Properties

Label 1200.3.l.y.401.10
Level $1200$
Weight $3$
Character 1200.401
Analytic conductor $32.698$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1200,3,Mod(401,1200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1200.401"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1200.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.6976317232\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{10} + 30x^{8} - 216x^{6} + 1080x^{4} - 5184x^{2} + 46656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 401.10
Root \(-1.79523 + 1.66648i\) of defining polynomial
Character \(\chi\) \(=\) 1200.401
Dual form 1200.3.l.y.401.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.67109 + 2.49147i) q^{3} +12.7692 q^{7} +(-3.41489 + 8.32698i) q^{9} +12.6296i q^{11} -7.44085 q^{13} +14.0550i q^{17} -31.0176 q^{19} +(21.3386 + 31.8142i) q^{21} -7.50423i q^{23} +(-26.4530 + 5.40707i) q^{27} +15.7298i q^{29} +20.4893 q^{31} +(-31.4663 + 21.1053i) q^{33} +12.9261 q^{37} +(-12.4344 - 18.5387i) q^{39} +13.8451i q^{41} -30.0797 q^{43} +20.2570i q^{47} +114.053 q^{49} +(-35.0176 + 23.4872i) q^{51} +29.1185i q^{53} +(-51.8333 - 77.2795i) q^{57} -47.6333i q^{59} +43.0176 q^{61} +(-43.6054 + 106.329i) q^{63} +0.630153 q^{67} +(18.6966 - 12.5403i) q^{69} -90.4047i q^{71} +46.2193 q^{73} +161.270i q^{77} +37.9610 q^{79} +(-57.6771 - 56.8713i) q^{81} +80.2267i q^{83} +(-39.1904 + 26.2860i) q^{87} +140.923i q^{89} -95.0138 q^{91} +(34.2396 + 51.0486i) q^{93} +10.3429 q^{97} +(-105.166 - 43.1286i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{9} + 4 q^{21} + 48 q^{31} - 128 q^{39} + 252 q^{49} - 48 q^{51} + 144 q^{61} - 268 q^{69} + 432 q^{79} - 188 q^{81} - 560 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.67109 + 2.49147i 0.557032 + 0.830491i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 12.7692 1.82417 0.912086 0.409998i \(-0.134471\pi\)
0.912086 + 0.409998i \(0.134471\pi\)
\(8\) 0 0
\(9\) −3.41489 + 8.32698i −0.379432 + 0.925220i
\(10\) 0 0
\(11\) 12.6296i 1.14815i 0.818804 + 0.574073i \(0.194637\pi\)
−0.818804 + 0.574073i \(0.805363\pi\)
\(12\) 0 0
\(13\) −7.44085 −0.572373 −0.286187 0.958174i \(-0.592388\pi\)
−0.286187 + 0.958174i \(0.592388\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.0550i 0.826763i 0.910558 + 0.413381i \(0.135652\pi\)
−0.910558 + 0.413381i \(0.864348\pi\)
\(18\) 0 0
\(19\) −31.0176 −1.63250 −0.816252 0.577696i \(-0.803952\pi\)
−0.816252 + 0.577696i \(0.803952\pi\)
\(20\) 0 0
\(21\) 21.3386 + 31.8142i 1.01612 + 1.51496i
\(22\) 0 0
\(23\) 7.50423i 0.326271i −0.986604 0.163135i \(-0.947839\pi\)
0.986604 0.163135i \(-0.0521608\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −26.4530 + 5.40707i −0.979742 + 0.200262i
\(28\) 0 0
\(29\) 15.7298i 0.542407i 0.962522 + 0.271204i \(0.0874217\pi\)
−0.962522 + 0.271204i \(0.912578\pi\)
\(30\) 0 0
\(31\) 20.4893 0.660945 0.330473 0.943816i \(-0.392792\pi\)
0.330473 + 0.943816i \(0.392792\pi\)
\(32\) 0 0
\(33\) −31.4663 + 21.1053i −0.953525 + 0.639553i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 12.9261 0.349355 0.174677 0.984626i \(-0.444112\pi\)
0.174677 + 0.984626i \(0.444112\pi\)
\(38\) 0 0
\(39\) −12.4344 18.5387i −0.318830 0.475351i
\(40\) 0 0
\(41\) 13.8451i 0.337685i 0.985643 + 0.168843i \(0.0540029\pi\)
−0.985643 + 0.168843i \(0.945997\pi\)
\(42\) 0 0
\(43\) −30.0797 −0.699528 −0.349764 0.936838i \(-0.613738\pi\)
−0.349764 + 0.936838i \(0.613738\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 20.2570i 0.431000i 0.976504 + 0.215500i \(0.0691382\pi\)
−0.976504 + 0.215500i \(0.930862\pi\)
\(48\) 0 0
\(49\) 114.053 2.32761
\(50\) 0 0
\(51\) −35.0176 + 23.4872i −0.686619 + 0.460533i
\(52\) 0 0
\(53\) 29.1185i 0.549406i 0.961529 + 0.274703i \(0.0885796\pi\)
−0.961529 + 0.274703i \(0.911420\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −51.8333 77.2795i −0.909356 1.35578i
\(58\) 0 0
\(59\) 47.6333i 0.807344i −0.914904 0.403672i \(-0.867734\pi\)
0.914904 0.403672i \(-0.132266\pi\)
\(60\) 0 0
\(61\) 43.0176 0.705206 0.352603 0.935773i \(-0.385297\pi\)
0.352603 + 0.935773i \(0.385297\pi\)
\(62\) 0 0
\(63\) −43.6054 + 106.329i −0.692149 + 1.68776i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.630153 0.00940527 0.00470264 0.999989i \(-0.498503\pi\)
0.00470264 + 0.999989i \(0.498503\pi\)
\(68\) 0 0
\(69\) 18.6966 12.5403i 0.270965 0.181743i
\(70\) 0 0
\(71\) 90.4047i 1.27330i −0.771151 0.636652i \(-0.780319\pi\)
0.771151 0.636652i \(-0.219681\pi\)
\(72\) 0 0
\(73\) 46.2193 0.633140 0.316570 0.948569i \(-0.397469\pi\)
0.316570 + 0.948569i \(0.397469\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 161.270i 2.09442i
\(78\) 0 0
\(79\) 37.9610 0.480519 0.240260 0.970709i \(-0.422767\pi\)
0.240260 + 0.970709i \(0.422767\pi\)
\(80\) 0 0
\(81\) −57.6771 56.8713i −0.712063 0.702115i
\(82\) 0 0
\(83\) 80.2267i 0.966587i 0.875458 + 0.483294i \(0.160560\pi\)
−0.875458 + 0.483294i \(0.839440\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −39.1904 + 26.2860i −0.450465 + 0.302138i
\(88\) 0 0
\(89\) 140.923i 1.58341i 0.610907 + 0.791703i \(0.290805\pi\)
−0.610907 + 0.791703i \(0.709195\pi\)
\(90\) 0 0
\(91\) −95.0138 −1.04411
\(92\) 0 0
\(93\) 34.2396 + 51.0486i 0.368168 + 0.548909i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.3429 0.106628 0.0533138 0.998578i \(-0.483022\pi\)
0.0533138 + 0.998578i \(0.483022\pi\)
\(98\) 0 0
\(99\) −105.166 43.1286i −1.06229 0.435643i
\(100\) 0 0
\(101\) 19.2739i 0.190830i −0.995438 0.0954152i \(-0.969582\pi\)
0.995438 0.0954152i \(-0.0304179\pi\)
\(102\) 0 0
\(103\) −6.97008 −0.0676707 −0.0338353 0.999427i \(-0.510772\pi\)
−0.0338353 + 0.999427i \(0.510772\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 73.7731i 0.689468i −0.938700 0.344734i \(-0.887969\pi\)
0.938700 0.344734i \(-0.112031\pi\)
\(108\) 0 0
\(109\) −74.0314 −0.679187 −0.339593 0.940572i \(-0.610289\pi\)
−0.339593 + 0.940572i \(0.610289\pi\)
\(110\) 0 0
\(111\) 21.6008 + 32.2051i 0.194602 + 0.290136i
\(112\) 0 0
\(113\) 147.215i 1.30279i 0.758739 + 0.651394i \(0.225816\pi\)
−0.758739 + 0.651394i \(0.774184\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 25.4096 61.9598i 0.217176 0.529571i
\(118\) 0 0
\(119\) 179.471i 1.50816i
\(120\) 0 0
\(121\) −38.5069 −0.318239
\(122\) 0 0
\(123\) −34.4947 + 23.1364i −0.280444 + 0.188101i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −90.0171 −0.708796 −0.354398 0.935095i \(-0.615314\pi\)
−0.354398 + 0.935095i \(0.615314\pi\)
\(128\) 0 0
\(129\) −50.2660 74.9428i −0.389659 0.580952i
\(130\) 0 0
\(131\) 11.2911i 0.0861917i −0.999071 0.0430958i \(-0.986278\pi\)
0.999071 0.0430958i \(-0.0137221\pi\)
\(132\) 0 0
\(133\) −396.070 −2.97797
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.4905i 0.164164i 0.996626 + 0.0820822i \(0.0261570\pi\)
−0.996626 + 0.0820822i \(0.973843\pi\)
\(138\) 0 0
\(139\) 91.0955 0.655363 0.327682 0.944788i \(-0.393733\pi\)
0.327682 + 0.944788i \(0.393733\pi\)
\(140\) 0 0
\(141\) −50.4698 + 33.8514i −0.357942 + 0.240081i
\(142\) 0 0
\(143\) 93.9750i 0.657168i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 190.593 + 284.159i 1.29655 + 1.93306i
\(148\) 0 0
\(149\) 228.330i 1.53242i −0.642593 0.766208i \(-0.722141\pi\)
0.642593 0.766208i \(-0.277859\pi\)
\(150\) 0 0
\(151\) 74.0390 0.490324 0.245162 0.969482i \(-0.421159\pi\)
0.245162 + 0.969482i \(0.421159\pi\)
\(152\) 0 0
\(153\) −117.035 47.9961i −0.764937 0.313700i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −245.742 −1.56523 −0.782616 0.622504i \(-0.786115\pi\)
−0.782616 + 0.622504i \(0.786115\pi\)
\(158\) 0 0
\(159\) −72.5481 + 48.6598i −0.456277 + 0.306037i
\(160\) 0 0
\(161\) 95.8231i 0.595175i
\(162\) 0 0
\(163\) −60.1570 −0.369061 −0.184531 0.982827i \(-0.559076\pi\)
−0.184531 + 0.982827i \(0.559076\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 81.5664i 0.488421i −0.969722 0.244211i \(-0.921471\pi\)
0.969722 0.244211i \(-0.0785288\pi\)
\(168\) 0 0
\(169\) −113.634 −0.672389
\(170\) 0 0
\(171\) 105.921 258.283i 0.619424 1.51043i
\(172\) 0 0
\(173\) 167.064i 0.965687i 0.875707 + 0.482843i \(0.160396\pi\)
−0.875707 + 0.482843i \(0.839604\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 118.677 79.5997i 0.670492 0.449716i
\(178\) 0 0
\(179\) 270.104i 1.50896i −0.656322 0.754481i \(-0.727889\pi\)
0.656322 0.754481i \(-0.272111\pi\)
\(180\) 0 0
\(181\) 86.9786 0.480545 0.240272 0.970705i \(-0.422763\pi\)
0.240272 + 0.970705i \(0.422763\pi\)
\(182\) 0 0
\(183\) 71.8865 + 107.177i 0.392822 + 0.585668i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −177.509 −0.949244
\(188\) 0 0
\(189\) −337.785 + 69.0440i −1.78722 + 0.365312i
\(190\) 0 0
\(191\) 302.223i 1.58232i 0.611610 + 0.791159i \(0.290522\pi\)
−0.611610 + 0.791159i \(0.709478\pi\)
\(192\) 0 0
\(193\) 306.780 1.58953 0.794766 0.606916i \(-0.207593\pi\)
0.794766 + 0.606916i \(0.207593\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 289.956i 1.47186i 0.677058 + 0.735930i \(0.263255\pi\)
−0.677058 + 0.735930i \(0.736745\pi\)
\(198\) 0 0
\(199\) 382.595 1.92259 0.961293 0.275527i \(-0.0888522\pi\)
0.961293 + 0.275527i \(0.0888522\pi\)
\(200\) 0 0
\(201\) 1.05305 + 1.57001i 0.00523903 + 0.00781100i
\(202\) 0 0
\(203\) 200.857i 0.989445i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 62.4876 + 25.6261i 0.301872 + 0.123798i
\(208\) 0 0
\(209\) 391.740i 1.87435i
\(210\) 0 0
\(211\) 321.115 1.52187 0.760937 0.648826i \(-0.224740\pi\)
0.760937 + 0.648826i \(0.224740\pi\)
\(212\) 0 0
\(213\) 225.241 151.075i 1.05747 0.709271i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 261.632 1.20568
\(218\) 0 0
\(219\) 77.2368 + 115.154i 0.352679 + 0.525818i
\(220\) 0 0
\(221\) 104.581i 0.473217i
\(222\) 0 0
\(223\) −292.432 −1.31135 −0.655676 0.755042i \(-0.727616\pi\)
−0.655676 + 0.755042i \(0.727616\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 370.155i 1.63064i −0.579013 0.815319i \(-0.696562\pi\)
0.579013 0.815319i \(-0.303438\pi\)
\(228\) 0 0
\(229\) 381.985 1.66806 0.834028 0.551722i \(-0.186029\pi\)
0.834028 + 0.551722i \(0.186029\pi\)
\(230\) 0 0
\(231\) −401.800 + 269.498i −1.73939 + 1.16666i
\(232\) 0 0
\(233\) 144.262i 0.619150i −0.950875 0.309575i \(-0.899813\pi\)
0.950875 0.309575i \(-0.100187\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 63.4365 + 94.5789i 0.267665 + 0.399067i
\(238\) 0 0
\(239\) 249.478i 1.04384i 0.852994 + 0.521921i \(0.174784\pi\)
−0.852994 + 0.521921i \(0.825216\pi\)
\(240\) 0 0
\(241\) 30.4541 0.126366 0.0631829 0.998002i \(-0.479875\pi\)
0.0631829 + 0.998002i \(0.479875\pi\)
\(242\) 0 0
\(243\) 45.3095 238.738i 0.186459 0.982463i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 230.797 0.934401
\(248\) 0 0
\(249\) −199.883 + 134.066i −0.802742 + 0.538420i
\(250\) 0 0
\(251\) 68.9183i 0.274575i −0.990531 0.137287i \(-0.956162\pi\)
0.990531 0.137287i \(-0.0438384\pi\)
\(252\) 0 0
\(253\) 94.7755 0.374607
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 362.374i 1.41002i −0.709199 0.705009i \(-0.750943\pi\)
0.709199 0.705009i \(-0.249057\pi\)
\(258\) 0 0
\(259\) 165.057 0.637284
\(260\) 0 0
\(261\) −130.982 53.7155i −0.501846 0.205807i
\(262\) 0 0
\(263\) 23.4485i 0.0891580i 0.999006 + 0.0445790i \(0.0141946\pi\)
−0.999006 + 0.0445790i \(0.985805\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −351.106 + 235.496i −1.31500 + 0.882007i
\(268\) 0 0
\(269\) 396.738i 1.47486i 0.675421 + 0.737432i \(0.263962\pi\)
−0.675421 + 0.737432i \(0.736038\pi\)
\(270\) 0 0
\(271\) 143.926 0.531092 0.265546 0.964098i \(-0.414448\pi\)
0.265546 + 0.964098i \(0.414448\pi\)
\(272\) 0 0
\(273\) −158.777 236.724i −0.581601 0.867122i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −360.884 −1.30283 −0.651415 0.758722i \(-0.725824\pi\)
−0.651415 + 0.758722i \(0.725824\pi\)
\(278\) 0 0
\(279\) −69.9686 + 170.614i −0.250784 + 0.611520i
\(280\) 0 0
\(281\) 531.655i 1.89201i 0.324149 + 0.946006i \(0.394922\pi\)
−0.324149 + 0.946006i \(0.605078\pi\)
\(282\) 0 0
\(283\) 257.400 0.909541 0.454770 0.890609i \(-0.349721\pi\)
0.454770 + 0.890609i \(0.349721\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 176.791i 0.615996i
\(288\) 0 0
\(289\) 91.4579 0.316463
\(290\) 0 0
\(291\) 17.2839 + 25.7690i 0.0593949 + 0.0885533i
\(292\) 0 0
\(293\) 310.456i 1.05958i 0.848130 + 0.529789i \(0.177729\pi\)
−0.848130 + 0.529789i \(0.822271\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −68.2892 334.091i −0.229930 1.12489i
\(298\) 0 0
\(299\) 55.8379i 0.186749i
\(300\) 0 0
\(301\) −384.094 −1.27606
\(302\) 0 0
\(303\) 48.0204 32.2085i 0.158483 0.106299i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 266.169 0.866999 0.433499 0.901154i \(-0.357279\pi\)
0.433499 + 0.901154i \(0.357279\pi\)
\(308\) 0 0
\(309\) −11.6477 17.3658i −0.0376947 0.0561999i
\(310\) 0 0
\(311\) 186.580i 0.599934i −0.953950 0.299967i \(-0.903024\pi\)
0.953950 0.299967i \(-0.0969757\pi\)
\(312\) 0 0
\(313\) 20.5021 0.0655019 0.0327510 0.999464i \(-0.489573\pi\)
0.0327510 + 0.999464i \(0.489573\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.9792i 0.0598711i −0.999552 0.0299356i \(-0.990470\pi\)
0.999552 0.0299356i \(-0.00953021\pi\)
\(318\) 0 0
\(319\) −198.661 −0.622763
\(320\) 0 0
\(321\) 183.804 123.282i 0.572597 0.384055i
\(322\) 0 0
\(323\) 435.951i 1.34969i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −123.713 184.447i −0.378328 0.564059i
\(328\) 0 0
\(329\) 258.666i 0.786219i
\(330\) 0 0
\(331\) −413.193 −1.24832 −0.624159 0.781297i \(-0.714558\pi\)
−0.624159 + 0.781297i \(0.714558\pi\)
\(332\) 0 0
\(333\) −44.1413 + 107.636i −0.132556 + 0.323230i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 484.733 1.43838 0.719188 0.694816i \(-0.244514\pi\)
0.719188 + 0.694816i \(0.244514\pi\)
\(338\) 0 0
\(339\) −366.783 + 246.010i −1.08195 + 0.725694i
\(340\) 0 0
\(341\) 258.772i 0.758862i
\(342\) 0 0
\(343\) 830.672 2.42178
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 336.214i 0.968915i −0.874815 0.484457i \(-0.839017\pi\)
0.874815 0.484457i \(-0.160983\pi\)
\(348\) 0 0
\(349\) 428.261 1.22711 0.613555 0.789652i \(-0.289739\pi\)
0.613555 + 0.789652i \(0.289739\pi\)
\(350\) 0 0
\(351\) 196.833 40.2332i 0.560778 0.114625i
\(352\) 0 0
\(353\) 558.817i 1.58305i −0.611137 0.791525i \(-0.709287\pi\)
0.611137 0.791525i \(-0.290713\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −447.147 + 299.913i −1.25251 + 0.840092i
\(358\) 0 0
\(359\) 206.915i 0.576365i −0.957576 0.288182i \(-0.906949\pi\)
0.957576 0.288182i \(-0.0930509\pi\)
\(360\) 0 0
\(361\) 601.090 1.66507
\(362\) 0 0
\(363\) −64.3487 95.9389i −0.177269 0.264295i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −185.425 −0.505246 −0.252623 0.967565i \(-0.581293\pi\)
−0.252623 + 0.967565i \(0.581293\pi\)
\(368\) 0 0
\(369\) −115.288 47.2794i −0.312433 0.128128i
\(370\) 0 0
\(371\) 371.821i 1.00221i
\(372\) 0 0
\(373\) 427.345 1.14570 0.572848 0.819661i \(-0.305838\pi\)
0.572848 + 0.819661i \(0.305838\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 117.043i 0.310459i
\(378\) 0 0
\(379\) 117.727 0.310626 0.155313 0.987865i \(-0.450361\pi\)
0.155313 + 0.987865i \(0.450361\pi\)
\(380\) 0 0
\(381\) −150.427 224.275i −0.394822 0.588649i
\(382\) 0 0
\(383\) 470.016i 1.22720i −0.789619 0.613598i \(-0.789722\pi\)
0.789619 0.613598i \(-0.210278\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 102.719 250.473i 0.265423 0.647217i
\(388\) 0 0
\(389\) 128.160i 0.329461i 0.986339 + 0.164730i \(0.0526754\pi\)
−0.986339 + 0.164730i \(0.947325\pi\)
\(390\) 0 0
\(391\) 105.472 0.269749
\(392\) 0 0
\(393\) 28.1315 18.8685i 0.0715814 0.0480115i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 276.316 0.696011 0.348005 0.937493i \(-0.386859\pi\)
0.348005 + 0.937493i \(0.386859\pi\)
\(398\) 0 0
\(399\) −661.871 986.798i −1.65882 2.47318i
\(400\) 0 0
\(401\) 549.912i 1.37135i −0.727907 0.685675i \(-0.759507\pi\)
0.727907 0.685675i \(-0.240493\pi\)
\(402\) 0 0
\(403\) −152.458 −0.378307
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 163.252i 0.401110i
\(408\) 0 0
\(409\) 219.166 0.535858 0.267929 0.963439i \(-0.413661\pi\)
0.267929 + 0.963439i \(0.413661\pi\)
\(410\) 0 0
\(411\) −56.0346 + 37.5838i −0.136337 + 0.0914448i
\(412\) 0 0
\(413\) 608.240i 1.47273i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 152.229 + 226.962i 0.365058 + 0.544274i
\(418\) 0 0
\(419\) 204.522i 0.488119i −0.969760 0.244060i \(-0.921521\pi\)
0.969760 0.244060i \(-0.0784792\pi\)
\(420\) 0 0
\(421\) 577.186 1.37099 0.685494 0.728078i \(-0.259586\pi\)
0.685494 + 0.728078i \(0.259586\pi\)
\(422\) 0 0
\(423\) −168.680 69.1754i −0.398770 0.163535i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 549.301 1.28642
\(428\) 0 0
\(429\) 234.136 157.041i 0.545772 0.366063i
\(430\) 0 0
\(431\) 663.363i 1.53913i −0.638571 0.769563i \(-0.720474\pi\)
0.638571 0.769563i \(-0.279526\pi\)
\(432\) 0 0
\(433\) −226.876 −0.523964 −0.261982 0.965073i \(-0.584376\pi\)
−0.261982 + 0.965073i \(0.584376\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 232.763i 0.532639i
\(438\) 0 0
\(439\) 282.524 0.643564 0.321782 0.946814i \(-0.395718\pi\)
0.321782 + 0.946814i \(0.395718\pi\)
\(440\) 0 0
\(441\) −389.477 + 949.715i −0.883168 + 2.15355i
\(442\) 0 0
\(443\) 455.605i 1.02845i 0.857654 + 0.514227i \(0.171921\pi\)
−0.857654 + 0.514227i \(0.828079\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 568.878 381.561i 1.27266 0.853604i
\(448\) 0 0
\(449\) 157.206i 0.350124i −0.984557 0.175062i \(-0.943987\pi\)
0.984557 0.175062i \(-0.0560127\pi\)
\(450\) 0 0
\(451\) −174.858 −0.387712
\(452\) 0 0
\(453\) 123.726 + 184.466i 0.273126 + 0.407210i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 397.152 0.869041 0.434520 0.900662i \(-0.356918\pi\)
0.434520 + 0.900662i \(0.356918\pi\)
\(458\) 0 0
\(459\) −75.9962 371.797i −0.165569 0.810014i
\(460\) 0 0
\(461\) 350.730i 0.760803i −0.924821 0.380401i \(-0.875786\pi\)
0.924821 0.380401i \(-0.124214\pi\)
\(462\) 0 0
\(463\) −308.385 −0.666058 −0.333029 0.942917i \(-0.608071\pi\)
−0.333029 + 0.942917i \(0.608071\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 800.129i 1.71334i 0.515866 + 0.856669i \(0.327470\pi\)
−0.515866 + 0.856669i \(0.672530\pi\)
\(468\) 0 0
\(469\) 8.04656 0.0171568
\(470\) 0 0
\(471\) −410.657 612.259i −0.871884 1.29991i
\(472\) 0 0
\(473\) 379.895i 0.803160i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −242.469 99.4364i −0.508321 0.208462i
\(478\) 0 0
\(479\) 630.135i 1.31552i −0.753227 0.657761i \(-0.771504\pi\)
0.753227 0.657761i \(-0.228496\pi\)
\(480\) 0 0
\(481\) −96.1814 −0.199961
\(482\) 0 0
\(483\) 238.741 160.130i 0.494287 0.331531i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −103.952 −0.213454 −0.106727 0.994288i \(-0.534037\pi\)
−0.106727 + 0.994288i \(0.534037\pi\)
\(488\) 0 0
\(489\) −100.528 149.879i −0.205579 0.306502i
\(490\) 0 0
\(491\) 286.049i 0.582585i 0.956634 + 0.291292i \(0.0940853\pi\)
−0.956634 + 0.291292i \(0.905915\pi\)
\(492\) 0 0
\(493\) −221.082 −0.448442
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1154.40i 2.32273i
\(498\) 0 0
\(499\) −528.285 −1.05869 −0.529344 0.848407i \(-0.677562\pi\)
−0.529344 + 0.848407i \(0.677562\pi\)
\(500\) 0 0
\(501\) 203.220 136.305i 0.405630 0.272066i
\(502\) 0 0
\(503\) 733.418i 1.45809i −0.684467 0.729044i \(-0.739965\pi\)
0.684467 0.729044i \(-0.260035\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −189.893 283.116i −0.374542 0.558413i
\(508\) 0 0
\(509\) 312.619i 0.614183i −0.951680 0.307092i \(-0.900644\pi\)
0.951680 0.307092i \(-0.0993558\pi\)
\(510\) 0 0
\(511\) 590.183 1.15496
\(512\) 0 0
\(513\) 820.509 167.714i 1.59943 0.326928i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −255.838 −0.494851
\(518\) 0 0
\(519\) −416.235 + 279.179i −0.801995 + 0.537918i
\(520\) 0 0
\(521\) 715.719i 1.37374i −0.726780 0.686870i \(-0.758984\pi\)
0.726780 0.686870i \(-0.241016\pi\)
\(522\) 0 0
\(523\) 109.080 0.208567 0.104283 0.994548i \(-0.466745\pi\)
0.104283 + 0.994548i \(0.466745\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 287.977i 0.546445i
\(528\) 0 0
\(529\) 472.686 0.893547
\(530\) 0 0
\(531\) 396.641 + 162.662i 0.746971 + 0.306332i
\(532\) 0 0
\(533\) 103.019i 0.193282i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 672.958 451.370i 1.25318 0.840540i
\(538\) 0 0
\(539\) 1440.44i 2.67243i
\(540\) 0 0
\(541\) −14.9710 −0.0276729 −0.0138364 0.999904i \(-0.504404\pi\)
−0.0138364 + 0.999904i \(0.504404\pi\)
\(542\) 0 0
\(543\) 145.350 + 216.705i 0.267679 + 0.399088i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −842.765 −1.54070 −0.770352 0.637618i \(-0.779920\pi\)
−0.770352 + 0.637618i \(0.779920\pi\)
\(548\) 0 0
\(549\) −146.900 + 358.206i −0.267578 + 0.652471i
\(550\) 0 0
\(551\) 487.901i 0.885482i
\(552\) 0 0
\(553\) 484.733 0.876551
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 845.989i 1.51883i 0.650606 + 0.759415i \(0.274515\pi\)
−0.650606 + 0.759415i \(0.725485\pi\)
\(558\) 0 0
\(559\) 223.819 0.400391
\(560\) 0 0
\(561\) −296.634 442.258i −0.528759 0.788339i
\(562\) 0 0
\(563\) 336.509i 0.597707i −0.954299 0.298853i \(-0.903396\pi\)
0.954299 0.298853i \(-0.0966041\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −736.491 726.202i −1.29893 1.28078i
\(568\) 0 0
\(569\) 552.736i 0.971416i 0.874121 + 0.485708i \(0.161438\pi\)
−0.874121 + 0.485708i \(0.838562\pi\)
\(570\) 0 0
\(571\) −772.222 −1.35240 −0.676202 0.736717i \(-0.736375\pi\)
−0.676202 + 0.736717i \(0.736375\pi\)
\(572\) 0 0
\(573\) −752.980 + 505.043i −1.31410 + 0.881401i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −848.557 −1.47064 −0.735318 0.677722i \(-0.762967\pi\)
−0.735318 + 0.677722i \(0.762967\pi\)
\(578\) 0 0
\(579\) 512.658 + 764.334i 0.885420 + 1.32009i
\(580\) 0 0
\(581\) 1024.43i 1.76322i
\(582\) 0 0
\(583\) −367.755 −0.630798
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 575.536i 0.980470i 0.871590 + 0.490235i \(0.163089\pi\)
−0.871590 + 0.490235i \(0.836911\pi\)
\(588\) 0 0
\(589\) −635.529 −1.07900
\(590\) 0 0
\(591\) −722.419 + 484.544i −1.22237 + 0.819872i
\(592\) 0 0
\(593\) 156.935i 0.264646i 0.991207 + 0.132323i \(0.0422436\pi\)
−0.991207 + 0.132323i \(0.957756\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 639.352 + 953.225i 1.07094 + 1.59669i
\(598\) 0 0
\(599\) 517.564i 0.864047i −0.901862 0.432024i \(-0.857800\pi\)
0.901862 0.432024i \(-0.142200\pi\)
\(600\) 0 0
\(601\) −883.588 −1.47020 −0.735098 0.677961i \(-0.762864\pi\)
−0.735098 + 0.677961i \(0.762864\pi\)
\(602\) 0 0
\(603\) −2.15190 + 5.24727i −0.00356866 + 0.00870194i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −242.929 −0.400212 −0.200106 0.979774i \(-0.564129\pi\)
−0.200106 + 0.979774i \(0.564129\pi\)
\(608\) 0 0
\(609\) −500.431 + 335.652i −0.821725 + 0.551152i
\(610\) 0 0
\(611\) 150.729i 0.246693i
\(612\) 0 0
\(613\) 157.263 0.256546 0.128273 0.991739i \(-0.459057\pi\)
0.128273 + 0.991739i \(0.459057\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 471.040i 0.763436i −0.924279 0.381718i \(-0.875333\pi\)
0.924279 0.381718i \(-0.124667\pi\)
\(618\) 0 0
\(619\) 550.320 0.889047 0.444524 0.895767i \(-0.353373\pi\)
0.444524 + 0.895767i \(0.353373\pi\)
\(620\) 0 0
\(621\) 40.5759 + 198.510i 0.0653396 + 0.319662i
\(622\) 0 0
\(623\) 1799.48i 2.88841i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 976.009 654.634i 1.55663 1.04407i
\(628\) 0 0
\(629\) 181.676i 0.288834i
\(630\) 0 0
\(631\) 347.362 0.550495 0.275248 0.961373i \(-0.411240\pi\)
0.275248 + 0.961373i \(0.411240\pi\)
\(632\) 0 0
\(633\) 536.614 + 800.051i 0.847732 + 1.26390i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −848.649 −1.33226
\(638\) 0 0
\(639\) 752.798 + 308.721i 1.17809 + 0.483132i
\(640\) 0 0
\(641\) 333.802i 0.520752i 0.965507 + 0.260376i \(0.0838465\pi\)
−0.965507 + 0.260376i \(0.916153\pi\)
\(642\) 0 0
\(643\) 495.512 0.770625 0.385313 0.922786i \(-0.374094\pi\)
0.385313 + 0.922786i \(0.374094\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 149.493i 0.231056i −0.993304 0.115528i \(-0.963144\pi\)
0.993304 0.115528i \(-0.0368559\pi\)
\(648\) 0 0
\(649\) 601.590 0.926948
\(650\) 0 0
\(651\) 437.212 + 651.850i 0.671601 + 1.00131i
\(652\) 0 0
\(653\) 261.846i 0.400990i 0.979695 + 0.200495i \(0.0642550\pi\)
−0.979695 + 0.200495i \(0.935745\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −157.833 + 384.867i −0.240234 + 0.585794i
\(658\) 0 0
\(659\) 148.718i 0.225672i −0.993614 0.112836i \(-0.964006\pi\)
0.993614 0.112836i \(-0.0359935\pi\)
\(660\) 0 0
\(661\) −535.548 −0.810209 −0.405104 0.914270i \(-0.632765\pi\)
−0.405104 + 0.914270i \(0.632765\pi\)
\(662\) 0 0
\(663\) 260.561 174.765i 0.393002 0.263597i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 118.040 0.176972
\(668\) 0 0
\(669\) −488.681 728.586i −0.730465 1.08907i
\(670\) 0 0
\(671\) 543.295i 0.809680i
\(672\) 0 0
\(673\) −678.388 −1.00801 −0.504003 0.863702i \(-0.668140\pi\)
−0.504003 + 0.863702i \(0.668140\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 809.743i 1.19608i −0.801468 0.598038i \(-0.795947\pi\)
0.801468 0.598038i \(-0.204053\pi\)
\(678\) 0 0
\(679\) 132.070 0.194507
\(680\) 0 0
\(681\) 922.231 618.563i 1.35423 0.908316i
\(682\) 0 0
\(683\) 150.099i 0.219764i 0.993945 + 0.109882i \(0.0350473\pi\)
−0.993945 + 0.109882i \(0.964953\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 638.333 + 951.705i 0.929160 + 1.38531i
\(688\) 0 0
\(689\) 216.667i 0.314465i
\(690\) 0 0
\(691\) 334.001 0.483359 0.241679 0.970356i \(-0.422302\pi\)
0.241679 + 0.970356i \(0.422302\pi\)
\(692\) 0 0
\(693\) −1342.89 550.719i −1.93780 0.794688i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −194.592 −0.279185
\(698\) 0 0
\(699\) 359.425 241.076i 0.514199 0.344886i
\(700\) 0 0
\(701\) 924.471i 1.31879i −0.751797 0.659394i \(-0.770813\pi\)
0.751797 0.659394i \(-0.229187\pi\)
\(702\) 0 0
\(703\) −400.937 −0.570324
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 246.112i 0.348108i
\(708\) 0 0
\(709\) −797.459 −1.12477 −0.562383 0.826877i \(-0.690115\pi\)
−0.562383 + 0.826877i \(0.690115\pi\)
\(710\) 0 0
\(711\) −129.633 + 316.101i −0.182324 + 0.444586i
\(712\) 0 0
\(713\) 153.757i 0.215647i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −621.568 + 416.902i −0.866902 + 0.581453i
\(718\) 0 0
\(719\) 907.966i 1.26282i 0.775450 + 0.631409i \(0.217523\pi\)
−0.775450 + 0.631409i \(0.782477\pi\)
\(720\) 0 0
\(721\) −89.0024 −0.123443
\(722\) 0 0
\(723\) 50.8918 + 75.8757i 0.0703897 + 0.104946i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1038.16 1.42801 0.714005 0.700140i \(-0.246879\pi\)
0.714005 + 0.700140i \(0.246879\pi\)
\(728\) 0 0
\(729\) 670.527 286.067i 0.919790 0.392410i
\(730\) 0 0
\(731\) 422.769i 0.578344i
\(732\) 0 0
\(733\) −399.107 −0.544485 −0.272242 0.962229i \(-0.587765\pi\)
−0.272242 + 0.962229i \(0.587765\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.95858i 0.0107986i
\(738\) 0 0
\(739\) 452.504 0.612319 0.306159 0.951980i \(-0.400956\pi\)
0.306159 + 0.951980i \(0.400956\pi\)
\(740\) 0 0
\(741\) 385.684 + 575.025i 0.520491 + 0.776012i
\(742\) 0 0
\(743\) 486.909i 0.655328i −0.944794 0.327664i \(-0.893739\pi\)
0.944794 0.327664i \(-0.106261\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −668.046 273.965i −0.894306 0.366754i
\(748\) 0 0
\(749\) 942.024i 1.25771i
\(750\) 0 0
\(751\) 470.899 0.627029 0.313515 0.949583i \(-0.398494\pi\)
0.313515 + 0.949583i \(0.398494\pi\)
\(752\) 0 0
\(753\) 171.708 115.169i 0.228032 0.152947i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 886.264 1.17076 0.585379 0.810760i \(-0.300946\pi\)
0.585379 + 0.810760i \(0.300946\pi\)
\(758\) 0 0
\(759\) 158.379 + 236.131i 0.208668 + 0.311108i
\(760\) 0 0
\(761\) 1022.30i 1.34336i 0.740841 + 0.671680i \(0.234427\pi\)
−0.740841 + 0.671680i \(0.765573\pi\)
\(762\) 0 0
\(763\) −945.322 −1.23895
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 354.432i 0.462102i
\(768\) 0 0
\(769\) −1051.96 −1.36796 −0.683982 0.729499i \(-0.739753\pi\)
−0.683982 + 0.729499i \(0.739753\pi\)
\(770\) 0 0
\(771\) 902.847 605.562i 1.17101 0.785424i
\(772\) 0 0
\(773\) 983.554i 1.27238i 0.771530 + 0.636192i \(0.219492\pi\)
−0.771530 + 0.636192i \(0.780508\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 275.825 + 411.234i 0.354987 + 0.529259i
\(778\) 0 0
\(779\) 429.441i 0.551272i
\(780\) 0 0
\(781\) 1141.77 1.46194
\(782\) 0 0
\(783\) −85.0522 416.101i −0.108624 0.531419i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −984.726 −1.25124 −0.625620 0.780128i \(-0.715154\pi\)
−0.625620 + 0.780128i \(0.715154\pi\)
\(788\) 0 0
\(789\) −58.4214 + 39.1847i −0.0740449 + 0.0496638i
\(790\) 0 0
\(791\) 1879.82i 2.37651i
\(792\) 0 0
\(793\) −320.087 −0.403641
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 359.710i 0.451330i 0.974205 + 0.225665i \(0.0724555\pi\)
−0.974205 + 0.225665i \(0.927544\pi\)
\(798\) 0 0
\(799\) −284.712 −0.356335
\(800\) 0 0
\(801\) −1173.46 481.236i −1.46500 0.600794i
\(802\) 0 0
\(803\) 583.731i 0.726938i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −988.463 + 662.987i −1.22486 + 0.821546i
\(808\) 0 0
\(809\) 1174.75i 1.45211i −0.687638 0.726053i \(-0.741352\pi\)
0.687638 0.726053i \(-0.258648\pi\)
\(810\) 0 0
\(811\) 1000.55 1.23373 0.616863 0.787071i \(-0.288403\pi\)
0.616863 + 0.787071i \(0.288403\pi\)
\(812\) 0 0
\(813\) 240.514 + 358.588i 0.295835 + 0.441067i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 933.000 1.14198
\(818\) 0 0
\(819\) 324.461 791.178i 0.396167 0.966029i
\(820\) 0 0
\(821\) 536.992i 0.654071i 0.945012 + 0.327036i \(0.106050\pi\)
−0.945012 + 0.327036i \(0.893950\pi\)
\(822\) 0 0
\(823\) 563.712 0.684948 0.342474 0.939527i \(-0.388735\pi\)
0.342474 + 0.939527i \(0.388735\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 976.487i 1.18076i 0.807126 + 0.590379i \(0.201022\pi\)
−0.807126 + 0.590379i \(0.798978\pi\)
\(828\) 0 0
\(829\) 358.250 0.432147 0.216074 0.976377i \(-0.430675\pi\)
0.216074 + 0.976377i \(0.430675\pi\)
\(830\) 0 0
\(831\) −603.071 899.133i −0.725718 1.08199i
\(832\) 0 0
\(833\) 1603.01i 1.92438i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −542.005 + 110.787i −0.647556 + 0.132362i
\(838\) 0 0
\(839\) 98.9138i 0.117895i −0.998261 0.0589474i \(-0.981226\pi\)
0.998261 0.0589474i \(-0.0187744\pi\)
\(840\) 0 0
\(841\) 593.573 0.705794
\(842\) 0 0
\(843\) −1324.61 + 888.447i −1.57130 + 1.05391i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −491.703 −0.580523
\(848\) 0 0
\(849\) 430.140 + 641.305i 0.506643 + 0.755366i
\(850\) 0 0
\(851\) 97.0007i 0.113984i
\(852\) 0 0
\(853\) 262.197 0.307383 0.153691 0.988119i \(-0.450884\pi\)
0.153691 + 0.988119i \(0.450884\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 41.1542i 0.0480212i 0.999712 + 0.0240106i \(0.00764354\pi\)
−0.999712 + 0.0240106i \(0.992356\pi\)
\(858\) 0 0
\(859\) −414.736 −0.482813 −0.241406 0.970424i \(-0.577609\pi\)
−0.241406 + 0.970424i \(0.577609\pi\)
\(860\) 0 0
\(861\) −440.470 + 295.434i −0.511579 + 0.343129i
\(862\) 0 0
\(863\) 1253.21i 1.45216i 0.687613 + 0.726078i \(0.258659\pi\)
−0.687613 + 0.726078i \(0.741341\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 152.835 + 227.865i 0.176280 + 0.262820i
\(868\) 0 0
\(869\) 479.433i 0.551706i
\(870\) 0 0
\(871\) −4.68888 −0.00538332
\(872\) 0 0
\(873\) −35.3197 + 86.1249i −0.0404579 + 0.0986539i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 861.957 0.982847 0.491424 0.870921i \(-0.336477\pi\)
0.491424 + 0.870921i \(0.336477\pi\)
\(878\) 0 0
\(879\) −773.494 + 518.802i −0.879970 + 0.590218i
\(880\) 0 0
\(881\) 87.0009i 0.0987524i 0.998780 + 0.0493762i \(0.0157233\pi\)
−0.998780 + 0.0493762i \(0.984277\pi\)
\(882\) 0 0
\(883\) −1022.42 −1.15789 −0.578945 0.815366i \(-0.696536\pi\)
−0.578945 + 0.815366i \(0.696536\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 669.924i 0.755269i −0.925955 0.377634i \(-0.876738\pi\)
0.925955 0.377634i \(-0.123262\pi\)
\(888\) 0 0
\(889\) −1149.45 −1.29297
\(890\) 0 0
\(891\) 718.263 728.439i 0.806131 0.817552i
\(892\) 0 0
\(893\) 628.324i 0.703610i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −139.119 + 93.3104i −0.155093 + 0.104025i
\(898\) 0 0
\(899\) 322.293i 0.358502i
\(900\) 0 0
\(901\) −409.260 −0.454229
\(902\) 0 0
\(903\) −641.858 956.960i −0.710806 1.05976i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1296.52 1.42946 0.714729 0.699402i \(-0.246550\pi\)
0.714729 + 0.699402i \(0.246550\pi\)
\(908\) 0 0
\(909\) 160.493 + 65.8181i 0.176560 + 0.0724071i
\(910\) 0 0
\(911\) 926.622i 1.01715i 0.861018 + 0.508574i \(0.169827\pi\)
−0.861018 + 0.508574i \(0.830173\pi\)
\(912\) 0 0
\(913\) −1013.23 −1.10978
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 144.179i 0.157229i
\(918\) 0 0
\(919\) −478.391 −0.520556 −0.260278 0.965534i \(-0.583814\pi\)
−0.260278 + 0.965534i \(0.583814\pi\)
\(920\) 0 0
\(921\) 444.793 + 663.152i 0.482946 + 0.720035i
\(922\) 0 0
\(923\) 672.687i 0.728805i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 23.8020 58.0397i 0.0256764 0.0626102i
\(928\) 0 0
\(929\) 1452.00i 1.56297i 0.623923 + 0.781486i \(0.285538\pi\)
−0.623923 + 0.781486i \(0.714462\pi\)
\(930\) 0 0
\(931\) −3537.64 −3.79983
\(932\) 0 0
\(933\) 464.858 311.792i 0.498240 0.334182i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1535.86 −1.63912 −0.819562 0.572991i \(-0.805783\pi\)
−0.819562 + 0.572991i \(0.805783\pi\)
\(938\) 0 0
\(939\) 34.2610 + 51.0805i 0.0364866 + 0.0543988i
\(940\) 0 0
\(941\) 1237.50i 1.31509i −0.753415 0.657545i \(-0.771595\pi\)
0.753415 0.657545i \(-0.228405\pi\)
\(942\) 0 0
\(943\) 103.897 0.110177
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 603.800i 0.637593i −0.947823 0.318796i \(-0.896721\pi\)
0.947823 0.318796i \(-0.103279\pi\)
\(948\) 0 0
\(949\) −343.911 −0.362393
\(950\) 0 0
\(951\) 47.2861 31.7160i 0.0497225 0.0333501i
\(952\) 0 0
\(953\) 534.553i 0.560916i −0.959866 0.280458i \(-0.909514\pi\)
0.959866 0.280458i \(-0.0904863\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −331.982 494.959i −0.346899 0.517199i
\(958\) 0 0
\(959\) 287.186i 0.299464i
\(960\) 0 0
\(961\) −541.188 −0.563151
\(962\) 0 0
\(963\) 614.307 + 251.927i 0.637909 + 0.261606i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 271.601 0.280870 0.140435 0.990090i \(-0.455150\pi\)
0.140435 + 0.990090i \(0.455150\pi\)
\(968\) 0 0
\(969\) 1086.16 728.515i 1.12091 0.751822i
\(970\) 0 0
\(971\) 912.176i 0.939419i −0.882821 0.469709i \(-0.844359\pi\)
0.882821 0.469709i \(-0.155641\pi\)
\(972\) 0 0
\(973\) 1163.22 1.19550
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 333.628i 0.341482i 0.985316 + 0.170741i \(0.0546162\pi\)
−0.985316 + 0.170741i \(0.945384\pi\)
\(978\) 0 0
\(979\) −1779.80 −1.81798
\(980\) 0 0
\(981\) 252.809 616.458i 0.257705 0.628397i
\(982\) 0 0
\(983\) 1600.35i 1.62803i 0.580847 + 0.814013i \(0.302722\pi\)
−0.580847 + 0.814013i \(0.697278\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −644.460 + 432.256i −0.652948 + 0.437949i
\(988\) 0 0
\(989\) 225.725i 0.228236i
\(990\) 0 0
\(991\) 69.3757 0.0700057 0.0350029 0.999387i \(-0.488856\pi\)
0.0350029 + 0.999387i \(0.488856\pi\)
\(992\) 0 0
\(993\) −690.485 1029.46i −0.695353 1.03672i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −482.497 −0.483949 −0.241974 0.970283i \(-0.577795\pi\)
−0.241974 + 0.970283i \(0.577795\pi\)
\(998\) 0 0
\(999\) −341.936 + 69.8925i −0.342278 + 0.0699625i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.3.l.y.401.10 12
3.2 odd 2 inner 1200.3.l.y.401.9 12
4.3 odd 2 600.3.l.g.401.3 12
5.2 odd 4 240.3.c.e.209.9 12
5.3 odd 4 240.3.c.e.209.4 12
5.4 even 2 inner 1200.3.l.y.401.3 12
12.11 even 2 600.3.l.g.401.4 12
15.2 even 4 240.3.c.e.209.3 12
15.8 even 4 240.3.c.e.209.10 12
15.14 odd 2 inner 1200.3.l.y.401.4 12
20.3 even 4 120.3.c.a.89.9 yes 12
20.7 even 4 120.3.c.a.89.4 yes 12
20.19 odd 2 600.3.l.g.401.10 12
40.3 even 4 960.3.c.k.449.4 12
40.13 odd 4 960.3.c.j.449.9 12
40.27 even 4 960.3.c.k.449.9 12
40.37 odd 4 960.3.c.j.449.4 12
60.23 odd 4 120.3.c.a.89.3 12
60.47 odd 4 120.3.c.a.89.10 yes 12
60.59 even 2 600.3.l.g.401.9 12
120.53 even 4 960.3.c.j.449.3 12
120.77 even 4 960.3.c.j.449.10 12
120.83 odd 4 960.3.c.k.449.10 12
120.107 odd 4 960.3.c.k.449.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.c.a.89.3 12 60.23 odd 4
120.3.c.a.89.4 yes 12 20.7 even 4
120.3.c.a.89.9 yes 12 20.3 even 4
120.3.c.a.89.10 yes 12 60.47 odd 4
240.3.c.e.209.3 12 15.2 even 4
240.3.c.e.209.4 12 5.3 odd 4
240.3.c.e.209.9 12 5.2 odd 4
240.3.c.e.209.10 12 15.8 even 4
600.3.l.g.401.3 12 4.3 odd 2
600.3.l.g.401.4 12 12.11 even 2
600.3.l.g.401.9 12 60.59 even 2
600.3.l.g.401.10 12 20.19 odd 2
960.3.c.j.449.3 12 120.53 even 4
960.3.c.j.449.4 12 40.37 odd 4
960.3.c.j.449.9 12 40.13 odd 4
960.3.c.j.449.10 12 120.77 even 4
960.3.c.k.449.3 12 120.107 odd 4
960.3.c.k.449.4 12 40.3 even 4
960.3.c.k.449.9 12 40.27 even 4
960.3.c.k.449.10 12 120.83 odd 4
1200.3.l.y.401.3 12 5.4 even 2 inner
1200.3.l.y.401.4 12 15.14 odd 2 inner
1200.3.l.y.401.9 12 3.2 odd 2 inner
1200.3.l.y.401.10 12 1.1 even 1 trivial