Properties

Label 1210.3.d.c.241.13
Level $1210$
Weight $3$
Character 1210.241
Analytic conductor $32.970$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1210,3,Mod(241,1210)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1210, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1210.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1210 = 2 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1210.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.9701119876\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 92 x^{14} - 504 x^{13} + 3078 x^{12} - 12280 x^{11} + 49836 x^{10} - 147672 x^{9} + \cdots + 339856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.13
Root \(0.500000 - 3.96822i\) of defining polynomial
Character \(\chi\) \(=\) 1210.241
Dual form 1210.3.d.c.241.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +0.468308 q^{3} -2.00000 q^{4} +2.23607 q^{5} +0.662288i q^{6} -13.4610i q^{7} -2.82843i q^{8} -8.78069 q^{9} +3.16228i q^{10} -0.936617 q^{12} +7.43101i q^{13} +19.0367 q^{14} +1.04717 q^{15} +4.00000 q^{16} -12.1368i q^{17} -12.4178i q^{18} +4.76968i q^{19} -4.47214 q^{20} -6.30390i q^{21} -9.96131 q^{23} -1.32458i q^{24} +5.00000 q^{25} -10.5090 q^{26} -8.32685 q^{27} +26.9220i q^{28} +28.8922i q^{29} +1.48092i q^{30} -50.3194 q^{31} +5.65685i q^{32} +17.1640 q^{34} -30.0997i q^{35} +17.5614 q^{36} +48.5268 q^{37} -6.74534 q^{38} +3.48001i q^{39} -6.32456i q^{40} +53.4434i q^{41} +8.91506 q^{42} -15.5167i q^{43} -19.6342 q^{45} -14.0874i q^{46} -29.7533 q^{47} +1.87323 q^{48} -132.198 q^{49} +7.07107i q^{50} -5.68377i q^{51} -14.8620i q^{52} -15.0761 q^{53} -11.7759i q^{54} -38.0735 q^{56} +2.23368i q^{57} -40.8598 q^{58} -106.522 q^{59} -2.09434 q^{60} +53.8738i q^{61} -71.1624i q^{62} +118.197i q^{63} -8.00000 q^{64} +16.6162i q^{65} -82.5702 q^{67} +24.2736i q^{68} -4.66497 q^{69} +42.5674 q^{70} +58.4935 q^{71} +24.8355i q^{72} -40.4706i q^{73} +68.6272i q^{74} +2.34154 q^{75} -9.53935i q^{76} -4.92147 q^{78} +100.411i q^{79} +8.94427 q^{80} +75.1267 q^{81} -75.5804 q^{82} +27.1970i q^{83} +12.6078i q^{84} -27.1387i q^{85} +21.9439 q^{86} +13.5305i q^{87} -22.2491 q^{89} -27.7670i q^{90} +100.029 q^{91} +19.9226 q^{92} -23.5650 q^{93} -42.0776i q^{94} +10.6653i q^{95} +2.64915i q^{96} -103.175 q^{97} -186.957i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{3} - 32 q^{4} + 40 q^{9} + 32 q^{12} + 16 q^{14} + 40 q^{15} + 64 q^{16} + 108 q^{23} + 80 q^{25} - 292 q^{27} - 268 q^{31} - 16 q^{34} - 80 q^{36} + 44 q^{37} - 280 q^{38} - 16 q^{42} - 476 q^{47}+ \cdots + 296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1210\mathbb{Z}\right)^\times\).

\(n\) \(727\) \(1091\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0.468308 0.156103 0.0780514 0.996949i \(-0.475130\pi\)
0.0780514 + 0.996949i \(0.475130\pi\)
\(4\) −2.00000 −0.500000
\(5\) 2.23607 0.447214
\(6\) 0.662288i 0.110381i
\(7\) − 13.4610i − 1.92300i −0.274805 0.961500i \(-0.588613\pi\)
0.274805 0.961500i \(-0.411387\pi\)
\(8\) − 2.82843i − 0.353553i
\(9\) −8.78069 −0.975632
\(10\) 3.16228i 0.316228i
\(11\) 0 0
\(12\) −0.936617 −0.0780514
\(13\) 7.43101i 0.571616i 0.958287 + 0.285808i \(0.0922620\pi\)
−0.958287 + 0.285808i \(0.907738\pi\)
\(14\) 19.0367 1.35977
\(15\) 1.04717 0.0698113
\(16\) 4.00000 0.250000
\(17\) − 12.1368i − 0.713930i −0.934118 0.356965i \(-0.883812\pi\)
0.934118 0.356965i \(-0.116188\pi\)
\(18\) − 12.4178i − 0.689876i
\(19\) 4.76968i 0.251036i 0.992091 + 0.125518i \(0.0400592\pi\)
−0.992091 + 0.125518i \(0.959941\pi\)
\(20\) −4.47214 −0.223607
\(21\) − 6.30390i − 0.300186i
\(22\) 0 0
\(23\) −9.96131 −0.433101 −0.216550 0.976271i \(-0.569481\pi\)
−0.216550 + 0.976271i \(0.569481\pi\)
\(24\) − 1.32458i − 0.0551907i
\(25\) 5.00000 0.200000
\(26\) −10.5090 −0.404194
\(27\) −8.32685 −0.308402
\(28\) 26.9220i 0.961500i
\(29\) 28.8922i 0.996284i 0.867095 + 0.498142i \(0.165984\pi\)
−0.867095 + 0.498142i \(0.834016\pi\)
\(30\) 1.48092i 0.0493640i
\(31\) −50.3194 −1.62321 −0.811603 0.584209i \(-0.801405\pi\)
−0.811603 + 0.584209i \(0.801405\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 17.1640 0.504825
\(35\) − 30.0997i − 0.859992i
\(36\) 17.5614 0.487816
\(37\) 48.5268 1.31153 0.655767 0.754963i \(-0.272345\pi\)
0.655767 + 0.754963i \(0.272345\pi\)
\(38\) −6.74534 −0.177509
\(39\) 3.48001i 0.0892309i
\(40\) − 6.32456i − 0.158114i
\(41\) 53.4434i 1.30350i 0.758435 + 0.651749i \(0.225964\pi\)
−0.758435 + 0.651749i \(0.774036\pi\)
\(42\) 8.91506 0.212263
\(43\) − 15.5167i − 0.360853i −0.983588 0.180427i \(-0.942252\pi\)
0.983588 0.180427i \(-0.0577478\pi\)
\(44\) 0 0
\(45\) −19.6342 −0.436316
\(46\) − 14.0874i − 0.306248i
\(47\) −29.7533 −0.633049 −0.316525 0.948584i \(-0.602516\pi\)
−0.316525 + 0.948584i \(0.602516\pi\)
\(48\) 1.87323 0.0390257
\(49\) −132.198 −2.69793
\(50\) 7.07107i 0.141421i
\(51\) − 5.68377i − 0.111446i
\(52\) − 14.8620i − 0.285808i
\(53\) −15.0761 −0.284455 −0.142228 0.989834i \(-0.545426\pi\)
−0.142228 + 0.989834i \(0.545426\pi\)
\(54\) − 11.7759i − 0.218073i
\(55\) 0 0
\(56\) −38.0735 −0.679883
\(57\) 2.23368i 0.0391874i
\(58\) −40.8598 −0.704479
\(59\) −106.522 −1.80546 −0.902729 0.430210i \(-0.858440\pi\)
−0.902729 + 0.430210i \(0.858440\pi\)
\(60\) −2.09434 −0.0349057
\(61\) 53.8738i 0.883177i 0.897218 + 0.441588i \(0.145585\pi\)
−0.897218 + 0.441588i \(0.854415\pi\)
\(62\) − 71.1624i − 1.14778i
\(63\) 118.197i 1.87614i
\(64\) −8.00000 −0.125000
\(65\) 16.6162i 0.255635i
\(66\) 0 0
\(67\) −82.5702 −1.23239 −0.616196 0.787593i \(-0.711327\pi\)
−0.616196 + 0.787593i \(0.711327\pi\)
\(68\) 24.2736i 0.356965i
\(69\) −4.66497 −0.0676082
\(70\) 42.5674 0.608106
\(71\) 58.4935 0.823852 0.411926 0.911217i \(-0.364856\pi\)
0.411926 + 0.911217i \(0.364856\pi\)
\(72\) 24.8355i 0.344938i
\(73\) − 40.4706i − 0.554391i −0.960813 0.277196i \(-0.910595\pi\)
0.960813 0.277196i \(-0.0894050\pi\)
\(74\) 68.6272i 0.927395i
\(75\) 2.34154 0.0312206
\(76\) − 9.53935i − 0.125518i
\(77\) 0 0
\(78\) −4.92147 −0.0630958
\(79\) 100.411i 1.27102i 0.772092 + 0.635510i \(0.219210\pi\)
−0.772092 + 0.635510i \(0.780790\pi\)
\(80\) 8.94427 0.111803
\(81\) 75.1267 0.927490
\(82\) −75.5804 −0.921712
\(83\) 27.1970i 0.327675i 0.986487 + 0.163838i \(0.0523873\pi\)
−0.986487 + 0.163838i \(0.947613\pi\)
\(84\) 12.6078i 0.150093i
\(85\) − 27.1387i − 0.319279i
\(86\) 21.9439 0.255162
\(87\) 13.5305i 0.155523i
\(88\) 0 0
\(89\) −22.2491 −0.249990 −0.124995 0.992157i \(-0.539891\pi\)
−0.124995 + 0.992157i \(0.539891\pi\)
\(90\) − 27.7670i − 0.308522i
\(91\) 100.029 1.09922
\(92\) 19.9226 0.216550
\(93\) −23.5650 −0.253387
\(94\) − 42.0776i − 0.447634i
\(95\) 10.6653i 0.112267i
\(96\) 2.64915i 0.0275953i
\(97\) −103.175 −1.06366 −0.531828 0.846853i \(-0.678495\pi\)
−0.531828 + 0.846853i \(0.678495\pi\)
\(98\) − 186.957i − 1.90772i
\(99\) 0 0
\(100\) −10.0000 −0.100000
\(101\) 81.1684i 0.803648i 0.915717 + 0.401824i \(0.131624\pi\)
−0.915717 + 0.401824i \(0.868376\pi\)
\(102\) 8.03806 0.0788046
\(103\) −122.413 −1.18848 −0.594240 0.804288i \(-0.702547\pi\)
−0.594240 + 0.804288i \(0.702547\pi\)
\(104\) 21.0181 0.202097
\(105\) − 14.0959i − 0.134247i
\(106\) − 21.3208i − 0.201140i
\(107\) − 99.2627i − 0.927688i −0.885917 0.463844i \(-0.846470\pi\)
0.885917 0.463844i \(-0.153530\pi\)
\(108\) 16.6537 0.154201
\(109\) − 122.026i − 1.11951i −0.828660 0.559753i \(-0.810896\pi\)
0.828660 0.559753i \(-0.189104\pi\)
\(110\) 0 0
\(111\) 22.7255 0.204734
\(112\) − 53.8440i − 0.480750i
\(113\) 200.014 1.77004 0.885019 0.465555i \(-0.154145\pi\)
0.885019 + 0.465555i \(0.154145\pi\)
\(114\) −3.15890 −0.0277096
\(115\) −22.2742 −0.193688
\(116\) − 57.7845i − 0.498142i
\(117\) − 65.2494i − 0.557687i
\(118\) − 150.645i − 1.27665i
\(119\) −163.374 −1.37289
\(120\) − 2.96184i − 0.0246820i
\(121\) 0 0
\(122\) −76.1890 −0.624500
\(123\) 25.0280i 0.203480i
\(124\) 100.639 0.811603
\(125\) 11.1803 0.0894427
\(126\) −167.156 −1.32663
\(127\) 7.08770i 0.0558086i 0.999611 + 0.0279043i \(0.00888337\pi\)
−0.999611 + 0.0279043i \(0.991117\pi\)
\(128\) − 11.3137i − 0.0883883i
\(129\) − 7.26660i − 0.0563302i
\(130\) −23.4989 −0.180761
\(131\) − 195.917i − 1.49555i −0.663954 0.747774i \(-0.731123\pi\)
0.663954 0.747774i \(-0.268877\pi\)
\(132\) 0 0
\(133\) 64.2046 0.482741
\(134\) − 116.772i − 0.871432i
\(135\) −18.6194 −0.137921
\(136\) −34.3281 −0.252412
\(137\) 140.711 1.02708 0.513542 0.858064i \(-0.328333\pi\)
0.513542 + 0.858064i \(0.328333\pi\)
\(138\) − 6.59726i − 0.0478062i
\(139\) − 17.6148i − 0.126725i −0.997991 0.0633626i \(-0.979818\pi\)
0.997991 0.0633626i \(-0.0201825\pi\)
\(140\) 60.1994i 0.429996i
\(141\) −13.9337 −0.0988208
\(142\) 82.7223i 0.582551i
\(143\) 0 0
\(144\) −35.1227 −0.243908
\(145\) 64.6050i 0.445552i
\(146\) 57.2340 0.392014
\(147\) −61.9097 −0.421154
\(148\) −97.0536 −0.655767
\(149\) − 166.939i − 1.12040i −0.828359 0.560198i \(-0.810725\pi\)
0.828359 0.560198i \(-0.189275\pi\)
\(150\) 3.31144i 0.0220763i
\(151\) 103.199i 0.683438i 0.939802 + 0.341719i \(0.111009\pi\)
−0.939802 + 0.341719i \(0.888991\pi\)
\(152\) 13.4907 0.0887545
\(153\) 106.570i 0.696533i
\(154\) 0 0
\(155\) −112.518 −0.725920
\(156\) − 6.96001i − 0.0446155i
\(157\) −184.395 −1.17449 −0.587247 0.809408i \(-0.699788\pi\)
−0.587247 + 0.809408i \(0.699788\pi\)
\(158\) −142.002 −0.898747
\(159\) −7.06027 −0.0444042
\(160\) 12.6491i 0.0790569i
\(161\) 134.089i 0.832852i
\(162\) 106.245i 0.655834i
\(163\) −273.017 −1.67495 −0.837477 0.546473i \(-0.815970\pi\)
−0.837477 + 0.546473i \(0.815970\pi\)
\(164\) − 106.887i − 0.651749i
\(165\) 0 0
\(166\) −38.4624 −0.231701
\(167\) − 211.623i − 1.26720i −0.773659 0.633602i \(-0.781576\pi\)
0.773659 0.633602i \(-0.218424\pi\)
\(168\) −17.8301 −0.106132
\(169\) 113.780 0.673255
\(170\) 38.3800 0.225764
\(171\) − 41.8810i − 0.244918i
\(172\) 31.0334i 0.180427i
\(173\) 17.2637i 0.0997903i 0.998754 + 0.0498951i \(0.0158887\pi\)
−0.998754 + 0.0498951i \(0.984111\pi\)
\(174\) −19.1350 −0.109971
\(175\) − 67.3050i − 0.384600i
\(176\) 0 0
\(177\) −49.8852 −0.281837
\(178\) − 31.4650i − 0.176770i
\(179\) −214.183 −1.19655 −0.598276 0.801290i \(-0.704147\pi\)
−0.598276 + 0.801290i \(0.704147\pi\)
\(180\) 39.2684 0.218158
\(181\) 22.5829 0.124767 0.0623836 0.998052i \(-0.480130\pi\)
0.0623836 + 0.998052i \(0.480130\pi\)
\(182\) 141.462i 0.777265i
\(183\) 25.2295i 0.137866i
\(184\) 28.1749i 0.153124i
\(185\) 108.509 0.586536
\(186\) − 33.3259i − 0.179172i
\(187\) 0 0
\(188\) 59.5066 0.316525
\(189\) 112.088i 0.593056i
\(190\) −15.0830 −0.0793844
\(191\) −33.7016 −0.176448 −0.0882240 0.996101i \(-0.528119\pi\)
−0.0882240 + 0.996101i \(0.528119\pi\)
\(192\) −3.74647 −0.0195129
\(193\) 24.4296i 0.126578i 0.997995 + 0.0632891i \(0.0201590\pi\)
−0.997995 + 0.0632891i \(0.979841\pi\)
\(194\) − 145.911i − 0.752118i
\(195\) 7.78153i 0.0399053i
\(196\) 264.397 1.34896
\(197\) − 120.534i − 0.611848i −0.952056 0.305924i \(-0.901035\pi\)
0.952056 0.305924i \(-0.0989654\pi\)
\(198\) 0 0
\(199\) −300.037 −1.50772 −0.753861 0.657034i \(-0.771811\pi\)
−0.753861 + 0.657034i \(0.771811\pi\)
\(200\) − 14.1421i − 0.0707107i
\(201\) −38.6683 −0.192380
\(202\) −114.789 −0.568265
\(203\) 388.918 1.91585
\(204\) 11.3675i 0.0557232i
\(205\) 119.503i 0.582942i
\(206\) − 173.119i − 0.840382i
\(207\) 87.4672 0.422547
\(208\) 29.7240i 0.142904i
\(209\) 0 0
\(210\) 19.9347 0.0949270
\(211\) − 26.6669i − 0.126383i −0.998001 0.0631917i \(-0.979872\pi\)
0.998001 0.0631917i \(-0.0201280\pi\)
\(212\) 30.1522 0.142228
\(213\) 27.3930 0.128606
\(214\) 140.379 0.655975
\(215\) − 34.6964i − 0.161378i
\(216\) 23.5519i 0.109036i
\(217\) 677.349i 3.12143i
\(218\) 172.571 0.791610
\(219\) − 18.9527i − 0.0865421i
\(220\) 0 0
\(221\) 90.1888 0.408094
\(222\) 32.1387i 0.144769i
\(223\) 309.146 1.38631 0.693153 0.720790i \(-0.256221\pi\)
0.693153 + 0.720790i \(0.256221\pi\)
\(224\) 76.1469 0.339942
\(225\) −43.9034 −0.195126
\(226\) 282.863i 1.25161i
\(227\) 356.181i 1.56908i 0.620079 + 0.784540i \(0.287101\pi\)
−0.620079 + 0.784540i \(0.712899\pi\)
\(228\) − 4.46736i − 0.0195937i
\(229\) −95.0338 −0.414995 −0.207497 0.978236i \(-0.566532\pi\)
−0.207497 + 0.978236i \(0.566532\pi\)
\(230\) − 31.5004i − 0.136958i
\(231\) 0 0
\(232\) 81.7196 0.352240
\(233\) − 170.668i − 0.732482i −0.930520 0.366241i \(-0.880645\pi\)
0.930520 0.366241i \(-0.119355\pi\)
\(234\) 92.2766 0.394344
\(235\) −66.5305 −0.283108
\(236\) 213.044 0.902729
\(237\) 47.0231i 0.198410i
\(238\) − 231.045i − 0.970778i
\(239\) − 387.419i − 1.62100i −0.585738 0.810500i \(-0.699195\pi\)
0.585738 0.810500i \(-0.300805\pi\)
\(240\) 4.18868 0.0174528
\(241\) 231.343i 0.959930i 0.877288 + 0.479965i \(0.159351\pi\)
−0.877288 + 0.479965i \(0.840649\pi\)
\(242\) 0 0
\(243\) 110.124 0.453185
\(244\) − 107.748i − 0.441588i
\(245\) −295.605 −1.20655
\(246\) −35.3949 −0.143882
\(247\) −35.4435 −0.143496
\(248\) 142.325i 0.573890i
\(249\) 12.7366i 0.0511510i
\(250\) 15.8114i 0.0632456i
\(251\) −88.9283 −0.354296 −0.177148 0.984184i \(-0.556687\pi\)
−0.177148 + 0.984184i \(0.556687\pi\)
\(252\) − 236.394i − 0.938070i
\(253\) 0 0
\(254\) −10.0235 −0.0394627
\(255\) − 12.7093i − 0.0498404i
\(256\) 16.0000 0.0625000
\(257\) −231.107 −0.899247 −0.449624 0.893218i \(-0.648442\pi\)
−0.449624 + 0.893218i \(0.648442\pi\)
\(258\) 10.2765 0.0398315
\(259\) − 653.219i − 2.52208i
\(260\) − 33.2325i − 0.127817i
\(261\) − 253.694i − 0.972007i
\(262\) 277.068 1.05751
\(263\) 190.148i 0.722997i 0.932373 + 0.361498i \(0.117735\pi\)
−0.932373 + 0.361498i \(0.882265\pi\)
\(264\) 0 0
\(265\) −33.7112 −0.127212
\(266\) 90.7990i 0.341350i
\(267\) −10.4194 −0.0390241
\(268\) 165.140 0.616196
\(269\) −234.323 −0.871090 −0.435545 0.900167i \(-0.643444\pi\)
−0.435545 + 0.900167i \(0.643444\pi\)
\(270\) − 26.3318i − 0.0975252i
\(271\) − 133.619i − 0.493059i −0.969135 0.246529i \(-0.920710\pi\)
0.969135 0.246529i \(-0.0792902\pi\)
\(272\) − 48.5472i − 0.178482i
\(273\) 46.8444 0.171591
\(274\) 198.995i 0.726258i
\(275\) 0 0
\(276\) 9.32993 0.0338041
\(277\) 346.017i 1.24916i 0.780961 + 0.624580i \(0.214730\pi\)
−0.780961 + 0.624580i \(0.785270\pi\)
\(278\) 24.9111 0.0896082
\(279\) 441.839 1.58365
\(280\) −85.1348 −0.304053
\(281\) − 89.0883i − 0.317040i −0.987356 0.158520i \(-0.949328\pi\)
0.987356 0.158520i \(-0.0506723\pi\)
\(282\) − 19.7053i − 0.0698769i
\(283\) − 443.364i − 1.56666i −0.621608 0.783329i \(-0.713520\pi\)
0.621608 0.783329i \(-0.286480\pi\)
\(284\) −116.987 −0.411926
\(285\) 4.99466i 0.0175251i
\(286\) 0 0
\(287\) 719.401 2.50663
\(288\) − 49.6711i − 0.172469i
\(289\) 141.698 0.490304
\(290\) −91.3653 −0.315053
\(291\) −48.3175 −0.166040
\(292\) 80.9411i 0.277196i
\(293\) − 84.3268i − 0.287805i −0.989592 0.143902i \(-0.954035\pi\)
0.989592 0.143902i \(-0.0459651\pi\)
\(294\) − 87.5535i − 0.297801i
\(295\) −238.190 −0.807425
\(296\) − 137.254i − 0.463697i
\(297\) 0 0
\(298\) 236.088 0.792240
\(299\) − 74.0226i − 0.247567i
\(300\) −4.68308 −0.0156103
\(301\) −208.870 −0.693921
\(302\) −145.946 −0.483263
\(303\) 38.0119i 0.125452i
\(304\) 19.0787i 0.0627589i
\(305\) 120.465i 0.394969i
\(306\) −150.712 −0.492523
\(307\) 370.937i 1.20826i 0.796884 + 0.604132i \(0.206480\pi\)
−0.796884 + 0.604132i \(0.793520\pi\)
\(308\) 0 0
\(309\) −57.3273 −0.185525
\(310\) − 159.124i − 0.513303i
\(311\) 154.761 0.497623 0.248812 0.968552i \(-0.419960\pi\)
0.248812 + 0.968552i \(0.419960\pi\)
\(312\) 9.84294 0.0315479
\(313\) 410.624 1.31190 0.655949 0.754805i \(-0.272268\pi\)
0.655949 + 0.754805i \(0.272268\pi\)
\(314\) − 260.774i − 0.830492i
\(315\) 264.296i 0.839035i
\(316\) − 200.821i − 0.635510i
\(317\) 34.9608 0.110287 0.0551433 0.998478i \(-0.482438\pi\)
0.0551433 + 0.998478i \(0.482438\pi\)
\(318\) − 9.98473i − 0.0313985i
\(319\) 0 0
\(320\) −17.8885 −0.0559017
\(321\) − 46.4855i − 0.144815i
\(322\) −189.631 −0.588916
\(323\) 57.8886 0.179222
\(324\) −150.253 −0.463745
\(325\) 37.1551i 0.114323i
\(326\) − 386.105i − 1.18437i
\(327\) − 57.1458i − 0.174758i
\(328\) 151.161 0.460856
\(329\) 400.509i 1.21735i
\(330\) 0 0
\(331\) 83.8861 0.253432 0.126716 0.991939i \(-0.459556\pi\)
0.126716 + 0.991939i \(0.459556\pi\)
\(332\) − 54.3941i − 0.163838i
\(333\) −426.098 −1.27957
\(334\) 299.280 0.896049
\(335\) −184.633 −0.551142
\(336\) − 25.2156i − 0.0750464i
\(337\) 201.420i 0.597685i 0.954303 + 0.298842i \(0.0966005\pi\)
−0.954303 + 0.298842i \(0.903400\pi\)
\(338\) 160.909i 0.476063i
\(339\) 93.6684 0.276308
\(340\) 54.2775i 0.159640i
\(341\) 0 0
\(342\) 59.2287 0.173183
\(343\) 1119.93i 3.26512i
\(344\) −43.8878 −0.127581
\(345\) −10.4312 −0.0302353
\(346\) −24.4146 −0.0705624
\(347\) 303.238i 0.873884i 0.899490 + 0.436942i \(0.143938\pi\)
−0.899490 + 0.436942i \(0.856062\pi\)
\(348\) − 27.0610i − 0.0777614i
\(349\) − 144.865i − 0.415086i −0.978226 0.207543i \(-0.933453\pi\)
0.978226 0.207543i \(-0.0665466\pi\)
\(350\) 95.1836 0.271953
\(351\) − 61.8769i − 0.176287i
\(352\) 0 0
\(353\) −50.4196 −0.142832 −0.0714159 0.997447i \(-0.522752\pi\)
−0.0714159 + 0.997447i \(0.522752\pi\)
\(354\) − 70.5483i − 0.199289i
\(355\) 130.795 0.368438
\(356\) 44.4982 0.124995
\(357\) −76.5092 −0.214312
\(358\) − 302.900i − 0.846090i
\(359\) 37.1468i 0.103473i 0.998661 + 0.0517365i \(0.0164756\pi\)
−0.998661 + 0.0517365i \(0.983524\pi\)
\(360\) 55.5339i 0.154261i
\(361\) 338.250 0.936981
\(362\) 31.9370i 0.0882238i
\(363\) 0 0
\(364\) −200.058 −0.549609
\(365\) − 90.4949i − 0.247931i
\(366\) −35.6800 −0.0974863
\(367\) 181.999 0.495910 0.247955 0.968772i \(-0.420241\pi\)
0.247955 + 0.968772i \(0.420241\pi\)
\(368\) −39.8453 −0.108275
\(369\) − 469.270i − 1.27173i
\(370\) 153.455i 0.414744i
\(371\) 202.940i 0.547007i
\(372\) 47.1300 0.126694
\(373\) 13.6655i 0.0366368i 0.999832 + 0.0183184i \(0.00583126\pi\)
−0.999832 + 0.0183184i \(0.994169\pi\)
\(374\) 0 0
\(375\) 5.23585 0.0139623
\(376\) 84.1551i 0.223817i
\(377\) −214.699 −0.569492
\(378\) −158.516 −0.419354
\(379\) −58.9190 −0.155459 −0.0777295 0.996974i \(-0.524767\pi\)
−0.0777295 + 0.996974i \(0.524767\pi\)
\(380\) − 21.3306i − 0.0561333i
\(381\) 3.31923i 0.00871189i
\(382\) − 47.6612i − 0.124768i
\(383\) 202.084 0.527634 0.263817 0.964573i \(-0.415019\pi\)
0.263817 + 0.964573i \(0.415019\pi\)
\(384\) − 5.29831i − 0.0137977i
\(385\) 0 0
\(386\) −34.5486 −0.0895043
\(387\) 136.247i 0.352060i
\(388\) 206.349 0.531828
\(389\) 121.038 0.311153 0.155576 0.987824i \(-0.450277\pi\)
0.155576 + 0.987824i \(0.450277\pi\)
\(390\) −11.0047 −0.0282173
\(391\) 120.899i 0.309203i
\(392\) 373.914i 0.953862i
\(393\) − 91.7494i − 0.233459i
\(394\) 170.461 0.432642
\(395\) 224.525i 0.568418i
\(396\) 0 0
\(397\) −545.583 −1.37426 −0.687132 0.726532i \(-0.741131\pi\)
−0.687132 + 0.726532i \(0.741131\pi\)
\(398\) − 424.316i − 1.06612i
\(399\) 30.0676 0.0753573
\(400\) 20.0000 0.0500000
\(401\) 731.593 1.82442 0.912210 0.409722i \(-0.134374\pi\)
0.912210 + 0.409722i \(0.134374\pi\)
\(402\) − 54.6853i − 0.136033i
\(403\) − 373.924i − 0.927851i
\(404\) − 162.337i − 0.401824i
\(405\) 167.988 0.414786
\(406\) 550.014i 1.35471i
\(407\) 0 0
\(408\) −16.0761 −0.0394023
\(409\) − 684.162i − 1.67277i −0.548144 0.836384i \(-0.684665\pi\)
0.548144 0.836384i \(-0.315335\pi\)
\(410\) −169.003 −0.412202
\(411\) 65.8959 0.160331
\(412\) 244.827 0.594240
\(413\) 1433.89i 3.47190i
\(414\) 123.697i 0.298786i
\(415\) 60.8144i 0.146541i
\(416\) −42.0362 −0.101048
\(417\) − 8.24916i − 0.0197822i
\(418\) 0 0
\(419\) 211.603 0.505020 0.252510 0.967594i \(-0.418744\pi\)
0.252510 + 0.967594i \(0.418744\pi\)
\(420\) 28.1919i 0.0671236i
\(421\) −735.584 −1.74723 −0.873615 0.486617i \(-0.838231\pi\)
−0.873615 + 0.486617i \(0.838231\pi\)
\(422\) 37.7127 0.0893666
\(423\) 261.255 0.617623
\(424\) 42.6417i 0.100570i
\(425\) − 60.6840i − 0.142786i
\(426\) 38.7396i 0.0909379i
\(427\) 725.195 1.69835
\(428\) 198.525i 0.463844i
\(429\) 0 0
\(430\) 49.0681 0.114112
\(431\) 42.1914i 0.0978920i 0.998801 + 0.0489460i \(0.0155862\pi\)
−0.998801 + 0.0489460i \(0.984414\pi\)
\(432\) −33.3074 −0.0771004
\(433\) −423.211 −0.977393 −0.488696 0.872454i \(-0.662527\pi\)
−0.488696 + 0.872454i \(0.662527\pi\)
\(434\) −957.917 −2.20718
\(435\) 30.2551i 0.0695519i
\(436\) 244.052i 0.559753i
\(437\) − 47.5122i − 0.108724i
\(438\) 26.8032 0.0611945
\(439\) 192.175i 0.437755i 0.975752 + 0.218878i \(0.0702396\pi\)
−0.975752 + 0.218878i \(0.929760\pi\)
\(440\) 0 0
\(441\) 1160.79 2.63219
\(442\) 127.546i 0.288566i
\(443\) 46.8395 0.105732 0.0528662 0.998602i \(-0.483164\pi\)
0.0528662 + 0.998602i \(0.483164\pi\)
\(444\) −45.4510 −0.102367
\(445\) −49.7505 −0.111799
\(446\) 437.199i 0.980267i
\(447\) − 78.1790i − 0.174897i
\(448\) 107.688i 0.240375i
\(449\) −577.728 −1.28670 −0.643350 0.765573i \(-0.722456\pi\)
−0.643350 + 0.765573i \(0.722456\pi\)
\(450\) − 62.0888i − 0.137975i
\(451\) 0 0
\(452\) −400.029 −0.885019
\(453\) 48.3290i 0.106687i
\(454\) −503.716 −1.10951
\(455\) 223.671 0.491585
\(456\) 6.31780 0.0138548
\(457\) 696.802i 1.52473i 0.647146 + 0.762366i \(0.275962\pi\)
−0.647146 + 0.762366i \(0.724038\pi\)
\(458\) − 134.398i − 0.293446i
\(459\) 101.061i 0.220177i
\(460\) 44.5483 0.0968442
\(461\) 623.859i 1.35327i 0.736317 + 0.676637i \(0.236563\pi\)
−0.736317 + 0.676637i \(0.763437\pi\)
\(462\) 0 0
\(463\) 627.644 1.35560 0.677801 0.735245i \(-0.262933\pi\)
0.677801 + 0.735245i \(0.262933\pi\)
\(464\) 115.569i 0.249071i
\(465\) −52.6929 −0.113318
\(466\) 241.361 0.517943
\(467\) 50.8874 0.108967 0.0544833 0.998515i \(-0.482649\pi\)
0.0544833 + 0.998515i \(0.482649\pi\)
\(468\) 130.499i 0.278844i
\(469\) 1111.48i 2.36989i
\(470\) − 94.0883i − 0.200188i
\(471\) −86.3539 −0.183342
\(472\) 301.290i 0.638326i
\(473\) 0 0
\(474\) −66.5008 −0.140297
\(475\) 23.8484i 0.0502071i
\(476\) 326.747 0.686444
\(477\) 132.379 0.277523
\(478\) 547.893 1.14622
\(479\) − 341.082i − 0.712070i −0.934473 0.356035i \(-0.884128\pi\)
0.934473 0.356035i \(-0.115872\pi\)
\(480\) 5.92369i 0.0123410i
\(481\) 360.603i 0.749695i
\(482\) −327.168 −0.678773
\(483\) 62.7951i 0.130011i
\(484\) 0 0
\(485\) −230.705 −0.475681
\(486\) 155.739i 0.320450i
\(487\) −245.581 −0.504273 −0.252137 0.967692i \(-0.581133\pi\)
−0.252137 + 0.967692i \(0.581133\pi\)
\(488\) 152.378 0.312250
\(489\) −127.856 −0.261465
\(490\) − 418.048i − 0.853160i
\(491\) − 828.775i − 1.68793i −0.536397 0.843966i \(-0.680215\pi\)
0.536397 0.843966i \(-0.319785\pi\)
\(492\) − 50.0560i − 0.101740i
\(493\) 350.660 0.711277
\(494\) − 50.1247i − 0.101467i
\(495\) 0 0
\(496\) −201.278 −0.405802
\(497\) − 787.381i − 1.58427i
\(498\) −18.0123 −0.0361692
\(499\) 101.091 0.202587 0.101293 0.994857i \(-0.467702\pi\)
0.101293 + 0.994857i \(0.467702\pi\)
\(500\) −22.3607 −0.0447214
\(501\) − 99.1049i − 0.197814i
\(502\) − 125.764i − 0.250525i
\(503\) − 138.778i − 0.275900i −0.990439 0.137950i \(-0.955949\pi\)
0.990439 0.137950i \(-0.0440513\pi\)
\(504\) 334.311 0.663316
\(505\) 181.498i 0.359402i
\(506\) 0 0
\(507\) 53.2842 0.105097
\(508\) − 14.1754i − 0.0279043i
\(509\) −417.255 −0.819755 −0.409878 0.912141i \(-0.634429\pi\)
−0.409878 + 0.912141i \(0.634429\pi\)
\(510\) 17.9737 0.0352425
\(511\) −544.774 −1.06609
\(512\) 22.6274i 0.0441942i
\(513\) − 39.7164i − 0.0774198i
\(514\) − 326.834i − 0.635864i
\(515\) −273.725 −0.531504
\(516\) 14.5332i 0.0281651i
\(517\) 0 0
\(518\) 923.791 1.78338
\(519\) 8.08474i 0.0155775i
\(520\) 46.9978 0.0903805
\(521\) 128.293 0.246244 0.123122 0.992392i \(-0.460709\pi\)
0.123122 + 0.992392i \(0.460709\pi\)
\(522\) 358.777 0.687313
\(523\) − 244.529i − 0.467551i −0.972291 0.233775i \(-0.924892\pi\)
0.972291 0.233775i \(-0.0751080\pi\)
\(524\) 391.833i 0.747774i
\(525\) − 31.5195i − 0.0600371i
\(526\) −268.910 −0.511236
\(527\) 610.717i 1.15886i
\(528\) 0 0
\(529\) −429.772 −0.812424
\(530\) − 47.6749i − 0.0899526i
\(531\) 935.337 1.76146
\(532\) −128.409 −0.241371
\(533\) −397.139 −0.745100
\(534\) − 14.7353i − 0.0275942i
\(535\) − 221.958i − 0.414875i
\(536\) 233.544i 0.435716i
\(537\) −100.304 −0.186785
\(538\) − 331.383i − 0.615954i
\(539\) 0 0
\(540\) 37.2388 0.0689607
\(541\) − 119.924i − 0.221671i −0.993839 0.110836i \(-0.964647\pi\)
0.993839 0.110836i \(-0.0353527\pi\)
\(542\) 188.966 0.348645
\(543\) 10.5758 0.0194765
\(544\) 68.6562 0.126206
\(545\) − 272.859i − 0.500658i
\(546\) 66.2479i 0.121333i
\(547\) − 898.038i − 1.64175i −0.571107 0.820875i \(-0.693486\pi\)
0.571107 0.820875i \(-0.306514\pi\)
\(548\) −281.421 −0.513542
\(549\) − 473.049i − 0.861656i
\(550\) 0 0
\(551\) −137.807 −0.250103
\(552\) 13.1945i 0.0239031i
\(553\) 1351.63 2.44417
\(554\) −489.342 −0.883290
\(555\) 50.8158 0.0915599
\(556\) 35.2296i 0.0633626i
\(557\) − 588.320i − 1.05623i −0.849173 0.528115i \(-0.822899\pi\)
0.849173 0.528115i \(-0.177101\pi\)
\(558\) 624.854i 1.11981i
\(559\) 115.305 0.206270
\(560\) − 120.399i − 0.214998i
\(561\) 0 0
\(562\) 125.990 0.224181
\(563\) 270.290i 0.480089i 0.970762 + 0.240045i \(0.0771620\pi\)
−0.970762 + 0.240045i \(0.922838\pi\)
\(564\) 27.8675 0.0494104
\(565\) 447.245 0.791585
\(566\) 627.011 1.10779
\(567\) − 1011.28i − 1.78356i
\(568\) − 165.445i − 0.291276i
\(569\) 737.253i 1.29570i 0.761768 + 0.647850i \(0.224332\pi\)
−0.761768 + 0.647850i \(0.775668\pi\)
\(570\) −7.06352 −0.0123921
\(571\) − 860.510i − 1.50702i −0.657435 0.753512i \(-0.728358\pi\)
0.657435 0.753512i \(-0.271642\pi\)
\(572\) 0 0
\(573\) −15.7827 −0.0275440
\(574\) 1017.39i 1.77245i
\(575\) −49.8066 −0.0866201
\(576\) 70.2455 0.121954
\(577\) 90.2786 0.156462 0.0782311 0.996935i \(-0.475073\pi\)
0.0782311 + 0.996935i \(0.475073\pi\)
\(578\) 200.391i 0.346697i
\(579\) 11.4406i 0.0197592i
\(580\) − 129.210i − 0.222776i
\(581\) 366.099 0.630119
\(582\) − 68.3313i − 0.117408i
\(583\) 0 0
\(584\) −114.468 −0.196007
\(585\) − 145.902i − 0.249405i
\(586\) 119.256 0.203509
\(587\) 722.379 1.23063 0.615315 0.788282i \(-0.289029\pi\)
0.615315 + 0.788282i \(0.289029\pi\)
\(588\) 123.819 0.210577
\(589\) − 240.007i − 0.407483i
\(590\) − 336.852i − 0.570936i
\(591\) − 56.4471i − 0.0955112i
\(592\) 194.107 0.327884
\(593\) 15.2461i 0.0257102i 0.999917 + 0.0128551i \(0.00409201\pi\)
−0.999917 + 0.0128551i \(0.995908\pi\)
\(594\) 0 0
\(595\) −365.314 −0.613974
\(596\) 333.878i 0.560198i
\(597\) −140.510 −0.235360
\(598\) 104.684 0.175057
\(599\) 5.05884 0.00844548 0.00422274 0.999991i \(-0.498656\pi\)
0.00422274 + 0.999991i \(0.498656\pi\)
\(600\) − 6.62288i − 0.0110381i
\(601\) 791.103i 1.31631i 0.752882 + 0.658156i \(0.228663\pi\)
−0.752882 + 0.658156i \(0.771337\pi\)
\(602\) − 295.387i − 0.490676i
\(603\) 725.023 1.20236
\(604\) − 206.398i − 0.341719i
\(605\) 0 0
\(606\) −53.7569 −0.0887077
\(607\) − 221.379i − 0.364711i −0.983233 0.182355i \(-0.941628\pi\)
0.983233 0.182355i \(-0.0583721\pi\)
\(608\) −26.9814 −0.0443772
\(609\) 182.134 0.299070
\(610\) −170.364 −0.279285
\(611\) − 221.097i − 0.361861i
\(612\) − 213.139i − 0.348266i
\(613\) − 1155.83i − 1.88554i −0.333450 0.942768i \(-0.608213\pi\)
0.333450 0.942768i \(-0.391787\pi\)
\(614\) −524.585 −0.854372
\(615\) 55.9643i 0.0909989i
\(616\) 0 0
\(617\) −509.365 −0.825551 −0.412775 0.910833i \(-0.635441\pi\)
−0.412775 + 0.910833i \(0.635441\pi\)
\(618\) − 81.0730i − 0.131186i
\(619\) 56.2366 0.0908507 0.0454254 0.998968i \(-0.485536\pi\)
0.0454254 + 0.998968i \(0.485536\pi\)
\(620\) 225.035 0.362960
\(621\) 82.9463 0.133569
\(622\) 218.865i 0.351873i
\(623\) 299.495i 0.480731i
\(624\) 13.9200i 0.0223077i
\(625\) 25.0000 0.0400000
\(626\) 580.711i 0.927653i
\(627\) 0 0
\(628\) 368.791 0.587247
\(629\) − 588.960i − 0.936344i
\(630\) −373.771 −0.593288
\(631\) −792.217 −1.25549 −0.627747 0.778417i \(-0.716023\pi\)
−0.627747 + 0.778417i \(0.716023\pi\)
\(632\) 284.004 0.449374
\(633\) − 12.4883i − 0.0197288i
\(634\) 49.4421i 0.0779844i
\(635\) 15.8486i 0.0249584i
\(636\) 14.1205 0.0222021
\(637\) − 982.369i − 1.54218i
\(638\) 0 0
\(639\) −513.613 −0.803776
\(640\) − 25.2982i − 0.0395285i
\(641\) −1022.18 −1.59466 −0.797332 0.603541i \(-0.793756\pi\)
−0.797332 + 0.603541i \(0.793756\pi\)
\(642\) 65.7405 0.102400
\(643\) −123.563 −0.192166 −0.0960831 0.995373i \(-0.530631\pi\)
−0.0960831 + 0.995373i \(0.530631\pi\)
\(644\) − 268.178i − 0.416426i
\(645\) − 16.2486i − 0.0251916i
\(646\) 81.8669i 0.126729i
\(647\) −861.871 −1.33210 −0.666052 0.745906i \(-0.732017\pi\)
−0.666052 + 0.745906i \(0.732017\pi\)
\(648\) − 212.490i − 0.327917i
\(649\) 0 0
\(650\) −52.5452 −0.0808388
\(651\) 317.208i 0.487263i
\(652\) 546.035 0.837477
\(653\) −1162.24 −1.77985 −0.889925 0.456106i \(-0.849244\pi\)
−0.889925 + 0.456106i \(0.849244\pi\)
\(654\) 80.8164 0.123572
\(655\) − 438.083i − 0.668829i
\(656\) 213.774i 0.325874i
\(657\) 355.359i 0.540882i
\(658\) −566.406 −0.860799
\(659\) − 708.972i − 1.07583i −0.842999 0.537915i \(-0.819212\pi\)
0.842999 0.537915i \(-0.180788\pi\)
\(660\) 0 0
\(661\) 600.497 0.908468 0.454234 0.890882i \(-0.349913\pi\)
0.454234 + 0.890882i \(0.349913\pi\)
\(662\) 118.633i 0.179204i
\(663\) 42.2362 0.0637046
\(664\) 76.9249 0.115851
\(665\) 143.566 0.215889
\(666\) − 602.594i − 0.904796i
\(667\) − 287.805i − 0.431491i
\(668\) 423.246i 0.633602i
\(669\) 144.776 0.216406
\(670\) − 261.110i − 0.389716i
\(671\) 0 0
\(672\) 35.6602 0.0530658
\(673\) 435.294i 0.646797i 0.946263 + 0.323398i \(0.104825\pi\)
−0.946263 + 0.323398i \(0.895175\pi\)
\(674\) −284.850 −0.422627
\(675\) −41.6342 −0.0616803
\(676\) −227.560 −0.336627
\(677\) − 160.653i − 0.237302i −0.992936 0.118651i \(-0.962143\pi\)
0.992936 0.118651i \(-0.0378569\pi\)
\(678\) 132.467i 0.195379i
\(679\) 1388.83i 2.04541i
\(680\) −76.7599 −0.112882
\(681\) 166.803i 0.244938i
\(682\) 0 0
\(683\) −581.794 −0.851822 −0.425911 0.904765i \(-0.640046\pi\)
−0.425911 + 0.904765i \(0.640046\pi\)
\(684\) 83.7621i 0.122459i
\(685\) 314.638 0.459326
\(686\) −1583.83 −2.30879
\(687\) −44.5051 −0.0647819
\(688\) − 62.0668i − 0.0902133i
\(689\) − 112.031i − 0.162599i
\(690\) − 14.7519i − 0.0213796i
\(691\) −280.643 −0.406141 −0.203070 0.979164i \(-0.565092\pi\)
−0.203070 + 0.979164i \(0.565092\pi\)
\(692\) − 34.5274i − 0.0498951i
\(693\) 0 0
\(694\) −428.843 −0.617929
\(695\) − 39.3879i − 0.0566732i
\(696\) 38.2700 0.0549856
\(697\) 648.632 0.930606
\(698\) 204.870 0.293510
\(699\) − 79.9254i − 0.114343i
\(700\) 134.610i 0.192300i
\(701\) − 661.193i − 0.943214i −0.881809 0.471607i \(-0.843674\pi\)
0.881809 0.471607i \(-0.156326\pi\)
\(702\) 87.5071 0.124654
\(703\) 231.457i 0.329242i
\(704\) 0 0
\(705\) −31.1568 −0.0441940
\(706\) − 71.3041i − 0.100997i
\(707\) 1092.61 1.54541
\(708\) 99.7703 0.140919
\(709\) −439.220 −0.619492 −0.309746 0.950819i \(-0.600244\pi\)
−0.309746 + 0.950819i \(0.600244\pi\)
\(710\) 184.973i 0.260525i
\(711\) − 881.674i − 1.24005i
\(712\) 62.9300i 0.0883848i
\(713\) 501.247 0.703012
\(714\) − 108.200i − 0.151541i
\(715\) 0 0
\(716\) 428.366 0.598276
\(717\) − 181.432i − 0.253043i
\(718\) −52.5335 −0.0731665
\(719\) −36.3206 −0.0505154 −0.0252577 0.999681i \(-0.508041\pi\)
−0.0252577 + 0.999681i \(0.508041\pi\)
\(720\) −78.5369 −0.109079
\(721\) 1647.81i 2.28545i
\(722\) 478.358i 0.662546i
\(723\) 108.340i 0.149848i
\(724\) −45.1658 −0.0623836
\(725\) 144.461i 0.199257i
\(726\) 0 0
\(727\) 720.834 0.991519 0.495760 0.868460i \(-0.334890\pi\)
0.495760 + 0.868460i \(0.334890\pi\)
\(728\) − 282.924i − 0.388632i
\(729\) −624.568 −0.856746
\(730\) 127.979 0.175314
\(731\) −188.323 −0.257624
\(732\) − 50.4591i − 0.0689332i
\(733\) − 178.472i − 0.243481i −0.992562 0.121740i \(-0.961152\pi\)
0.992562 0.121740i \(-0.0388476\pi\)
\(734\) 257.386i 0.350662i
\(735\) −138.434 −0.188346
\(736\) − 56.3497i − 0.0765621i
\(737\) 0 0
\(738\) 663.648 0.899252
\(739\) 489.257i 0.662052i 0.943622 + 0.331026i \(0.107395\pi\)
−0.943622 + 0.331026i \(0.892605\pi\)
\(740\) −217.018 −0.293268
\(741\) −16.5985 −0.0224001
\(742\) −287.000 −0.386792
\(743\) 1173.01i 1.57875i 0.613913 + 0.789373i \(0.289594\pi\)
−0.613913 + 0.789373i \(0.710406\pi\)
\(744\) 66.6519i 0.0895859i
\(745\) − 373.287i − 0.501057i
\(746\) −19.3260 −0.0259061
\(747\) − 238.809i − 0.319690i
\(748\) 0 0
\(749\) −1336.17 −1.78394
\(750\) 7.40461i 0.00987281i
\(751\) −200.689 −0.267229 −0.133614 0.991033i \(-0.542658\pi\)
−0.133614 + 0.991033i \(0.542658\pi\)
\(752\) −119.013 −0.158262
\(753\) −41.6459 −0.0553066
\(754\) − 303.630i − 0.402692i
\(755\) 230.760i 0.305643i
\(756\) − 224.175i − 0.296528i
\(757\) 402.491 0.531692 0.265846 0.964015i \(-0.414349\pi\)
0.265846 + 0.964015i \(0.414349\pi\)
\(758\) − 83.3240i − 0.109926i
\(759\) 0 0
\(760\) 30.1661 0.0396922
\(761\) − 1253.11i − 1.64666i −0.567562 0.823331i \(-0.692113\pi\)
0.567562 0.823331i \(-0.307887\pi\)
\(762\) −4.69410 −0.00616023
\(763\) −1642.59 −2.15281
\(764\) 67.4031 0.0882240
\(765\) 238.297i 0.311499i
\(766\) 285.789i 0.373093i
\(767\) − 791.566i − 1.03203i
\(768\) 7.49294 0.00975643
\(769\) − 89.5678i − 0.116473i −0.998303 0.0582365i \(-0.981452\pi\)
0.998303 0.0582365i \(-0.0185478\pi\)
\(770\) 0 0
\(771\) −108.229 −0.140375
\(772\) − 48.8592i − 0.0632891i
\(773\) −533.020 −0.689547 −0.344774 0.938686i \(-0.612044\pi\)
−0.344774 + 0.938686i \(0.612044\pi\)
\(774\) −192.683 −0.248944
\(775\) −251.597 −0.324641
\(776\) 291.822i 0.376059i
\(777\) − 305.908i − 0.393704i
\(778\) 171.174i 0.220018i
\(779\) −254.908 −0.327224
\(780\) − 15.5631i − 0.0199526i
\(781\) 0 0
\(782\) −170.976 −0.218640
\(783\) − 240.581i − 0.307256i
\(784\) −528.794 −0.674482
\(785\) −412.321 −0.525249
\(786\) 129.753 0.165081
\(787\) − 82.9231i − 0.105366i −0.998611 0.0526831i \(-0.983223\pi\)
0.998611 0.0526831i \(-0.0167773\pi\)
\(788\) 241.068i 0.305924i
\(789\) 89.0480i 0.112862i
\(790\) −317.526 −0.401932
\(791\) − 2692.39i − 3.40378i
\(792\) 0 0
\(793\) −400.337 −0.504838
\(794\) − 771.571i − 0.971752i
\(795\) −15.7872 −0.0198582
\(796\) 600.073 0.753861
\(797\) 143.634 0.180218 0.0901088 0.995932i \(-0.471279\pi\)
0.0901088 + 0.995932i \(0.471279\pi\)
\(798\) 42.5220i 0.0532857i
\(799\) 361.110i 0.451953i
\(800\) 28.2843i 0.0353553i
\(801\) 195.362 0.243898
\(802\) 1034.63i 1.29006i
\(803\) 0 0
\(804\) 77.3366 0.0961899
\(805\) 299.833i 0.372463i
\(806\) 528.808 0.656090
\(807\) −109.736 −0.135980
\(808\) 229.579 0.284132
\(809\) − 58.7770i − 0.0726539i −0.999340 0.0363269i \(-0.988434\pi\)
0.999340 0.0363269i \(-0.0115658\pi\)
\(810\) 237.571i 0.293298i
\(811\) 79.9991i 0.0986426i 0.998783 + 0.0493213i \(0.0157058\pi\)
−0.998783 + 0.0493213i \(0.984294\pi\)
\(812\) −777.837 −0.957927
\(813\) − 62.5749i − 0.0769679i
\(814\) 0 0
\(815\) −610.486 −0.749062
\(816\) − 22.7351i − 0.0278616i
\(817\) 74.0096 0.0905870
\(818\) 967.552 1.18283
\(819\) −878.322 −1.07243
\(820\) − 239.006i − 0.291471i
\(821\) − 631.160i − 0.768770i −0.923173 0.384385i \(-0.874413\pi\)
0.923173 0.384385i \(-0.125587\pi\)
\(822\) 93.1909i 0.113371i
\(823\) −200.492 −0.243611 −0.121806 0.992554i \(-0.538868\pi\)
−0.121806 + 0.992554i \(0.538868\pi\)
\(824\) 346.238i 0.420191i
\(825\) 0 0
\(826\) −2027.83 −2.45500
\(827\) − 380.936i − 0.460624i −0.973117 0.230312i \(-0.926025\pi\)
0.973117 0.230312i \(-0.0739747\pi\)
\(828\) −174.934 −0.211273
\(829\) 1059.57 1.27813 0.639067 0.769151i \(-0.279321\pi\)
0.639067 + 0.769151i \(0.279321\pi\)
\(830\) −86.0046 −0.103620
\(831\) 162.043i 0.194997i
\(832\) − 59.4481i − 0.0714520i
\(833\) 1604.47i 1.92613i
\(834\) 11.6661 0.0139881
\(835\) − 473.204i − 0.566711i
\(836\) 0 0
\(837\) 419.002 0.500600
\(838\) 299.252i 0.357103i
\(839\) 3.94706 0.00470448 0.00235224 0.999997i \(-0.499251\pi\)
0.00235224 + 0.999997i \(0.499251\pi\)
\(840\) −39.8694 −0.0474635
\(841\) 6.23825 0.00741766
\(842\) − 1040.27i − 1.23548i
\(843\) − 41.7208i − 0.0494909i
\(844\) 53.3338i 0.0631917i
\(845\) 254.420 0.301089
\(846\) 369.470i 0.436726i
\(847\) 0 0
\(848\) −60.3045 −0.0711138
\(849\) − 207.631i − 0.244560i
\(850\) 85.8202 0.100965
\(851\) −483.390 −0.568026
\(852\) −54.7860 −0.0643028
\(853\) 418.055i 0.490099i 0.969511 + 0.245050i \(0.0788043\pi\)
−0.969511 + 0.245050i \(0.921196\pi\)
\(854\) 1025.58i 1.20091i
\(855\) − 93.6488i − 0.109531i
\(856\) −280.757 −0.327987
\(857\) − 1487.56i − 1.73578i −0.496757 0.867890i \(-0.665476\pi\)
0.496757 0.867890i \(-0.334524\pi\)
\(858\) 0 0
\(859\) 590.367 0.687272 0.343636 0.939103i \(-0.388341\pi\)
0.343636 + 0.939103i \(0.388341\pi\)
\(860\) 69.3927i 0.0806892i
\(861\) 336.902 0.391291
\(862\) −59.6677 −0.0692201
\(863\) 772.532 0.895170 0.447585 0.894241i \(-0.352284\pi\)
0.447585 + 0.894241i \(0.352284\pi\)
\(864\) − 47.1038i − 0.0545182i
\(865\) 38.6028i 0.0446276i
\(866\) − 598.511i − 0.691121i
\(867\) 66.3583 0.0765379
\(868\) − 1354.70i − 1.56071i
\(869\) 0 0
\(870\) −42.7871 −0.0491806
\(871\) − 613.580i − 0.704455i
\(872\) −345.142 −0.395805
\(873\) 905.943 1.03774
\(874\) 67.1925 0.0768792
\(875\) − 150.499i − 0.171998i
\(876\) 37.9054i 0.0432710i
\(877\) 1369.31i 1.56136i 0.624932 + 0.780679i \(0.285127\pi\)
−0.624932 + 0.780679i \(0.714873\pi\)
\(878\) −271.776 −0.309540
\(879\) − 39.4910i − 0.0449271i
\(880\) 0 0
\(881\) −684.598 −0.777069 −0.388535 0.921434i \(-0.627019\pi\)
−0.388535 + 0.921434i \(0.627019\pi\)
\(882\) 1641.61i 1.86124i
\(883\) 1691.93 1.91612 0.958058 0.286574i \(-0.0925165\pi\)
0.958058 + 0.286574i \(0.0925165\pi\)
\(884\) −180.378 −0.204047
\(885\) −111.547 −0.126041
\(886\) 66.2410i 0.0747642i
\(887\) − 1275.52i − 1.43802i −0.695002 0.719008i \(-0.744597\pi\)
0.695002 0.719008i \(-0.255403\pi\)
\(888\) − 64.2774i − 0.0723845i
\(889\) 95.4075 0.107320
\(890\) − 70.3578i − 0.0790537i
\(891\) 0 0
\(892\) −618.293 −0.693153
\(893\) − 141.914i − 0.158918i
\(894\) 110.562 0.123671
\(895\) −478.927 −0.535114
\(896\) −152.294 −0.169971
\(897\) − 34.6654i − 0.0386460i
\(898\) − 817.031i − 0.909834i
\(899\) − 1453.84i − 1.61717i
\(900\) 87.8069 0.0975632
\(901\) 182.976i 0.203081i
\(902\) 0 0
\(903\) −97.8157 −0.108323
\(904\) − 565.726i − 0.625803i
\(905\) 50.4969 0.0557976
\(906\) −68.3475 −0.0754388
\(907\) 428.826 0.472796 0.236398 0.971656i \(-0.424033\pi\)
0.236398 + 0.971656i \(0.424033\pi\)
\(908\) − 712.362i − 0.784540i
\(909\) − 712.715i − 0.784064i
\(910\) 316.319i 0.347603i
\(911\) −772.047 −0.847472 −0.423736 0.905786i \(-0.639281\pi\)
−0.423736 + 0.905786i \(0.639281\pi\)
\(912\) 8.93472i 0.00979684i
\(913\) 0 0
\(914\) −985.427 −1.07815
\(915\) 56.4150i 0.0616557i
\(916\) 190.068 0.207497
\(917\) −2637.23 −2.87594
\(918\) −142.922 −0.155689
\(919\) − 377.767i − 0.411063i −0.978650 0.205532i \(-0.934108\pi\)
0.978650 0.205532i \(-0.0658923\pi\)
\(920\) 63.0009i 0.0684792i
\(921\) 173.713i 0.188614i
\(922\) −882.270 −0.956909
\(923\) 434.666i 0.470927i
\(924\) 0 0
\(925\) 242.634 0.262307
\(926\) 887.623i 0.958556i
\(927\) 1074.87 1.15952
\(928\) −163.439 −0.176120
\(929\) −750.854 −0.808239 −0.404120 0.914706i \(-0.632422\pi\)
−0.404120 + 0.914706i \(0.632422\pi\)
\(930\) − 74.5191i − 0.0801280i
\(931\) − 630.544i − 0.677276i
\(932\) 341.337i 0.366241i
\(933\) 72.4758 0.0776804
\(934\) 71.9656i 0.0770510i
\(935\) 0 0
\(936\) −184.553 −0.197172
\(937\) 1637.28i 1.74736i 0.486499 + 0.873681i \(0.338274\pi\)
−0.486499 + 0.873681i \(0.661726\pi\)
\(938\) −1571.87 −1.67576
\(939\) 192.299 0.204791
\(940\) 133.061 0.141554
\(941\) − 1521.21i − 1.61659i −0.588779 0.808294i \(-0.700391\pi\)
0.588779 0.808294i \(-0.299609\pi\)
\(942\) − 122.123i − 0.129642i
\(943\) − 532.366i − 0.564546i
\(944\) −426.088 −0.451365
\(945\) 250.636i 0.265223i
\(946\) 0 0
\(947\) 149.269 0.157623 0.0788114 0.996890i \(-0.474888\pi\)
0.0788114 + 0.996890i \(0.474888\pi\)
\(948\) − 94.0463i − 0.0992050i
\(949\) 300.737 0.316899
\(950\) −33.7267 −0.0355018
\(951\) 16.3725 0.0172160
\(952\) 462.090i 0.485389i
\(953\) − 956.094i − 1.00325i −0.865086 0.501623i \(-0.832736\pi\)
0.865086 0.501623i \(-0.167264\pi\)
\(954\) 187.212i 0.196239i
\(955\) −75.3590 −0.0789099
\(956\) 774.838i 0.810500i
\(957\) 0 0
\(958\) 482.362 0.503510
\(959\) − 1894.10i − 1.97508i
\(960\) −8.37736 −0.00872641
\(961\) 1571.04 1.63480
\(962\) −509.970 −0.530114
\(963\) 871.594i 0.905082i
\(964\) − 462.686i − 0.479965i
\(965\) 54.6262i 0.0566075i
\(966\) −88.8057 −0.0919314
\(967\) − 664.517i − 0.687194i −0.939117 0.343597i \(-0.888355\pi\)
0.939117 0.343597i \(-0.111645\pi\)
\(968\) 0 0
\(969\) 27.1097 0.0279770
\(970\) − 326.267i − 0.336357i
\(971\) 337.668 0.347753 0.173876 0.984768i \(-0.444371\pi\)
0.173876 + 0.984768i \(0.444371\pi\)
\(972\) −220.248 −0.226593
\(973\) −237.113 −0.243693
\(974\) − 347.304i − 0.356575i
\(975\) 17.4000i 0.0178462i
\(976\) 215.495i 0.220794i
\(977\) −953.101 −0.975539 −0.487769 0.872973i \(-0.662189\pi\)
−0.487769 + 0.872973i \(0.662189\pi\)
\(978\) − 180.816i − 0.184884i
\(979\) 0 0
\(980\) 591.210 0.603275
\(981\) 1071.47i 1.09222i
\(982\) 1172.06 1.19355
\(983\) 412.745 0.419883 0.209941 0.977714i \(-0.432673\pi\)
0.209941 + 0.977714i \(0.432673\pi\)
\(984\) 70.7899 0.0719409
\(985\) − 269.522i − 0.273627i
\(986\) 495.908i 0.502949i
\(987\) 187.562i 0.190032i
\(988\) 70.8870 0.0717480
\(989\) 154.567i 0.156286i
\(990\) 0 0
\(991\) 1106.98 1.11703 0.558515 0.829495i \(-0.311371\pi\)
0.558515 + 0.829495i \(0.311371\pi\)
\(992\) − 284.649i − 0.286945i
\(993\) 39.2846 0.0395615
\(994\) 1113.52 1.12025
\(995\) −670.902 −0.674273
\(996\) − 25.4732i − 0.0255755i
\(997\) 1273.05i 1.27688i 0.769673 + 0.638439i \(0.220420\pi\)
−0.769673 + 0.638439i \(0.779580\pi\)
\(998\) 142.964i 0.143250i
\(999\) −404.075 −0.404479
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1210.3.d.c.241.13 16
11.2 odd 10 110.3.h.b.51.1 yes 16
11.5 even 5 110.3.h.b.41.1 16
11.10 odd 2 inner 1210.3.d.c.241.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.3.h.b.41.1 16 11.5 even 5
110.3.h.b.51.1 yes 16 11.2 odd 10
1210.3.d.c.241.5 16 11.10 odd 2 inner
1210.3.d.c.241.13 16 1.1 even 1 trivial