.795262
\(16\) 4.00000 0.250000
\(17\) 9.36447i 0.550851i 0.961322 + 0.275426i \(0.0888188\pi\)
−0.961322 + 0.275426i \(0.911181\pi\)
\(18\) − 27.5204i − 1.52891i
\(19\) − 25.9807i − 1.36741i −0.729760 0.683704i \(-0.760368\pi\)
0.729760 0.683704i \(-0.239632\pi\)
\(20\) −4.47214 −0.223607
\(21\) 47.7201i 2.27239i
\(22\) 0 0
\(23\) 1.85528 0.0806643 0.0403322 0.999186i \(-0.487158\pi\)
0.0403322 + 0.999186i \(0.487158\pi\)
\(24\) − 15.0890i − 0.628710i
\(25\) 5.00000 0.200000
\(26\) 22.0375 0.847597
\(27\) −55.8012 −2.06671
\(28\) 17.8902i 0.638935i
\(29\) − 14.2031i − 0.489763i −0.969553 0.244881i \(-0.921251\pi\)
0.969553 0.244881i \(-0.0787490\pi\)
\(30\) 16.8701i 0.562335i
\(31\) −40.1533 −1.29527 −0.647634 0.761951i \(-0.724242\pi\)
−0.647634 + 0.761951i \(0.724242\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) 13.2434 0.389511
\(35\) − 20.0018i − 0.571481i
\(36\) −38.9198 −1.08111
\(37\) −30.0873 −0.813171 −0.406585 0.913613i \(-0.633281\pi\)
−0.406585 + 0.913613i \(0.633281\pi\)
\(38\) −36.7423 −0.966903
\(39\) − 83.1312i − 2.13157i
\(40\) 6.32456i 0.158114i
\(41\) 55.9700i 1.36512i 0.730829 + 0.682561i \(0.239134\pi\)
−0.730829 + 0.682561i \(0.760866\pi\)
\(42\) 67.4864 1.60682
\(43\) 38.9779i 0.906463i 0.891393 + 0.453231i \(0.149729\pi\)
−0.891393 + 0.453231i \(0.850271\pi\)
\(44\) 0 0
\(45\) 43.5136 0.966970
\(46\) − 2.62376i − 0.0570383i
\(47\) −65.8830 −1.40177 −0.700883 0.713276i \(-0.747211\pi\)
−0.700883 + 0.713276i \(0.747211\pi\)
\(48\) −21.3391 −0.444565
\(49\) −31.0146 −0.632951
\(50\) − 7.07107i − 0.141421i
\(51\) − 49.9574i − 0.979557i
\(52\) − 31.1658i − 0.599341i
\(53\) −91.2982 −1.72261 −0.861304 0.508091i \(-0.830351\pi\)
−0.861304 + 0.508091i \(0.830351\pi\)
\(54\) 78.9148i 1.46139i
\(55\) 0 0
\(56\) 25.3005 0.451795
\(57\) 138.602i 2.43161i
\(58\) −20.0863 −0.346315
\(59\) 20.4895 0.347280 0.173640 0.984809i \(-0.444447\pi\)
0.173640 + 0.984809i \(0.444447\pi\)
\(60\) 23.8579 0.397631
\(61\) − 47.9471i − 0.786018i −0.919535 0.393009i \(-0.871434\pi\)
0.919535 0.393009i \(-0.128566\pi\)
\(62\) 56.7854i 0.915893i
\(63\) − 174.070i − 2.76302i
\(64\) −8.00000 −0.125000
\(65\) 34.8444i 0.536067i
\(66\) 0 0
\(67\) 70.6355 1.05426 0.527131 0.849784i \(-0.323268\pi\)
0.527131 + 0.849784i \(0.323268\pi\)
\(68\) − 18.7289i − 0.275426i
\(69\) −9.89751 −0.143442
\(70\) −28.2869 −0.404098
\(71\) 100.504 1.41555 0.707774 0.706439i \(-0.249700\pi\)
0.707774 + 0.706439i \(0.249700\pi\)
\(72\) 55.0409i 0.764457i
\(73\) 49.3326i 0.675788i 0.941184 + 0.337894i \(0.109715\pi\)
−0.941184 + 0.337894i \(0.890285\pi\)
\(74\) 42.5499i 0.574998i
\(75\) −26.6739 −0.355652
\(76\) 51.9615i 0.683704i
\(77\) 0 0
\(78\) −117.565 −1.50725
\(79\) − 25.4652i − 0.322344i −0.986926 0.161172i \(-0.948473\pi\)
0.986926 0.161172i \(-0.0515274\pi\)
\(80\) 8.94427 0.111803
\(81\) 122.548 1.51294
\(82\) 79.1535 0.965287
\(83\) 45.5564i 0.548872i 0.961605 + 0.274436i \(0.0884911\pi\)
−0.961605 + 0.274436i \(0.911509\pi\)
\(84\) − 95.4402i − 1.13619i
\(85\) 20.9396i 0.246348i
\(86\) 55.1231 0.640966
\(87\) 75.7706i 0.870926i
\(88\) 0 0
\(89\) 139.002 1.56182 0.780911 0.624642i \(-0.214755\pi\)
0.780911 + 0.624642i \(0.214755\pi\)
\(90\) − 61.5376i − 0.683751i
\(91\) 139.390 1.53176
\(92\) −3.71056 −0.0403322
\(93\) 214.209 2.30333
\(94\) 93.1727i 0.991199i
\(95\) − 58.0947i − 0.611523i
\(96\) 30.1781i 0.314355i
\(97\) 101.737 1.04883 0.524415 0.851463i \(-0.324284\pi\)
0.524415 + 0.851463i \(0.324284\pi\)
\(98\) 43.8613i 0.447564i
\(99\) 0 0
\(100\) −10.0000 −0.100000
\(101\) 145.354i 1.43915i 0.694414 + 0.719576i \(0.255664\pi\)
−0.694414 + 0.719576i \(0.744336\pi\)
\(102\) −70.6505 −0.692652
\(103\) −1.50658 −0.0146270 −0.00731348 0.999973i \(-0.502328\pi\)
−0.00731348 + 0.999973i \(0.502328\pi\)
\(104\) −44.0750 −0.423798
\(105\) 106.705i 1.01624i
\(106\) 129.115i 1.21807i
\(107\) 179.793i 1.68031i 0.542345 + 0.840156i \(0.317536\pi\)
−0.542345 + 0.840156i \(0.682464\pi\)
\(108\) 111.602 1.03336
\(109\) − 75.4374i − 0.692086i −0.938219 0.346043i \(-0.887525\pi\)
0.938219 0.346043i \(-0.112475\pi\)
\(110\) 0 0
\(111\) 160.509 1.44603
\(112\) − 35.7804i − 0.319467i
\(113\) 16.5575 0.146526 0.0732631 0.997313i \(-0.476659\pi\)
0.0732631 + 0.997313i \(0.476659\pi\)
\(114\) 196.012 1.71941
\(115\) 4.14853 0.0360742
\(116\) 28.4062i 0.244881i
\(117\) 303.241i 2.59180i
\(118\) − 28.9766i − 0.245564i
\(119\) 83.7661 0.703916
\(120\) − 33.7401i − 0.281168i
\(121\) 0 0
\(122\) −67.8074 −0.555798
\(123\) − 298.588i − 2.42754i
\(124\) 80.3067 0.647634
\(125\) 11.1803 0.0894427
\(126\) −246.173 −1.95375
\(127\) 22.5096i 0.177241i 0.996065 + 0.0886206i \(0.0282459\pi\)
−0.996065 + 0.0886206i \(0.971754\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) − 207.939i − 1.61193i
\(130\) 49.2774 0.379057
\(131\) 96.9601i 0.740153i 0.929001 + 0.370077i \(0.120669\pi\)
−0.929001 + 0.370077i \(0.879331\pi\)
\(132\) 0 0
\(133\) −232.400 −1.74737
\(134\) − 99.8938i − 0.745476i
\(135\) −124.775 −0.924262
\(136\) −26.4867 −0.194755
\(137\) −130.070 −0.949414 −0.474707 0.880144i \(-0.657446\pi\)
−0.474707 + 0.880144i \(0.657446\pi\)
\(138\) 13.9972i 0.101429i
\(139\) 122.264i 0.879598i 0.898096 + 0.439799i \(0.144950\pi\)
−0.898096 + 0.439799i \(0.855050\pi\)
\(140\) 40.0037i 0.285740i
\(141\) 351.472 2.49271
\(142\) − 142.134i − 1.00094i
\(143\) 0 0
\(144\) 77.8396 0.540553
\(145\) − 31.7592i − 0.219029i
\(146\) 69.7668 0.477855
\(147\) 165.456 1.12555
\(148\) 60.1746 0.406585
\(149\) − 35.7217i − 0.239743i −0.992789 0.119872i \(-0.961752\pi\)
0.992789 0.119872i \(-0.0382483\pi\)
\(150\) 37.7226i 0.251484i
\(151\) − 139.405i − 0.923212i −0.887085 0.461606i \(-0.847273\pi\)
0.887085 0.461606i \(-0.152727\pi\)
\(152\) 73.4846 0.483452
\(153\) 182.232i 1.19106i
\(154\) 0 0
\(155\) −89.7856 −0.579262
\(156\) 166.262i 1.06579i
\(157\) 184.955 1.17806 0.589029 0.808112i \(-0.299511\pi\)
0.589029 + 0.808112i \(0.299511\pi\)
\(158\) −36.0132 −0.227932
\(159\) 487.056 3.06324
\(160\) − 12.6491i − 0.0790569i
\(161\) − 16.5956i − 0.103079i
\(162\) − 173.309i − 1.06981i
\(163\) −181.246 −1.11194 −0.555970 0.831202i \(-0.687653\pi\)
−0.555970 + 0.831202i \(0.687653\pi\)
\(164\) − 111.940i − 0.682561i
\(165\) 0 0
\(166\) 64.4264 0.388111
\(167\) − 40.4998i − 0.242514i −0.992621 0.121257i \(-0.961308\pi\)
0.992621 0.121257i \(-0.0386925\pi\)
\(168\) −134.973 −0.803410
\(169\) −73.8261 −0.436841
\(170\) 29.6131 0.174195
\(171\) − 505.582i − 2.95662i
\(172\) − 77.9558i − 0.453231i
\(173\) 38.7844i 0.224187i 0.993698 + 0.112094i \(0.0357556\pi\)
−0.993698 + 0.112094i \(0.964244\pi\)
\(174\) 107.156 0.615838
\(175\) − 44.7254i − 0.255574i
\(176\) 0 0
\(177\) −109.307 −0.617554
\(178\) − 196.579i − 1.10438i
\(179\) 26.2522 0.146660 0.0733301 0.997308i \(-0.476637\pi\)
0.0733301 + 0.997308i \(0.476637\pi\)
\(180\) −87.0273 −0.483485
\(181\) −142.784 −0.788860 −0.394430 0.918926i \(-0.629058\pi\)
−0.394430 + 0.918926i \(0.629058\pi\)
\(182\) − 197.128i − 1.08312i
\(183\) 255.787i 1.39774i
\(184\) 5.24752i 0.0285191i
\(185\) −67.2773 −0.363661
\(186\) − 302.938i − 1.62870i
\(187\) 0 0
\(188\) 131.766 0.700883
\(189\) 499.147i 2.64099i
\(190\) −82.1583 −0.432412
\(191\) 295.343 1.54630 0.773148 0.634226i \(-0.218681\pi\)
0.773148 + 0.634226i \(0.218681\pi\)
\(192\) 42.6782 0.222283
\(193\) 81.5399i 0.422487i 0.977433 + 0.211243i \(0.0677513\pi\)
−0.977433 + 0.211243i \(0.932249\pi\)
\(194\) − 143.877i − 0.741635i
\(195\) − 185.887i − 0.953267i
\(196\) 62.0292 0.316476
\(197\) 136.444i 0.692611i 0.938122 + 0.346305i \(0.112564\pi\)
−0.938122 + 0.346305i \(0.887436\pi\)
\(198\) 0 0
\(199\) 287.505 1.44475 0.722376 0.691501i \(-0.243050\pi\)
0.722376 + 0.691501i \(0.243050\pi\)
\(200\) 14.1421i 0.0707107i
\(201\) −376.825 −1.87475
\(202\) 205.562 1.01763
\(203\) −127.048 −0.625853
\(204\) 99.9148i 0.489779i
\(205\) 125.153i 0.610501i
\(206\) 2.13062i 0.0103428i
\(207\) 36.1035 0.174413
\(208\) 62.3315i 0.299671i
\(209\) 0 0
\(210\) 150.904 0.718591
\(211\) 298.363i 1.41404i 0.707192 + 0.707022i \(0.249962\pi\)
−0.707192 + 0.707022i \(0.750038\pi\)
\(212\) 182.596 0.861304
\(213\) −536.166 −2.51721
\(214\) 254.266 1.18816
\(215\) 87.1572i 0.405382i
\(216\) − 157.830i − 0.730693i
\(217\) 359.175i 1.65519i
\(218\) −106.685 −0.489379
\(219\) − 263.178i − 1.20173i
\(220\) 0 0
\(221\) −145.925 −0.660296
\(222\) − 226.994i − 1.02250i
\(223\) −60.9490 −0.273314 −0.136657 0.990618i \(-0.543636\pi\)
−0.136657 + 0.990618i \(0.543636\pi\)
\(224\) −50.6011 −0.225898
\(225\) 97.2995 0.432442
\(226\) − 23.4158i − 0.103610i
\(227\) 20.9025i 0.0920817i 0.998940 + 0.0460408i \(0.0146604\pi\)
−0.998940 + 0.0460408i \(0.985340\pi\)
\(228\) − 277.203i − 1.21580i
\(229\) −134.110 −0.585635 −0.292817 0.956168i \(-0.594593\pi\)
−0.292817 + 0.956168i \(0.594593\pi\)
\(230\) − 5.86691i − 0.0255083i
\(231\) 0 0
\(232\) 40.1725 0.173157
\(233\) − 47.4302i − 0.203563i −0.994807 0.101781i \(-0.967546\pi\)
0.994807 0.101781i \(-0.0324543\pi\)
\(234\) 428.848 1.83268
\(235\) −147.319 −0.626889
\(236\) −40.9790 −0.173640
\(237\) 135.851i 0.573212i
\(238\) − 118.463i − 0.497744i
\(239\) 91.4419i 0.382602i 0.981531 + 0.191301i \(0.0612707\pi\)
−0.981531 + 0.191301i \(0.938729\pi\)
\(240\) −47.7157 −0.198816
\(241\) 309.598i 1.28464i 0.766437 + 0.642319i \(0.222028\pi\)
−0.766437 + 0.642319i \(0.777972\pi\)
\(242\) 0 0
\(243\) −151.557 −0.623693
\(244\) 95.8942i 0.393009i
\(245\) −69.3508 −0.283064
\(246\) −422.267 −1.71653
\(247\) 404.855 1.63909
\(248\) − 113.571i − 0.457947i
\(249\) − 243.033i − 0.976037i
\(250\) − 15.8114i − 0.0632456i
\(251\) −220.416 −0.878153 −0.439076 0.898450i \(-0.644694\pi\)
−0.439076 + 0.898450i \(0.644694\pi\)
\(252\) 348.141i 1.38151i
\(253\) 0 0
\(254\) 31.8334 0.125328
\(255\) − 111.708i − 0.438071i
\(256\) 16.0000 0.0625000
\(257\) 231.513 0.900830 0.450415 0.892819i \(-0.351276\pi\)
0.450415 + 0.892819i \(0.351276\pi\)
\(258\) −294.070 −1.13980
\(259\) 269.134i 1.03913i
\(260\) − 69.6888i − 0.268034i
\(261\) − 276.391i − 1.05897i
\(262\) 137.122 0.523367
\(263\) − 279.651i − 1.06331i −0.846961 0.531655i \(-0.821570\pi\)
0.846961 0.531655i \(-0.178430\pi\)
\(264\) 0 0
\(265\) −204.149 −0.770373
\(266\) 328.663i 1.23558i
\(267\) −741.546 −2.77733
\(268\) −141.271 −0.527131
\(269\) −259.795 −0.965781 −0.482891 0.875681i \(-0.660413\pi\)
−0.482891 + 0.875681i \(0.660413\pi\)
\(270\) 176.459i 0.653552i
\(271\) − 40.8713i − 0.150816i −0.997153 0.0754082i \(-0.975974\pi\)
0.997153 0.0754082i \(-0.0240260\pi\)
\(272\) 37.4579i 0.137713i
\(273\) −743.616 −2.72387
\(274\) 183.946i 0.671337i
\(275\) 0 0
\(276\) 19.7950 0.0717211
\(277\) − 225.216i − 0.813053i −0.913639 0.406526i \(-0.866740\pi\)
0.913639 0.406526i \(-0.133260\pi\)
\(278\) 172.908 0.621970
\(279\) −781.379 −2.80064
\(280\) 56.5737 0.202049
\(281\) − 129.664i − 0.461437i −0.973021 0.230719i \(-0.925892\pi\)
0.973021 0.230719i \(-0.0741077\pi\)
\(282\) − 497.056i − 1.76261i
\(283\) 469.324i 1.65839i 0.558959 + 0.829195i \(0.311201\pi\)
−0.558959 + 0.829195i \(0.688799\pi\)
\(284\) −201.008 −0.707774
\(285\) 309.923i 1.08745i
\(286\) 0 0
\(287\) 500.657 1.74445
\(288\) − 110.082i − 0.382228i
\(289\) 201.307 0.696563
\(290\) −44.9142 −0.154877
\(291\) −542.742 −1.86509
\(292\) − 98.6651i − 0.337894i
\(293\) 164.259i 0.560612i 0.959911 + 0.280306i \(0.0904359\pi\)
−0.959911 + 0.280306i \(0.909564\pi\)
\(294\) − 233.990i − 0.795886i
\(295\) 45.8160 0.155308
\(296\) − 85.0998i − 0.287499i
\(297\) 0 0
\(298\) −50.5182 −0.169524
\(299\) 28.9106i 0.0966909i
\(300\) 53.3478 0.177826
\(301\) 348.661 1.15834
\(302\) −197.148 −0.652809
\(303\) − 775.434i − 2.55919i
\(304\) − 103.923i − 0.341852i
\(305\) − 107.213i − 0.351518i
\(306\) 257.714 0.842204
\(307\) − 253.409i − 0.825438i −0.910858 0.412719i \(-0.864579\pi\)
0.910858 0.412719i \(-0.135421\pi\)
\(308\) 0 0
\(309\) 8.03726 0.0260105
\(310\) 126.976i 0.409600i
\(311\) −370.459 −1.19119 −0.595593 0.803286i \(-0.703083\pi\)
−0.595593 + 0.803286i \(0.703083\pi\)
\(312\) 235.131 0.753624
\(313\) 364.418 1.16427 0.582137 0.813090i \(-0.302217\pi\)
0.582137 + 0.813090i \(0.302217\pi\)
\(314\) − 261.566i − 0.833012i
\(315\) − 389.233i − 1.23566i
\(316\) 50.9304i 0.161172i
\(317\) 177.054 0.558531 0.279265 0.960214i \(-0.409909\pi\)
0.279265 + 0.960214i \(0.409909\pi\)
\(318\) − 688.801i − 2.16604i
\(319\) 0 0
\(320\) −17.8885 −0.0559017
\(321\) − 959.158i − 2.98803i
\(322\) −23.4698 −0.0728875
\(323\) 243.296 0.753238
\(324\) −245.097 −0.756471
\(325\) 77.9144i 0.239737i
\(326\) 256.321i 0.786261i
\(327\) 402.442i 1.23071i
\(328\) −158.307 −0.482644
\(329\) 589.330i 1.79128i
\(330\) 0 0
\(331\) −45.6020 −0.137770 −0.0688851 0.997625i \(-0.521944\pi\)
−0.0688851 + 0.997625i \(0.521944\pi\)
\(332\) − 91.1127i − 0.274436i
\(333\) −585.496 −1.75825
\(334\) −57.2754 −0.171483
\(335\) 157.946 0.471480
\(336\) 190.880i 0.568096i
\(337\) 155.659i 0.461896i 0.972966 + 0.230948i \(0.0741827\pi\)
−0.972966 + 0.230948i \(0.925817\pi\)
\(338\) 104.406i 0.308893i
\(339\) −88.3305 −0.260562
\(340\) − 41.8792i − 0.123174i
\(341\) 0 0
\(342\) −715.001 −2.09065
\(343\) − 160.881i − 0.469040i
\(344\) −110.246 −0.320483
\(345\) −22.1315 −0.0641493
\(346\) 54.8494 0.158524
\(347\) 76.2388i 0.219708i 0.993948 + 0.109854i \(0.0350384\pi\)
−0.993948 + 0.109854i \(0.964962\pi\)
\(348\) − 151.541i − 0.435463i
\(349\) 594.286i 1.70283i 0.524496 + 0.851413i \(0.324254\pi\)
−0.524496 + 0.851413i \(0.675746\pi\)
\(350\) −63.2513 −0.180718
\(351\) − 869.544i − 2.47733i
\(352\) 0 0
\(353\) −251.283 −0.711850 −0.355925 0.934515i \(-0.615834\pi\)
−0.355925 + 0.934515i \(0.615834\pi\)
\(354\) 154.584i 0.436677i
\(355\) 224.734 0.633052
\(356\) −278.004 −0.780911
\(357\) −446.874 −1.25175
\(358\) − 37.1262i − 0.103704i
\(359\) 110.177i 0.306899i 0.988157 + 0.153449i \(0.0490382\pi\)
−0.988157 + 0.153449i \(0.950962\pi\)
\(360\) 123.075i 0.341875i
\(361\) −313.999 −0.869803
\(362\) 201.927i 0.557808i
\(363\) 0 0
\(364\) −278.780 −0.765880
\(365\) 110.311i 0.302222i
\(366\) 361.738 0.988354
\(367\) −467.613 −1.27415 −0.637075 0.770802i \(-0.719856\pi\)
−0.637075 + 0.770802i \(0.719856\pi\)
\(368\) 7.42112 0.0201661
\(369\) 1089.17i 2.95168i
\(370\) 95.1444i 0.257147i
\(371\) 816.670i 2.20127i
\(372\) −428.419 −1.15166
\(373\) 189.436i 0.507871i 0.967221 + 0.253936i \(0.0817252\pi\)
−0.967221 + 0.253936i \(0.918275\pi\)
\(374\) 0 0
\(375\) −59.6447 −0.159052
\(376\) − 186.345i − 0.495599i
\(377\) 221.326 0.587070
\(378\) 705.900 1.86746
\(379\) −458.268 −1.20915 −0.604576 0.796548i \(-0.706657\pi\)
−0.604576 + 0.796548i \(0.706657\pi\)
\(380\) 116.189i 0.305762i
\(381\) − 120.084i − 0.315181i
\(382\) − 417.677i − 1.09340i
\(383\) 361.655 0.944268 0.472134 0.881527i \(-0.343484\pi\)
0.472134 + 0.881527i \(0.343484\pi\)
\(384\) − 60.3562i − 0.157177i
\(385\) 0 0
\(386\) 115.315 0.298743
\(387\) 758.506i 1.95996i
\(388\) −203.473 −0.524415
\(389\) −7.38627 −0.0189878 −0.00949392 0.999955i \(-0.503022\pi\)
−0.00949392 + 0.999955i \(0.503022\pi\)
\(390\) −262.884 −0.674062
\(391\) 17.3737i 0.0444341i
\(392\) − 87.7226i − 0.223782i
\(393\) − 517.261i − 1.31619i
\(394\) 192.961 0.489750
\(395\) − 56.9419i − 0.144157i
\(396\) 0 0
\(397\) −561.028 −1.41317 −0.706585 0.707628i \(-0.749765\pi\)
−0.706585 + 0.707628i \(0.749765\pi\)
\(398\) − 406.594i − 1.02159i
\(399\) 1239.80 3.10728
\(400\) 20.0000 0.0500000
\(401\) 489.003 1.21946 0.609729 0.792610i \(-0.291278\pi\)
0.609729 + 0.792610i \(0.291278\pi\)
\(402\) 532.911i 1.32565i
\(403\) − 625.705i − 1.55262i
\(404\) − 290.709i − 0.719576i
\(405\) 274.026 0.676608
\(406\) 179.673i 0.442545i
\(407\) 0 0
\(408\) 141.301 0.346326
\(409\) 745.082i 1.82172i 0.412721 + 0.910858i \(0.364579\pi\)
−0.412721 + 0.910858i \(0.635421\pi\)
\(410\) 176.993 0.431690
\(411\) 693.894 1.68831
\(412\) 3.01315 0.00731348
\(413\) − 183.281i − 0.443779i
\(414\) − 51.0581i − 0.123329i
\(415\) 101.867i 0.245463i
\(416\) 88.1501 0.211899
\(417\) − 652.253i − 1.56415i
\(418\) 0 0
\(419\) 531.657 1.26887 0.634436 0.772975i \(-0.281232\pi\)
0.634436 + 0.772975i \(0.281232\pi\)
\(420\) − 213.411i − 0.508121i
\(421\) 687.099 1.63206 0.816032 0.578007i \(-0.196169\pi\)
0.816032 + 0.578007i \(0.196169\pi\)
\(422\) 421.949 0.999879
\(423\) −1282.08 −3.03091
\(424\) − 258.230i − 0.609034i
\(425\) 46.8224i 0.110170i
\(426\) 758.254i 1.77994i
\(427\) −428.891 −1.00443
\(428\) − 359.587i − 0.840156i
\(429\) 0 0
\(430\) 123.259 0.286649
\(431\) 135.133i 0.313533i 0.987636 + 0.156766i \(0.0501070\pi\)
−0.987636 + 0.156766i \(0.949893\pi\)
\(432\) −223.205 −0.516678
\(433\) 501.410 1.15799 0.578995 0.815331i \(-0.303445\pi\)
0.578995 + 0.815331i \(0.303445\pi\)
\(434\) 507.950 1.17039
\(435\) 169.428i 0.389490i
\(436\) 150.875i 0.346043i
\(437\) − 48.2015i − 0.110301i
\(438\) −372.190 −0.849750
\(439\) − 94.1832i − 0.214540i −0.994230 0.107270i \(-0.965789\pi\)
0.994230 0.107270i \(-0.0342110\pi\)
\(440\) 0 0
\(441\) −603.541 −1.36857
\(442\) 206.370i 0.466900i
\(443\) 773.143 1.74524 0.872621 0.488397i \(-0.162418\pi\)
0.872621 + 0.488397i \(0.162418\pi\)
\(444\) −321.018 −0.723015
\(445\) 310.818 0.698468
\(446\) 86.1949i 0.193262i
\(447\) 190.568i 0.426326i
\(448\) 71.5607i 0.159734i
\(449\) 105.544 0.235064 0.117532 0.993069i \(-0.462502\pi\)
0.117532 + 0.993069i \(0.462502\pi\)
\(450\) − 137.602i − 0.305783i
\(451\) 0 0
\(452\) −33.1149 −0.0732631
\(453\) 743.695i 1.64171i
\(454\) 29.5607 0.0651116
\(455\) 311.686 0.685024
\(456\) −392.024 −0.859703
\(457\) 187.760i 0.410853i 0.978673 + 0.205427i \(0.0658582\pi\)
−0.978673 + 0.205427i \(0.934142\pi\)
\(458\) 189.661i 0.414106i
\(459\) − 522.549i − 1.13845i
\(460\) −8.29706 −0.0180371
\(461\) − 268.745i − 0.582961i −0.956577 0.291481i \(-0.905852\pi\)
0.956577 0.291481i \(-0.0941479\pi\)
\(462\) 0 0
\(463\) −339.060 −0.732310 −0.366155 0.930554i \(-0.619326\pi\)
−0.366155 + 0.930554i \(0.619326\pi\)
\(464\) − 56.8125i − 0.122441i
\(465\) 478.986 1.03008
\(466\) −67.0764 −0.143941
\(467\) −135.885 −0.290973 −0.145487 0.989360i \(-0.546475\pi\)
−0.145487 + 0.989360i \(0.546475\pi\)
\(468\) − 606.482i − 1.29590i
\(469\) − 631.841i − 1.34721i
\(470\) 208.340i 0.443278i
\(471\) −986.694 −2.09489
\(472\) 57.9531i 0.122782i
\(473\) 0 0
\(474\) 192.123 0.405322
\(475\) − 129.904i − 0.273481i
\(476\) −167.532 −0.351958
\(477\) −1776.65 −3.72464
\(478\) 129.318 0.270541
\(479\) − 534.169i − 1.11518i −0.830118 0.557588i \(-0.811727\pi\)
0.830118 0.557588i \(-0.188273\pi\)
\(480\) 67.4802i 0.140584i
\(481\) − 468.847i − 0.974734i
\(482\) 437.837 0.908376
\(483\) 88.5341i 0.183300i
\(484\) 0 0
\(485\) 227.490 0.469051
\(486\) 214.335i 0.441018i
\(487\) 39.8099 0.0817451 0.0408726 0.999164i \(-0.486986\pi\)
0.0408726 + 0.999164i \(0.486986\pi\)
\(488\) 135.615 0.277899
\(489\) 966.909 1.97732
\(490\) 98.0768i 0.200157i
\(491\) − 59.2775i − 0.120728i −0.998176 0.0603641i \(-0.980774\pi\)
0.998176 0.0603641i \(-0.0192262\pi\)
\(492\) 597.176i 1.21377i
\(493\) 133.005 0.269787
\(494\) − 572.551i − 1.15901i
\(495\) 0 0
\(496\) −160.613 −0.323817
\(497\) − 899.016i − 1.80889i
\(498\) −343.701 −0.690162
\(499\) −184.415 −0.369570 −0.184785 0.982779i \(-0.559159\pi\)
−0.184785 + 0.982779i \(0.559159\pi\)
\(500\) −22.3607 −0.0447214
\(501\) 216.058i 0.431253i
\(502\) 311.716i 0.620948i
\(503\) 124.818i 0.248147i 0.992273 + 0.124073i \(0.0395958\pi\)
−0.992273 + 0.124073i \(0.960404\pi\)
\(504\) 492.346 0.976876
\(505\) 325.022i 0.643608i
\(506\) 0 0
\(507\) 393.846 0.776817
\(508\) − 45.0193i − 0.0886206i
\(509\) 201.980 0.396817 0.198408 0.980119i \(-0.436423\pi\)
0.198408 + 0.980119i \(0.436423\pi\)
\(510\) −157.979 −0.309763
\(511\) 441.284 0.863570
\(512\) − 22.6274i − 0.0441942i
\(513\) 1449.76i 2.82604i
\(514\) − 327.409i − 0.636983i
\(515\) −3.36881 −0.00654138
\(516\) 415.877i 0.805963i
\(517\) 0 0
\(518\) 380.613 0.734773
\(519\) − 206.906i − 0.398663i
\(520\) −98.5548 −0.189528
\(521\) 805.784 1.54661 0.773305 0.634034i \(-0.218602\pi\)
0.773305 + 0.634034i \(0.218602\pi\)
\(522\) −390.876 −0.748805
\(523\) 729.656i 1.39514i 0.716518 + 0.697568i \(0.245735\pi\)
−0.716518 + 0.697568i \(0.754265\pi\)
\(524\) − 193.920i − 0.370077i
\(525\) 238.600i 0.454477i
\(526\) −395.486 −0.751874
\(527\) − 376.015i − 0.713501i
\(528\) 0 0
\(529\) −525.558 −0.993493
\(530\) 288.710i 0.544736i
\(531\) 398.724 0.750892
\(532\) 464.800 0.873684
\(533\) −872.174 −1.63635
\(534\) 1048.70i 1.96387i
\(535\) 402.030i 0.751458i
\(536\) 199.788i 0.372738i
\(537\) −140.050 −0.260800
\(538\) 367.406i 0.682910i
\(539\) 0 0
\(540\) 249.551 0.462131
\(541\) − 566.169i − 1.04652i −0.852172 0.523261i \(-0.824715\pi\)
0.852172 0.523261i \(-0.175285\pi\)
\(542\) −57.8007 −0.106643
\(543\) 761.720 1.40280
\(544\) 52.9735 0.0973777
\(545\) − 168.683i − 0.309510i
\(546\) 1051.63i 1.92607i
\(547\) − 1074.11i − 1.96364i −0.189809 0.981821i \(-0.560787\pi\)
0.189809 0.981821i \(-0.439213\pi\)
\(548\) 260.140 0.474707
\(549\) − 933.045i − 1.69954i
\(550\) 0 0
\(551\) −369.008 −0.669705
\(552\) − 27.9944i − 0.0507145i
\(553\) −227.788 −0.411914
\(554\) −318.503 −0.574915
\(555\) 358.910 0.646684
\(556\) − 244.528i − 0.439799i
\(557\) 450.657i 0.809078i 0.914521 + 0.404539i \(0.132568\pi\)
−0.914521 + 0.404539i \(0.867432\pi\)
\(558\) 1105.04i 1.98035i
\(559\) −607.388 −1.08656
\(560\) − 80.0073i − 0.142870i
\(561\) 0 0
\(562\) −183.372 −0.326285
\(563\) 982.354i 1.74486i 0.488743 + 0.872428i \(0.337456\pi\)
−0.488743 + 0.872428i \(0.662544\pi\)
\(564\) −702.943 −1.24635
\(565\) 37.0236 0.0655285
\(566\) 663.725 1.17266
\(567\) − 1096.21i − 1.93334i
\(568\) 284.268i 0.500472i
\(569\) 418.272i 0.735101i 0.930004 + 0.367550i \(0.119803\pi\)
−0.930004 + 0.367550i \(0.880197\pi\)
\(570\) 438.297 0.768941
\(571\) 997.234i 1.74647i 0.487300 + 0.873234i \(0.337982\pi\)
−0.487300 + 0.873234i \(0.662018\pi\)
\(572\) 0 0
\(573\) −1575.59 −2.74972
\(574\) − 708.036i − 1.23351i
\(575\) 9.27640 0.0161329
\(576\) −155.679 −0.270276
\(577\) −542.954 −0.940995 −0.470497 0.882401i \(-0.655925\pi\)
−0.470497 + 0.882401i \(0.655925\pi\)
\(578\) − 284.691i − 0.492544i
\(579\) − 434.998i − 0.751291i
\(580\) 63.5183i 0.109514i
\(581\) 407.506 0.701387
\(582\) 767.553i 1.31882i
\(583\) 0 0
\(584\) −139.534 −0.238927
\(585\) 678.068i 1.15909i
\(586\) 232.298 0.396412
\(587\) 684.464 1.16604 0.583019 0.812459i \(-0.301871\pi\)
0.583019 + 0.812459i \(0.301871\pi\)
\(588\) −330.912 −0.562776
\(589\) 1043.21i 1.77116i
\(590\) − 64.7935i − 0.109820i
\(591\) − 727.901i − 1.23164i
\(592\) −120.349 −0.203293
\(593\) − 227.090i − 0.382950i −0.981497 0.191475i \(-0.938673\pi\)
0.981497 0.191475i \(-0.0613272\pi\)
\(594\) 0 0
\(595\) 187.307 0.314801
\(596\) 71.4435i 0.119872i
\(597\) −1533.78 −2.56914
\(598\) 40.8858 0.0683708
\(599\) 774.572 1.29311 0.646554 0.762868i \(-0.276209\pi\)
0.646554 + 0.762868i \(0.276209\pi\)
\(600\) − 75.4452i − 0.125742i
\(601\) − 295.829i − 0.492228i −0.969241 0.246114i \(-0.920846\pi\)
0.969241 0.246114i \(-0.0791538\pi\)
\(602\) − 493.081i − 0.819071i
\(603\) 1374.56 2.27954
\(604\) 278.810i 0.461606i
\(605\) 0 0
\(606\) −1096.63 −1.80962
\(607\) − 101.479i − 0.167182i −0.996500 0.0835909i \(-0.973361\pi\)
0.996500 0.0835909i \(-0.0266389\pi\)
\(608\) −146.969 −0.241726
\(609\) 677.774 1.11293
\(610\) −151.622 −0.248561
\(611\) − 1026.65i − 1.68027i
\(612\) − 364.463i − 0.595528i
\(613\) 388.428i 0.633652i 0.948484 + 0.316826i \(0.102617\pi\)
−0.948484 + 0.316826i \(0.897383\pi\)
\(614\) −358.375 −0.583673
\(615\) − 667.663i − 1.08563i
\(616\) 0 0
\(617\) 60.0091 0.0972595 0.0486297 0.998817i \(-0.484515\pi\)
0.0486297 + 0.998817i \(0.484515\pi\)
\(618\) − 11.3664i − 0.0183922i
\(619\) −636.089 −1.02761 −0.513804 0.857908i \(-0.671764\pi\)
−0.513804 + 0.857908i \(0.671764\pi\)
\(620\) 179.571 0.289631
\(621\) −103.527 −0.166710
\(622\) 523.908i 0.842296i
\(623\) − 1243.39i − 1.99581i
\(624\) − 332.525i − 0.532893i
\(625\) 25.0000 0.0400000
\(626\) − 515.365i − 0.823267i
\(627\) 0 0
\(628\) −369.910 −0.589029
\(629\) − 281.752i − 0.447936i
\(630\) −550.459 −0.873745
\(631\) −1020.59 −1.61741 −0.808707 0.588212i \(-0.799832\pi\)
−0.808707 + 0.588212i \(0.799832\pi\)
\(632\) 72.0265 0.113966
\(633\) − 1591.70i − 2.51454i
\(634\) − 250.392i − 0.394941i
\(635\) 50.3331i 0.0792647i
\(636\) −974.112 −1.53162
\(637\) − 483.297i − 0.758708i
\(638\) 0 0
\(639\) 1955.79 3.06071
\(640\) 25.2982i 0.0395285i
\(641\) −708.695 −1.10561 −0.552804 0.833311i \(-0.686442\pi\)
−0.552804 + 0.833311i \(0.686442\pi\)
\(642\) −1356.45 −2.11286
\(643\) −1110.52 −1.72709 −0.863546 0.504270i \(-0.831762\pi\)
−0.863546 + 0.504270i \(0.831762\pi\)
\(644\) 33.1913i 0.0515393i
\(645\) − 464.965i − 0.720876i
\(646\) − 344.072i − 0.532620i
\(647\) 209.581 0.323928 0.161964 0.986797i \(-0.448217\pi\)
0.161964 + 0.986797i \(0.448217\pi\)
\(648\) 346.619i 0.534906i
\(649\) 0 0
\(650\) 110.188 0.169519
\(651\) − 1916.12i − 2.94335i
\(652\) 362.493 0.555970
\(653\) −180.567 −0.276520 −0.138260 0.990396i \(-0.544151\pi\)
−0.138260 + 0.990396i \(0.544151\pi\)
\(654\) 569.139 0.870243
\(655\) 216.809i 0.331007i
\(656\) 223.880i 0.341281i
\(657\) 960.006i 1.46120i
\(658\) 833.438 1.26662
\(659\) 452.544i 0.686714i 0.939205 + 0.343357i \(0.111564\pi\)
−0.939205 + 0.343357i \(0.888436\pi\)
\(660\) 0 0
\(661\) 834.204 1.26203 0.631016 0.775770i \(-0.282638\pi\)
0.631016 + 0.775770i \(0.282638\pi\)
\(662\) 64.4909i 0.0974183i
\(663\) 778.480 1.17418
\(664\) −128.853 −0.194055
\(665\) −519.662 −0.781447
\(666\) 828.016i 1.24327i
\(667\) − 26.3508i − 0.0395064i
\(668\) 80.9996i 0.121257i
\(669\) 325.150 0.486023
\(670\) − 223.369i − 0.333387i
\(671\) 0 0
\(672\) 269.946 0.401705
\(673\) − 167.470i − 0.248842i −0.992230 0.124421i \(-0.960293\pi\)
0.992230 0.124421i \(-0.0397073\pi\)
\(674\) 220.135 0.326610
\(675\) −279.006 −0.413342
\(676\) 147.652 0.218420
\(677\) 373.522i 0.551731i 0.961196 + 0.275866i \(0.0889645\pi\)
−0.961196 + 0.275866i \(0.911036\pi\)
\(678\) 124.918i 0.184245i
\(679\) − 910.042i − 1.34027i
\(680\) −59.2261 −0.0870973
\(681\) − 111.510i − 0.163745i
\(682\) 0 0
\(683\) 522.625 0.765190 0.382595 0.923916i \(-0.375031\pi\)
0.382595 + 0.923916i \(0.375031\pi\)
\(684\) 1011.16i 1.47831i
\(685\) −290.845 −0.424591
\(686\) −227.520 −0.331662
\(687\) 715.449 1.04141
\(688\) 155.912i 0.226616i
\(689\) − 1422.69i − 2.06486i
\(690\) 31.2987i 0.0453604i
\(691\) −517.184 −0.748457 −0.374229 0.927336i \(-0.622092\pi\)
−0.374229 + 0.927336i \(0.622092\pi\)
\(692\) − 77.5687i − 0.112094i
\(693\) 0 0
\(694\) 107.818 0.155357
\(695\) 273.391i 0.393368i
\(696\) −214.312 −0.307919
\(697\) −524.130 −0.751979
\(698\) 840.448 1.20408
\(699\) 253.030i 0.361988i
\(700\) 89.4509i 0.127787i
\(701\) − 1007.50i − 1.43724i −0.695405 0.718618i \(-0.744775\pi\)
0.695405 0.718618i \(-0.255225\pi\)
\(702\) −1229.72 −1.75174
\(703\) 781.691i 1.11194i
\(704\) 0 0
\(705\) 785.914 1.11477
\(706\) 355.368i 0.503354i
\(707\) 1300.21 1.83905
\(708\) 218.614 0.308777
\(709\) −399.704 −0.563757 −0.281879 0.959450i \(-0.590958\pi\)
−0.281879 + 0.959450i \(0.590958\pi\)
\(710\) − 317.821i − 0.447636i
\(711\) − 495.550i − 0.696976i
\(712\) 393.158i 0.552188i
\(713\) −74.4957 −0.104482
\(714\) 631.975i 0.885119i
\(715\) 0 0
\(716\) −52.5044 −0.0733301
\(717\) − 487.823i − 0.680366i
\(718\) 155.813 0.217010
\(719\) −327.211 −0.455092 −0.227546 0.973767i \(-0.573070\pi\)
−0.227546 + 0.973767i \(0.573070\pi\)
\(720\) 174.055 0.241742
\(721\) 13.4765i 0.0186914i
\(722\) 444.062i 0.615044i
\(723\) − 1651.64i − 2.28442i
\(724\) 285.567 0.394430
\(725\) − 71.0156i − 0.0979526i
\(726\) 0 0
\(727\) −502.859 −0.691691 −0.345845 0.938291i \(-0.612408\pi\)
−0.345845 + 0.938291i \(0.612408\pi\)
\(728\) 394.255i 0.541559i
\(729\) −294.409 −0.403853
\(730\) 156.003 0.213703
\(731\) −365.008 −0.499326
\(732\) − 511.574i − 0.698872i
\(733\) 1413.85i 1.92885i 0.264351 + 0.964426i \(0.414842\pi\)
−0.264351 + 0.964426i \(0.585158\pi\)
\(734\) 661.305i 0.900961i
\(735\) 369.971 0.503362
\(736\) − 10.4950i − 0.0142596i
\(737\) 0 0
\(738\) 1540.32 2.08715
\(739\) − 548.081i − 0.741653i −0.928702 0.370826i \(-0.879074\pi\)
0.928702 0.370826i \(-0.120926\pi\)
\(740\) 134.555 0.181830
\(741\) −2159.81 −2.91473
\(742\) 1154.95 1.55653
\(743\) − 1033.42i − 1.39087i −0.718589 0.695435i \(-0.755212\pi\)
0.718589 0.695435i \(-0.244788\pi\)
\(744\) 605.875i 0.814348i
\(745\) − 79.8762i − 0.107216i
\(746\) 267.903 0.359119
\(747\) 886.522i 1.18678i
\(748\) 0 0
\(749\) 1608.27 2.14722
\(750\) 84.3503i 0.112467i
\(751\) −792.835 −1.05571 −0.527853 0.849336i \(-0.677003\pi\)
−0.527853 + 0.849336i \(0.677003\pi\)
\(752\) −263.532 −0.350442
\(753\) 1175.87 1.56158
\(754\) − 313.002i − 0.415122i
\(755\) − 311.719i − 0.412873i
\(756\) − 998.294i − 1.32049i
\(757\) 170.002 0.224574 0.112287 0.993676i \(-0.464182\pi\)
0.112287 + 0.993676i \(0.464182\pi\)
\(758\) 648.089i 0.854999i
\(759\) 0 0
\(760\) 164.317 0.216206
\(761\) − 343.012i − 0.450738i −0.974273 0.225369i \(-0.927641\pi\)
0.974273 0.225369i \(-0.0723588\pi\)
\(762\) −169.824 −0.222867
\(763\) −674.794 −0.884396
\(764\) −590.685 −0.773148
\(765\) 407.482i 0.532657i
\(766\) − 511.457i − 0.667698i
\(767\) 319.286i 0.416279i
\(768\) −85.3565 −0.111141
\(769\) 820.759i 1.06731i 0.845703 + 0.533654i \(0.179181\pi\)
−0.845703 + 0.533654i \(0.820819\pi\)
\(770\) 0 0
\(771\) −1235.07 −1.60191
\(772\) − 163.080i − 0.211243i
\(773\) −307.514 −0.397818 −0.198909 0.980018i \(-0.563740\pi\)
−0.198909 + 0.980018i \(0.563740\pi\)
\(774\) 1072.69 1.38590
\(775\) −200.767 −0.259054
\(776\) 287.754i 0.370817i
\(777\) − 1435.77i − 1.84784i
\(778\) 10.4458i 0.0134264i
\(779\) 1454.14 1.86668
\(780\) 371.774i 0.476634i
\(781\) 0 0
\(782\) 24.5701 0.0314196
\(783\) 792.552i 1.01220i
\(784\) −124.058 −0.158238
\(785\) 413.572 0.526843
\(786\) −731.517 −0.930683
\(787\) − 295.549i − 0.375539i −0.982213 0.187770i \(-0.939874\pi\)
0.982213 0.187770i \(-0.0601258\pi\)
\(788\) − 272.889i − 0.346305i
\(789\) 1491.88i 1.89084i
\(790\) −80.5280 −0.101934
\(791\) − 148.108i − 0.187241i
\(792\) 0 0
\(793\) 747.154 0.942186
\(794\) 793.414i 0.999262i
\(795\) 1089.09 1.36992
\(796\) −575.011 −0.722376
\(797\) 544.028 0.682595 0.341297 0.939955i \(-0.389134\pi\)
0.341297 + 0.939955i \(0.389134\pi\)
\(798\) − 1753.35i − 2.19718i
\(799\) − 616.960i − 0.772165i
\(800\) − 28.2843i − 0.0353553i
\(801\) 2704.97 3.37699
\(802\) − 691.555i − 0.862287i
\(803\) 0 0
\(804\) 753.650 0.937376
\(805\) − 37.1090i − 0.0460981i
\(806\) −884.880 −1.09787
\(807\) 1385.95 1.71741
\(808\) −411.124 −0.508817
\(809\) 803.416i 0.993097i 0.868009 + 0.496549i \(0.165400\pi\)
−0.868009 + 0.496549i \(0.834600\pi\)
\(810\) − 387.532i − 0.478434i
\(811\) 21.3033i 0.0262679i 0.999914 + 0.0131340i \(0.00418079\pi\)
−0.999914 + 0.0131340i \(0.995819\pi\)
\(812\) 254.096 0.312927
\(813\) 218.039i 0.268191i
\(814\) 0 0
\(815\) −405.279 −0.497275
\(816\) − 199.830i − 0.244889i
\(817\) 1012.67 1.23950
\(818\) 1053.70 1.28815
\(819\) 2712.52 3.31199
\(820\) − 250.305i − 0.305251i
\(821\) 619.666i 0.754770i 0.926057 + 0.377385i \(0.123177\pi\)
−0.926057 + 0.377385i \(0.876823\pi\)
\(822\) − 981.314i − 1.19381i
\(823\) −1003.87 −1.21977 −0.609887 0.792489i \(-0.708785\pi\)
−0.609887 + 0.792489i \(0.708785\pi\)
\(824\) − 4.26124i − 0.00517141i
\(825\) 0 0
\(826\) −259.198 −0.313799
\(827\) 436.941i 0.528345i 0.964475 + 0.264172i \(0.0850988\pi\)
−0.964475 + 0.264172i \(0.914901\pi\)
\(828\) −72.2071 −0.0872066
\(829\) 204.942 0.247215 0.123608 0.992331i \(-0.460554\pi\)
0.123608 + 0.992331i \(0.460554\pi\)
\(830\) 144.062 0.173568
\(831\) 1201.48i 1.44582i
\(832\) − 124.663i − 0.149835i
\(833\) − 290.436i − 0.348662i
\(834\) −922.424 −1.10602
\(835\) − 90.5603i − 0.108455i
\(836\) 0 0
\(837\) 2240.61 2.67695
\(838\) − 751.877i − 0.897228i
\(839\) −246.587 −0.293905 −0.146953 0.989144i \(-0.546947\pi\)
−0.146953 + 0.989144i \(0.546947\pi\)
\(840\) −301.808 −0.359296
\(841\) 639.271 0.760132
\(842\) − 971.705i − 1.15404i
\(843\) 691.728i 0.820556i
\(844\) − 596.726i − 0.707022i
\(845\) −165.080 −0.195361
\(846\) 1813.13i 2.14318i
\(847\) 0 0
\(848\) −365.193 −0.430652
\(849\) − 2503.74i − 2.94905i
\(850\) 66.2168 0.0779022
\(851\) −55.8204 −0.0655939
\(852\) 1072.33 1.25861
\(853\) − 358.945i − 0.420803i −0.977615 0.210402i \(-0.932523\pi\)
0.977615 0.210402i \(-0.0674771\pi\)
\(854\) 606.543i 0.710238i
\(855\) − 1130.52i − 1.32224i
\(856\) −508.532 −0.594080
\(857\) 688.891i 0.803840i 0.915675 + 0.401920i \(0.131657\pi\)
−0.915675 + 0.401920i \(0.868343\pi\)
\(858\) 0 0
\(859\) −896.881 −1.04410 −0.522049 0.852915i \(-0.674832\pi\)
−0.522049 + 0.852915i \(0.674832\pi\)
\(860\) − 174.314i − 0.202691i
\(861\) −2670.89 −3.10208
\(862\) 191.106 0.221701
\(863\) −1278.88 −1.48189 −0.740947 0.671563i \(-0.765623\pi\)
−0.740947 + 0.671563i \(0.765623\pi\)
\(864\) 315.659i 0.365347i
\(865\) 86.7245i 0.100259i
\(866\) − 709.100i − 0.818823i
\(867\) −1073.93 −1.23867
\(868\) − 718.350i − 0.827593i
\(869\) 0 0
\(870\) 239.608 0.275411
\(871\) 1100.71i 1.26373i
\(872\) 213.369 0.244689
\(873\) 1979.78 2.26779
\(874\) −68.1673 −0.0779946
\(875\) − 100.009i − 0.114296i
\(876\) 526.357i 0.600864i
\(877\) 940.916i 1.07288i 0.843938 + 0.536440i \(0.180231\pi\)
−0.843938 + 0.536440i \(0.819769\pi\)
\(878\) −133.195 −0.151703
\(879\) − 876.287i − 0.996913i
\(880\) 0 0
\(881\) 457.191 0.518945 0.259473 0.965750i \(-0.416451\pi\)
0.259473 + 0.965750i \(0.416451\pi\)
\(882\) 853.536i 0.967728i
\(883\) −600.865 −0.680482 −0.340241 0.940338i \(-0.610509\pi\)
−0.340241 + 0.940338i \(0.610509\pi\)
\(884\) 291.851 0.330148
\(885\) −244.418 −0.276179
\(886\) − 1093.39i − 1.23407i
\(887\) 456.006i 0.514099i 0.966398 + 0.257049i \(0.0827503\pi\)
−0.966398 + 0.257049i \(0.917250\pi\)
\(888\) 453.989i 0.511248i
\(889\) 201.351 0.226491
\(890\) − 439.564i − 0.493892i
\(891\) 0 0
\(892\) 121.898 0.136657
\(893\) 1711.69i 1.91679i
\(894\) 269.503 0.301458
\(895\) 58.7017 0.0655885
\(896\) 101.202 0.112949
\(897\) − 154.232i − 0.171942i
\(898\) − 149.261i − 0.166215i
\(899\) 570.303i 0.634375i
\(900\) −194.599 −0.216221
\(901\) − 854.959i − 0.948901i
\(902\) 0 0
\(903\) −1860.03 −2.05983
\(904\) 46.8316i 0.0518049i
\(905\) −319.274 −0.352789
\(906\) 1051.74 1.16087
\(907\) −675.509 −0.744773 −0.372386 0.928078i \(-0.621460\pi\)
−0.372386 + 0.928078i \(0.621460\pi\)
\(908\) − 41.8051i − 0.0460408i
\(909\) 2828.58i 3.11175i
\(910\) − 440.791i − 0.484385i
\(911\) −664.631 −0.729562 −0.364781 0.931093i \(-0.618856\pi\)
−0.364781 + 0.931093i \(0.618856\pi\)
\(912\) 554.406i 0.607902i
\(913\) 0 0
\(914\) 265.533 0.290517
\(915\) 571.958i 0.625090i
\(916\) 268.221 0.292817
\(917\) 867.316 0.945819
\(918\) −738.996 −0.805007
\(919\) − 838.215i − 0.912095i −0.889955 0.456047i \(-0.849265\pi\)
0.889955 0.456047i \(-0.150735\pi\)
\(920\) 11.7338i 0.0127541i
\(921\) 1351.88i 1.46784i
\(922\) −380.063 −0.412216
\(923\) 1566.14i 1.69679i
\(924\) 0 0
\(925\) −150.437 −0.162634
\(926\) 479.503i 0.517822i
\(927\) −29.3178 −0.0316266
\(928\) −80.3450 −0.0865787
\(929\) −1476.85 −1.58972 −0.794862 0.606790i \(-0.792457\pi\)
−0.794862 + 0.606790i \(0.792457\pi\)
\(930\) − 677.389i − 0.728375i
\(931\) 805.783i 0.865502i
\(932\) 94.8603i 0.101781i
\(933\) 1976.32 2.11824
\(934\) 192.170i 0.205749i
\(935\) 0 0
\(936\) −857.695 −0.916341
\(937\) − 191.337i − 0.204202i −0.994774 0.102101i \(-0.967444\pi\)
0.994774 0.102101i \(-0.0325564\pi\)
\(938\) −893.558 −0.952621
\(939\) −1944.09 −2.07038
\(940\) 294.638 0.313445
\(941\) 400.628i 0.425747i 0.977080 + 0.212873i \(0.0682822\pi\)
−0.977080 + 0.212873i \(0.931718\pi\)
\(942\) 1395.40i 1.48131i
\(943\) 103.840i 0.110117i
\(944\) 81.9581 0.0868200
\(945\) 1116.13i 1.18109i
\(946\) 0 0
\(947\) −1075.33 −1.13551 −0.567757 0.823196i \(-0.692189\pi\)
−0.567757 + 0.823196i \(0.692189\pi\)
\(948\) − 271.703i − 0.286606i
\(949\) −768.743 −0.810056
\(950\) −183.712 −0.193381
\(951\) −944.546 −0.993213
\(952\) 236.926i 0.248872i
\(953\) − 103.620i − 0.108730i −0.998521 0.0543650i \(-0.982687\pi\)
0.998521 0.0543650i \(-0.0173134\pi\)
\(954\) 2512.57i 2.63372i
\(955\) 660.406 0.691525
\(956\) − 182.884i − 0.191301i
\(957\) 0 0
\(958\) −755.430 −0.788549
\(959\) 1163.49i 1.21323i
\(960\) 95.4315 0.0994078
\(961\) 651.290 0.677721
\(962\) −663.050 −0.689241
\(963\) 3498.76i 3.63319i
\(964\) − 619.196i − 0.642319i
\(965\) 182.329i 0.188942i
\(966\) 125.206 0.129613
\(967\) 1347.62i 1.39361i 0.717262 + 0.696803i \(0.245395\pi\)
−0.717262 + 0.696803i \(0.754605\pi\)
\(968\) 0 0
\(969\) −1297.93 −1.33945
\(970\) − 321.719i − 0.331669i
\(971\) 370.102 0.381155 0.190578 0.981672i \(-0.438964\pi\)
0.190578 + 0.981672i \(0.438964\pi\)
\(972\) 303.115 0.311847
\(973\) 1093.66 1.12401
\(974\) − 56.2997i − 0.0578025i
\(975\) − 415.656i − 0.426314i
\(976\) − 191.788i − 0.196504i
\(977\) 1553.18 1.58975 0.794874 0.606774i \(-0.207537\pi\)
0.794874 + 0.606774i \(0.207537\pi\)
\(978\) − 1367.42i − 1.39818i
\(979\) 0 0
\(980\) 138.702 0.141532
\(981\) − 1468.00i − 1.49644i
\(982\) −83.8311 −0.0853677
\(983\) 1272.26 1.29426 0.647131 0.762379i \(-0.275969\pi\)
0.647131 + 0.762379i \(0.275969\pi\)
\(984\) 844.534 0.858266
\(985\) 305.099i 0.309745i
\(986\) − 188.097i − 0.190768i
\(987\) − 3143.94i − 3.18535i
\(988\) −809.709 −0.819544
\(989\) 72.3149i 0.0731192i
\(990\) 0 0
\(991\) 993.904 1.00293 0.501465 0.865178i \(-0.332794\pi\)
0.501465 + 0.865178i \(0.332794\pi\)
\(992\) 227.142i 0.228973i
\(993\) 243.276 0.244991
\(994\) −1271.40 −1.27908
\(995\) 642.882 0.646112
\(996\) 486.066i 0.488018i
\(997\) − 6.07964i − 0.00609793i −0.999995 0.00304896i \(-0.999029\pi\)
0.999995 0.00304896i \(-0.000970517\pi\)
\(998\) 260.803i 0.261325i
\(999\) 1678.91 1.68059
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1210.3.d.c.241.2 16
11.2 odd 10 110.3.h.b.51.3 yes 16
11.5 even 5 110.3.h.b.41.3 16
11.10 odd 2 inner 1210.3.d.c.241.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.3.h.b.41.3 16 11.5 even 5
110.3.h.b.51.3 yes 16 11.2 odd 10
1210.3.d.c.241.2 16 1.1 even 1 trivial
1210.3.d.c.241.10 16 11.10 odd 2 inner