Properties

Label 1200.3.l.w.401.4
Level $1200$
Weight $3$
Character 1200.401
Analytic conductor $32.698$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1200,3,Mod(401,1200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1200.401"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1200.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,4,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.6976317232\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.574198272.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} - 34x^{3} + 81x^{2} + 156x + 198 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 600)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 401.4
Root \(-0.788754 - 0.994180i\) of defining polynomial
Character \(\chi\) \(=\) 1200.401
Dual form 1200.3.l.w.401.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.78875 + 2.40839i) q^{3} -12.2014 q^{7} +(-2.60072 + 8.61605i) q^{9} -8.79351i q^{11} -6.20144 q^{13} +16.6156i q^{17} +8.93396 q^{19} +(-21.8254 - 29.3859i) q^{21} -40.1210i q^{23} +(-25.4029 + 9.14843i) q^{27} +4.94701i q^{29} +50.6043 q^{31} +(21.1782 - 15.7294i) q^{33} +41.3407 q^{37} +(-11.0928 - 14.9355i) q^{39} -10.8654i q^{41} -39.5422 q^{43} -78.2993i q^{47} +99.8751 q^{49} +(-40.0170 + 29.7213i) q^{51} -69.7316i q^{53} +(15.9807 + 21.5165i) q^{57} -96.0731i q^{59} +26.7287 q^{61} +(31.7325 - 105.128i) q^{63} -66.5311 q^{67} +(96.6273 - 71.7667i) q^{69} -34.7444i q^{71} +70.5344 q^{73} +107.293i q^{77} -31.2164 q^{79} +(-67.4725 - 44.8158i) q^{81} +71.5420i q^{83} +(-11.9143 + 8.84898i) q^{87} -30.4885i q^{89} +75.6665 q^{91} +(90.5187 + 121.875i) q^{93} -108.194 q^{97} +(75.7653 + 22.8694i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{3} - 10 q^{7} + 16 q^{9} + 26 q^{13} - 50 q^{19} - 18 q^{21} - 26 q^{27} + 114 q^{31} + 82 q^{33} + 76 q^{37} + 6 q^{39} - 2 q^{43} + 76 q^{49} + 6 q^{51} + 172 q^{57} + 62 q^{61} + 150 q^{63}+ \cdots + 250 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.78875 + 2.40839i 0.596251 + 0.802798i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −12.2014 −1.74306 −0.871531 0.490340i \(-0.836873\pi\)
−0.871531 + 0.490340i \(0.836873\pi\)
\(8\) 0 0
\(9\) −2.60072 + 8.61605i −0.288969 + 0.957339i
\(10\) 0 0
\(11\) 8.79351i 0.799410i −0.916644 0.399705i \(-0.869113\pi\)
0.916644 0.399705i \(-0.130887\pi\)
\(12\) 0 0
\(13\) −6.20144 −0.477034 −0.238517 0.971138i \(-0.576661\pi\)
−0.238517 + 0.971138i \(0.576661\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 16.6156i 0.977391i 0.872455 + 0.488695i \(0.162527\pi\)
−0.872455 + 0.488695i \(0.837473\pi\)
\(18\) 0 0
\(19\) 8.93396 0.470209 0.235104 0.971970i \(-0.424457\pi\)
0.235104 + 0.971970i \(0.424457\pi\)
\(20\) 0 0
\(21\) −21.8254 29.3859i −1.03930 1.39933i
\(22\) 0 0
\(23\) 40.1210i 1.74439i −0.489156 0.872197i \(-0.662695\pi\)
0.489156 0.872197i \(-0.337305\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −25.4029 + 9.14843i −0.940847 + 0.338831i
\(28\) 0 0
\(29\) 4.94701i 0.170587i 0.996356 + 0.0852933i \(0.0271827\pi\)
−0.996356 + 0.0852933i \(0.972817\pi\)
\(30\) 0 0
\(31\) 50.6043 1.63240 0.816199 0.577771i \(-0.196077\pi\)
0.816199 + 0.577771i \(0.196077\pi\)
\(32\) 0 0
\(33\) 21.1782 15.7294i 0.641764 0.476649i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 41.3407 1.11732 0.558658 0.829398i \(-0.311316\pi\)
0.558658 + 0.829398i \(0.311316\pi\)
\(38\) 0 0
\(39\) −11.0928 14.9355i −0.284432 0.382962i
\(40\) 0 0
\(41\) 10.8654i 0.265010i −0.991182 0.132505i \(-0.957698\pi\)
0.991182 0.132505i \(-0.0423020\pi\)
\(42\) 0 0
\(43\) −39.5422 −0.919585 −0.459792 0.888026i \(-0.652076\pi\)
−0.459792 + 0.888026i \(0.652076\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 78.2993i 1.66594i −0.553316 0.832972i \(-0.686638\pi\)
0.553316 0.832972i \(-0.313362\pi\)
\(48\) 0 0
\(49\) 99.8751 2.03827
\(50\) 0 0
\(51\) −40.0170 + 29.7213i −0.784647 + 0.582770i
\(52\) 0 0
\(53\) 69.7316i 1.31569i −0.753153 0.657845i \(-0.771468\pi\)
0.753153 0.657845i \(-0.228532\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 15.9807 + 21.5165i 0.280362 + 0.377482i
\(58\) 0 0
\(59\) 96.0731i 1.62836i −0.580614 0.814179i \(-0.697187\pi\)
0.580614 0.814179i \(-0.302813\pi\)
\(60\) 0 0
\(61\) 26.7287 0.438175 0.219087 0.975705i \(-0.429692\pi\)
0.219087 + 0.975705i \(0.429692\pi\)
\(62\) 0 0
\(63\) 31.7325 105.128i 0.503691 1.66870i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −66.5311 −0.993001 −0.496501 0.868036i \(-0.665382\pi\)
−0.496501 + 0.868036i \(0.665382\pi\)
\(68\) 0 0
\(69\) 96.6273 71.7667i 1.40040 1.04010i
\(70\) 0 0
\(71\) 34.7444i 0.489357i −0.969604 0.244679i \(-0.921318\pi\)
0.969604 0.244679i \(-0.0786824\pi\)
\(72\) 0 0
\(73\) 70.5344 0.966225 0.483112 0.875558i \(-0.339506\pi\)
0.483112 + 0.875558i \(0.339506\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 107.293i 1.39342i
\(78\) 0 0
\(79\) −31.2164 −0.395144 −0.197572 0.980288i \(-0.563306\pi\)
−0.197572 + 0.980288i \(0.563306\pi\)
\(80\) 0 0
\(81\) −67.4725 44.8158i −0.832994 0.553282i
\(82\) 0 0
\(83\) 71.5420i 0.861951i 0.902364 + 0.430976i \(0.141831\pi\)
−0.902364 + 0.430976i \(0.858169\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −11.9143 + 8.84898i −0.136947 + 0.101712i
\(88\) 0 0
\(89\) 30.4885i 0.342568i −0.985222 0.171284i \(-0.945208\pi\)
0.985222 0.171284i \(-0.0547916\pi\)
\(90\) 0 0
\(91\) 75.6665 0.831500
\(92\) 0 0
\(93\) 90.5187 + 121.875i 0.973319 + 1.31049i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −108.194 −1.11540 −0.557699 0.830043i \(-0.688316\pi\)
−0.557699 + 0.830043i \(0.688316\pi\)
\(98\) 0 0
\(99\) 75.7653 + 22.8694i 0.765306 + 0.231005i
\(100\) 0 0
\(101\) 30.7501i 0.304456i −0.988345 0.152228i \(-0.951355\pi\)
0.988345 0.152228i \(-0.0486448\pi\)
\(102\) 0 0
\(103\) 49.7358 0.482872 0.241436 0.970417i \(-0.422382\pi\)
0.241436 + 0.970417i \(0.422382\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 188.098i 1.75792i 0.476894 + 0.878961i \(0.341762\pi\)
−0.476894 + 0.878961i \(0.658238\pi\)
\(108\) 0 0
\(109\) −72.7585 −0.667509 −0.333755 0.942660i \(-0.608316\pi\)
−0.333755 + 0.942660i \(0.608316\pi\)
\(110\) 0 0
\(111\) 73.9484 + 99.5647i 0.666201 + 0.896979i
\(112\) 0 0
\(113\) 79.0278i 0.699361i −0.936869 0.349681i \(-0.886290\pi\)
0.936869 0.349681i \(-0.113710\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 16.1282 53.4319i 0.137848 0.456683i
\(118\) 0 0
\(119\) 202.735i 1.70365i
\(120\) 0 0
\(121\) 43.6742 0.360944
\(122\) 0 0
\(123\) 26.1681 19.4355i 0.212749 0.158012i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −194.410 −1.53078 −0.765392 0.643565i \(-0.777455\pi\)
−0.765392 + 0.643565i \(0.777455\pi\)
\(128\) 0 0
\(129\) −70.7312 95.2331i −0.548304 0.738241i
\(130\) 0 0
\(131\) 221.663i 1.69209i −0.533114 0.846044i \(-0.678978\pi\)
0.533114 0.846044i \(-0.321022\pi\)
\(132\) 0 0
\(133\) −109.007 −0.819603
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 254.898i 1.86057i 0.366839 + 0.930285i \(0.380440\pi\)
−0.366839 + 0.930285i \(0.619560\pi\)
\(138\) 0 0
\(139\) 103.142 0.742029 0.371015 0.928627i \(-0.379010\pi\)
0.371015 + 0.928627i \(0.379010\pi\)
\(140\) 0 0
\(141\) 188.576 140.058i 1.33742 0.993321i
\(142\) 0 0
\(143\) 54.5324i 0.381345i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 178.652 + 240.539i 1.21532 + 1.63632i
\(148\) 0 0
\(149\) 130.351i 0.874836i −0.899258 0.437418i \(-0.855893\pi\)
0.899258 0.437418i \(-0.144107\pi\)
\(150\) 0 0
\(151\) −82.4800 −0.546225 −0.273113 0.961982i \(-0.588053\pi\)
−0.273113 + 0.961982i \(0.588053\pi\)
\(152\) 0 0
\(153\) −143.161 43.2126i −0.935694 0.282435i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −189.015 −1.20392 −0.601958 0.798527i \(-0.705613\pi\)
−0.601958 + 0.798527i \(0.705613\pi\)
\(158\) 0 0
\(159\) 167.941 124.733i 1.05623 0.784482i
\(160\) 0 0
\(161\) 489.534i 3.04059i
\(162\) 0 0
\(163\) 222.963 1.36787 0.683935 0.729543i \(-0.260267\pi\)
0.683935 + 0.729543i \(0.260267\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 96.2445i 0.576314i −0.957583 0.288157i \(-0.906957\pi\)
0.957583 0.288157i \(-0.0930426\pi\)
\(168\) 0 0
\(169\) −130.542 −0.772439
\(170\) 0 0
\(171\) −23.2347 + 76.9754i −0.135876 + 0.450149i
\(172\) 0 0
\(173\) 61.4068i 0.354952i 0.984125 + 0.177476i \(0.0567933\pi\)
−0.984125 + 0.177476i \(0.943207\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 231.382 171.851i 1.30724 0.970911i
\(178\) 0 0
\(179\) 172.095i 0.961425i 0.876878 + 0.480713i \(0.159622\pi\)
−0.876878 + 0.480713i \(0.840378\pi\)
\(180\) 0 0
\(181\) 101.512 0.560841 0.280421 0.959877i \(-0.409526\pi\)
0.280421 + 0.959877i \(0.409526\pi\)
\(182\) 0 0
\(183\) 47.8110 + 64.3731i 0.261262 + 0.351766i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 146.110 0.781336
\(188\) 0 0
\(189\) 309.952 111.624i 1.63996 0.590603i
\(190\) 0 0
\(191\) 46.5031i 0.243472i −0.992563 0.121736i \(-0.961154\pi\)
0.992563 0.121736i \(-0.0388461\pi\)
\(192\) 0 0
\(193\) 241.951 1.25363 0.626816 0.779167i \(-0.284358\pi\)
0.626816 + 0.779167i \(0.284358\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 375.594i 1.90657i −0.302074 0.953285i \(-0.597679\pi\)
0.302074 0.953285i \(-0.402321\pi\)
\(198\) 0 0
\(199\) 75.0149 0.376959 0.188480 0.982077i \(-0.439644\pi\)
0.188480 + 0.982077i \(0.439644\pi\)
\(200\) 0 0
\(201\) −119.008 160.233i −0.592078 0.797179i
\(202\) 0 0
\(203\) 60.3606i 0.297343i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 345.685 + 104.344i 1.66997 + 0.504075i
\(208\) 0 0
\(209\) 78.5609i 0.375889i
\(210\) 0 0
\(211\) −64.6919 −0.306597 −0.153298 0.988180i \(-0.548990\pi\)
−0.153298 + 0.988180i \(0.548990\pi\)
\(212\) 0 0
\(213\) 83.6781 62.1491i 0.392855 0.291780i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −617.446 −2.84537
\(218\) 0 0
\(219\) 126.169 + 169.875i 0.576113 + 0.775683i
\(220\) 0 0
\(221\) 103.041i 0.466248i
\(222\) 0 0
\(223\) −250.487 −1.12326 −0.561629 0.827389i \(-0.689825\pi\)
−0.561629 + 0.827389i \(0.689825\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 191.981i 0.845733i −0.906192 0.422866i \(-0.861024\pi\)
0.906192 0.422866i \(-0.138976\pi\)
\(228\) 0 0
\(229\) −112.598 −0.491693 −0.245846 0.969309i \(-0.579066\pi\)
−0.245846 + 0.969309i \(0.579066\pi\)
\(230\) 0 0
\(231\) −258.405 + 191.922i −1.11864 + 0.830829i
\(232\) 0 0
\(233\) 402.723i 1.72843i −0.503125 0.864213i \(-0.667817\pi\)
0.503125 0.864213i \(-0.332183\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −55.8384 75.1813i −0.235605 0.317221i
\(238\) 0 0
\(239\) 99.9740i 0.418301i −0.977883 0.209151i \(-0.932930\pi\)
0.977883 0.209151i \(-0.0670699\pi\)
\(240\) 0 0
\(241\) 1.82898 0.00758914 0.00379457 0.999993i \(-0.498792\pi\)
0.00379457 + 0.999993i \(0.498792\pi\)
\(242\) 0 0
\(243\) −12.7575 242.665i −0.0525001 0.998621i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −55.4034 −0.224305
\(248\) 0 0
\(249\) −172.301 + 127.971i −0.691973 + 0.513940i
\(250\) 0 0
\(251\) 349.307i 1.39166i −0.718206 0.695831i \(-0.755036\pi\)
0.718206 0.695831i \(-0.244964\pi\)
\(252\) 0 0
\(253\) −352.805 −1.39448
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.7334i 0.0495463i 0.999693 + 0.0247731i \(0.00788634\pi\)
−0.999693 + 0.0247731i \(0.992114\pi\)
\(258\) 0 0
\(259\) −504.416 −1.94755
\(260\) 0 0
\(261\) −42.6237 12.8658i −0.163309 0.0492942i
\(262\) 0 0
\(263\) 188.806i 0.717892i 0.933358 + 0.358946i \(0.116864\pi\)
−0.933358 + 0.358946i \(0.883136\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 73.4284 54.5365i 0.275013 0.204257i
\(268\) 0 0
\(269\) 113.044i 0.420237i 0.977676 + 0.210118i \(0.0673849\pi\)
−0.977676 + 0.210118i \(0.932615\pi\)
\(270\) 0 0
\(271\) −22.6737 −0.0836667 −0.0418334 0.999125i \(-0.513320\pi\)
−0.0418334 + 0.999125i \(0.513320\pi\)
\(272\) 0 0
\(273\) 135.349 + 182.235i 0.495783 + 0.667526i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 341.284 1.23207 0.616035 0.787719i \(-0.288738\pi\)
0.616035 + 0.787719i \(0.288738\pi\)
\(278\) 0 0
\(279\) −131.608 + 436.009i −0.471712 + 1.56276i
\(280\) 0 0
\(281\) 5.77214i 0.0205414i 0.999947 + 0.0102707i \(0.00326933\pi\)
−0.999947 + 0.0102707i \(0.996731\pi\)
\(282\) 0 0
\(283\) −14.9406 −0.0527937 −0.0263968 0.999652i \(-0.508403\pi\)
−0.0263968 + 0.999652i \(0.508403\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 132.573i 0.461928i
\(288\) 0 0
\(289\) 12.9205 0.0447075
\(290\) 0 0
\(291\) −193.532 260.573i −0.665058 0.895440i
\(292\) 0 0
\(293\) 6.23602i 0.0212833i −0.999943 0.0106417i \(-0.996613\pi\)
0.999943 0.0106417i \(-0.00338741\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 80.4468 + 223.380i 0.270865 + 0.752123i
\(298\) 0 0
\(299\) 248.808i 0.832134i
\(300\) 0 0
\(301\) 482.471 1.60289
\(302\) 0 0
\(303\) 74.0583 55.0043i 0.244417 0.181532i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −283.513 −0.923496 −0.461748 0.887011i \(-0.652778\pi\)
−0.461748 + 0.887011i \(0.652778\pi\)
\(308\) 0 0
\(309\) 88.9652 + 119.784i 0.287913 + 0.387649i
\(310\) 0 0
\(311\) 108.620i 0.349260i 0.984634 + 0.174630i \(0.0558729\pi\)
−0.984634 + 0.174630i \(0.944127\pi\)
\(312\) 0 0
\(313\) −387.197 −1.23705 −0.618525 0.785765i \(-0.712270\pi\)
−0.618525 + 0.785765i \(0.712270\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 118.772i 0.374675i 0.982296 + 0.187338i \(0.0599858\pi\)
−0.982296 + 0.187338i \(0.940014\pi\)
\(318\) 0 0
\(319\) 43.5016 0.136369
\(320\) 0 0
\(321\) −453.013 + 336.460i −1.41126 + 1.04816i
\(322\) 0 0
\(323\) 148.444i 0.459577i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −130.147 175.231i −0.398003 0.535875i
\(328\) 0 0
\(329\) 955.365i 2.90384i
\(330\) 0 0
\(331\) 494.645 1.49439 0.747197 0.664602i \(-0.231399\pi\)
0.747197 + 0.664602i \(0.231399\pi\)
\(332\) 0 0
\(333\) −107.516 + 356.193i −0.322870 + 1.06965i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 14.6414 0.0434463 0.0217231 0.999764i \(-0.493085\pi\)
0.0217231 + 0.999764i \(0.493085\pi\)
\(338\) 0 0
\(339\) 190.330 141.361i 0.561446 0.416995i
\(340\) 0 0
\(341\) 444.989i 1.30495i
\(342\) 0 0
\(343\) −620.750 −1.80977
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 146.105i 0.421053i −0.977588 0.210526i \(-0.932482\pi\)
0.977588 0.210526i \(-0.0675178\pi\)
\(348\) 0 0
\(349\) −594.189 −1.70255 −0.851273 0.524723i \(-0.824169\pi\)
−0.851273 + 0.524723i \(0.824169\pi\)
\(350\) 0 0
\(351\) 157.534 56.7334i 0.448816 0.161634i
\(352\) 0 0
\(353\) 81.0080i 0.229484i 0.993395 + 0.114742i \(0.0366042\pi\)
−0.993395 + 0.114742i \(0.963396\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 488.265 362.643i 1.36769 1.01581i
\(358\) 0 0
\(359\) 290.075i 0.808009i 0.914757 + 0.404005i \(0.132382\pi\)
−0.914757 + 0.404005i \(0.867618\pi\)
\(360\) 0 0
\(361\) −281.184 −0.778904
\(362\) 0 0
\(363\) 78.1224 + 105.185i 0.215213 + 0.289765i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −168.056 −0.457918 −0.228959 0.973436i \(-0.573532\pi\)
−0.228959 + 0.973436i \(0.573532\pi\)
\(368\) 0 0
\(369\) 93.6167 + 28.2578i 0.253704 + 0.0765795i
\(370\) 0 0
\(371\) 850.826i 2.29333i
\(372\) 0 0
\(373\) −237.510 −0.636756 −0.318378 0.947964i \(-0.603138\pi\)
−0.318378 + 0.947964i \(0.603138\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 30.6786i 0.0813756i
\(378\) 0 0
\(379\) −136.385 −0.359854 −0.179927 0.983680i \(-0.557586\pi\)
−0.179927 + 0.983680i \(0.557586\pi\)
\(380\) 0 0
\(381\) −347.751 468.215i −0.912732 1.22891i
\(382\) 0 0
\(383\) 202.859i 0.529658i −0.964295 0.264829i \(-0.914685\pi\)
0.964295 0.264829i \(-0.0853155\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 102.838 340.697i 0.265731 0.880354i
\(388\) 0 0
\(389\) 60.7715i 0.156225i −0.996945 0.0781125i \(-0.975111\pi\)
0.996945 0.0781125i \(-0.0248893\pi\)
\(390\) 0 0
\(391\) 666.637 1.70495
\(392\) 0 0
\(393\) 533.853 396.501i 1.35840 1.00891i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 456.360 1.14952 0.574761 0.818321i \(-0.305095\pi\)
0.574761 + 0.818321i \(0.305095\pi\)
\(398\) 0 0
\(399\) −194.987 262.532i −0.488689 0.657976i
\(400\) 0 0
\(401\) 479.363i 1.19542i 0.801712 + 0.597710i \(0.203923\pi\)
−0.801712 + 0.597710i \(0.796077\pi\)
\(402\) 0 0
\(403\) −313.820 −0.778709
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 363.530i 0.893194i
\(408\) 0 0
\(409\) −45.2033 −0.110522 −0.0552608 0.998472i \(-0.517599\pi\)
−0.0552608 + 0.998472i \(0.517599\pi\)
\(410\) 0 0
\(411\) −613.895 + 455.950i −1.49366 + 1.10937i
\(412\) 0 0
\(413\) 1172.23i 2.83833i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 184.496 + 248.407i 0.442436 + 0.595699i
\(418\) 0 0
\(419\) 199.218i 0.475461i −0.971331 0.237730i \(-0.923597\pi\)
0.971331 0.237730i \(-0.0764034\pi\)
\(420\) 0 0
\(421\) −73.7967 −0.175289 −0.0876445 0.996152i \(-0.527934\pi\)
−0.0876445 + 0.996152i \(0.527934\pi\)
\(422\) 0 0
\(423\) 674.631 + 203.635i 1.59487 + 0.481406i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −326.128 −0.763766
\(428\) 0 0
\(429\) −131.335 + 97.5450i −0.306143 + 0.227378i
\(430\) 0 0
\(431\) 42.2198i 0.0979577i −0.998800 0.0489789i \(-0.984403\pi\)
0.998800 0.0489789i \(-0.0155967\pi\)
\(432\) 0 0
\(433\) 434.287 1.00297 0.501486 0.865166i \(-0.332787\pi\)
0.501486 + 0.865166i \(0.332787\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 358.440i 0.820228i
\(438\) 0 0
\(439\) −739.972 −1.68558 −0.842792 0.538239i \(-0.819090\pi\)
−0.842792 + 0.538239i \(0.819090\pi\)
\(440\) 0 0
\(441\) −259.747 + 860.529i −0.588996 + 1.95131i
\(442\) 0 0
\(443\) 127.665i 0.288184i 0.989564 + 0.144092i \(0.0460261\pi\)
−0.989564 + 0.144092i \(0.953974\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 313.935 233.165i 0.702316 0.521622i
\(448\) 0 0
\(449\) 200.120i 0.445701i −0.974853 0.222850i \(-0.928464\pi\)
0.974853 0.222850i \(-0.0715361\pi\)
\(450\) 0 0
\(451\) −95.5449 −0.211851
\(452\) 0 0
\(453\) −147.536 198.644i −0.325687 0.438508i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 364.615 0.797845 0.398923 0.916985i \(-0.369384\pi\)
0.398923 + 0.916985i \(0.369384\pi\)
\(458\) 0 0
\(459\) −152.007 422.085i −0.331170 0.919575i
\(460\) 0 0
\(461\) 39.0715i 0.0847538i −0.999102 0.0423769i \(-0.986507\pi\)
0.999102 0.0423769i \(-0.0134930\pi\)
\(462\) 0 0
\(463\) 403.683 0.871887 0.435943 0.899974i \(-0.356415\pi\)
0.435943 + 0.899974i \(0.356415\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 535.689i 1.14709i −0.819175 0.573543i \(-0.805568\pi\)
0.819175 0.573543i \(-0.194432\pi\)
\(468\) 0 0
\(469\) 811.775 1.73086
\(470\) 0 0
\(471\) −338.101 455.222i −0.717837 0.966502i
\(472\) 0 0
\(473\) 347.714i 0.735125i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 600.811 + 181.352i 1.25956 + 0.380194i
\(478\) 0 0
\(479\) 768.476i 1.60433i 0.597099 + 0.802167i \(0.296320\pi\)
−0.597099 + 0.802167i \(0.703680\pi\)
\(480\) 0 0
\(481\) −256.372 −0.532998
\(482\) 0 0
\(483\) −1178.99 + 875.657i −2.44098 + 1.81295i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 130.785 0.268553 0.134276 0.990944i \(-0.457129\pi\)
0.134276 + 0.990944i \(0.457129\pi\)
\(488\) 0 0
\(489\) 398.825 + 536.982i 0.815594 + 1.09812i
\(490\) 0 0
\(491\) 576.106i 1.17333i 0.809829 + 0.586666i \(0.199560\pi\)
−0.809829 + 0.586666i \(0.800440\pi\)
\(492\) 0 0
\(493\) −82.1977 −0.166730
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 423.931i 0.852980i
\(498\) 0 0
\(499\) −569.803 −1.14189 −0.570945 0.820988i \(-0.693423\pi\)
−0.570945 + 0.820988i \(0.693423\pi\)
\(500\) 0 0
\(501\) 231.795 172.158i 0.462664 0.343628i
\(502\) 0 0
\(503\) 167.894i 0.333784i −0.985975 0.166892i \(-0.946627\pi\)
0.985975 0.166892i \(-0.0533732\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −233.508 314.397i −0.460568 0.620112i
\(508\) 0 0
\(509\) 422.910i 0.830865i −0.909624 0.415433i \(-0.863630\pi\)
0.909624 0.415433i \(-0.136370\pi\)
\(510\) 0 0
\(511\) −860.621 −1.68419
\(512\) 0 0
\(513\) −226.948 + 81.7317i −0.442394 + 0.159321i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −688.526 −1.33177
\(518\) 0 0
\(519\) −147.892 + 109.842i −0.284955 + 0.211641i
\(520\) 0 0
\(521\) 412.630i 0.791995i −0.918251 0.395998i \(-0.870399\pi\)
0.918251 0.395998i \(-0.129601\pi\)
\(522\) 0 0
\(523\) −38.1647 −0.0729727 −0.0364864 0.999334i \(-0.511617\pi\)
−0.0364864 + 0.999334i \(0.511617\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 840.823i 1.59549i
\(528\) 0 0
\(529\) −1080.70 −2.04291
\(530\) 0 0
\(531\) 827.771 + 249.859i 1.55889 + 0.470545i
\(532\) 0 0
\(533\) 67.3811i 0.126419i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −414.473 + 307.836i −0.771830 + 0.573251i
\(538\) 0 0
\(539\) 878.253i 1.62941i
\(540\) 0 0
\(541\) 671.986 1.24212 0.621059 0.783764i \(-0.286703\pi\)
0.621059 + 0.783764i \(0.286703\pi\)
\(542\) 0 0
\(543\) 181.580 + 244.482i 0.334402 + 0.450242i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 56.8126 0.103862 0.0519311 0.998651i \(-0.483462\pi\)
0.0519311 + 0.998651i \(0.483462\pi\)
\(548\) 0 0
\(549\) −69.5137 + 230.295i −0.126619 + 0.419481i
\(550\) 0 0
\(551\) 44.1964i 0.0802113i
\(552\) 0 0
\(553\) 380.885 0.688761
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 240.349i 0.431507i −0.976448 0.215753i \(-0.930779\pi\)
0.976448 0.215753i \(-0.0692207\pi\)
\(558\) 0 0
\(559\) 245.218 0.438673
\(560\) 0 0
\(561\) 261.354 + 351.890i 0.465872 + 0.627255i
\(562\) 0 0
\(563\) 156.807i 0.278521i −0.990256 0.139261i \(-0.955527\pi\)
0.990256 0.139261i \(-0.0444725\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 823.262 + 546.818i 1.45196 + 0.964405i
\(568\) 0 0
\(569\) 457.623i 0.804258i −0.915583 0.402129i \(-0.868270\pi\)
0.915583 0.402129i \(-0.131730\pi\)
\(570\) 0 0
\(571\) 609.680 1.06774 0.533870 0.845566i \(-0.320737\pi\)
0.533870 + 0.845566i \(0.320737\pi\)
\(572\) 0 0
\(573\) 111.998 83.1827i 0.195459 0.145170i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −565.696 −0.980409 −0.490204 0.871608i \(-0.663078\pi\)
−0.490204 + 0.871608i \(0.663078\pi\)
\(578\) 0 0
\(579\) 432.791 + 582.714i 0.747480 + 1.00641i
\(580\) 0 0
\(581\) 872.915i 1.50244i
\(582\) 0 0
\(583\) −613.185 −1.05178
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 555.622i 0.946545i 0.880916 + 0.473272i \(0.156927\pi\)
−0.880916 + 0.473272i \(0.843073\pi\)
\(588\) 0 0
\(589\) 452.097 0.767567
\(590\) 0 0
\(591\) 904.578 671.845i 1.53059 1.13679i
\(592\) 0 0
\(593\) 166.238i 0.280333i −0.990128 0.140167i \(-0.955236\pi\)
0.990128 0.140167i \(-0.0447638\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 134.183 + 180.665i 0.224763 + 0.302622i
\(598\) 0 0
\(599\) 629.119i 1.05028i 0.851015 + 0.525141i \(0.175987\pi\)
−0.851015 + 0.525141i \(0.824013\pi\)
\(600\) 0 0
\(601\) −616.381 −1.02559 −0.512796 0.858511i \(-0.671390\pi\)
−0.512796 + 0.858511i \(0.671390\pi\)
\(602\) 0 0
\(603\) 173.029 573.235i 0.286946 0.950638i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −835.637 −1.37667 −0.688334 0.725394i \(-0.741657\pi\)
−0.688334 + 0.725394i \(0.741657\pi\)
\(608\) 0 0
\(609\) 145.372 107.970i 0.238706 0.177291i
\(610\) 0 0
\(611\) 485.569i 0.794711i
\(612\) 0 0
\(613\) −111.889 −0.182527 −0.0912634 0.995827i \(-0.529091\pi\)
−0.0912634 + 0.995827i \(0.529091\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 749.519i 1.21478i −0.794404 0.607390i \(-0.792217\pi\)
0.794404 0.607390i \(-0.207783\pi\)
\(618\) 0 0
\(619\) 195.232 0.315398 0.157699 0.987487i \(-0.449592\pi\)
0.157699 + 0.987487i \(0.449592\pi\)
\(620\) 0 0
\(621\) 367.045 + 1019.19i 0.591054 + 1.64121i
\(622\) 0 0
\(623\) 372.004i 0.597117i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 189.205 140.526i 0.301763 0.224124i
\(628\) 0 0
\(629\) 686.902i 1.09205i
\(630\) 0 0
\(631\) −273.937 −0.434132 −0.217066 0.976157i \(-0.569649\pi\)
−0.217066 + 0.976157i \(0.569649\pi\)
\(632\) 0 0
\(633\) −115.718 155.804i −0.182809 0.246135i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −619.369 −0.972323
\(638\) 0 0
\(639\) 299.359 + 90.3603i 0.468480 + 0.141409i
\(640\) 0 0
\(641\) 22.1793i 0.0346010i 0.999850 + 0.0173005i \(0.00550720\pi\)
−0.999850 + 0.0173005i \(0.994493\pi\)
\(642\) 0 0
\(643\) 1188.17 1.84785 0.923926 0.382572i \(-0.124961\pi\)
0.923926 + 0.382572i \(0.124961\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 333.016i 0.514708i 0.966317 + 0.257354i \(0.0828507\pi\)
−0.966317 + 0.257354i \(0.917149\pi\)
\(648\) 0 0
\(649\) −844.820 −1.30173
\(650\) 0 0
\(651\) −1104.46 1487.05i −1.69656 2.28426i
\(652\) 0 0
\(653\) 71.5403i 0.109556i 0.998499 + 0.0547781i \(0.0174452\pi\)
−0.998499 + 0.0547781i \(0.982555\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −183.440 + 607.728i −0.279209 + 0.925004i
\(658\) 0 0
\(659\) 724.319i 1.09912i 0.835455 + 0.549559i \(0.185204\pi\)
−0.835455 + 0.549559i \(0.814796\pi\)
\(660\) 0 0
\(661\) 545.047 0.824579 0.412289 0.911053i \(-0.364729\pi\)
0.412289 + 0.911053i \(0.364729\pi\)
\(662\) 0 0
\(663\) 248.163 184.315i 0.374303 0.278001i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 198.479 0.297570
\(668\) 0 0
\(669\) −448.059 603.270i −0.669744 0.901749i
\(670\) 0 0
\(671\) 235.039i 0.350281i
\(672\) 0 0
\(673\) −1106.67 −1.64439 −0.822193 0.569208i \(-0.807250\pi\)
−0.822193 + 0.569208i \(0.807250\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1011.02i 1.49338i −0.665172 0.746690i \(-0.731642\pi\)
0.665172 0.746690i \(-0.268358\pi\)
\(678\) 0 0
\(679\) 1320.12 1.94421
\(680\) 0 0
\(681\) 462.367 343.407i 0.678953 0.504269i
\(682\) 0 0
\(683\) 1073.43i 1.57163i −0.618460 0.785816i \(-0.712243\pi\)
0.618460 0.785816i \(-0.287757\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −201.410 271.180i −0.293172 0.394730i
\(688\) 0 0
\(689\) 432.436i 0.627629i
\(690\) 0 0
\(691\) −685.207 −0.991617 −0.495809 0.868432i \(-0.665128\pi\)
−0.495809 + 0.868432i \(0.665128\pi\)
\(692\) 0 0
\(693\) −924.445 279.040i −1.33398 0.402655i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 180.535 0.259018
\(698\) 0 0
\(699\) 969.917 720.373i 1.38758 1.03058i
\(700\) 0 0
\(701\) 475.846i 0.678810i −0.940640 0.339405i \(-0.889774\pi\)
0.940640 0.339405i \(-0.110226\pi\)
\(702\) 0 0
\(703\) 369.336 0.525372
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 375.195i 0.530686i
\(708\) 0 0
\(709\) 296.954 0.418835 0.209418 0.977826i \(-0.432843\pi\)
0.209418 + 0.977826i \(0.432843\pi\)
\(710\) 0 0
\(711\) 81.1850 268.962i 0.114184 0.378287i
\(712\) 0 0
\(713\) 2030.30i 2.84754i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 240.777 178.829i 0.335811 0.249413i
\(718\) 0 0
\(719\) 1335.46i 1.85739i −0.370844 0.928695i \(-0.620932\pi\)
0.370844 0.928695i \(-0.379068\pi\)
\(720\) 0 0
\(721\) −606.849 −0.841677
\(722\) 0 0
\(723\) 3.27160 + 4.40491i 0.00452503 + 0.00609254i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 941.614 1.29521 0.647603 0.761978i \(-0.275772\pi\)
0.647603 + 0.761978i \(0.275772\pi\)
\(728\) 0 0
\(729\) 561.612 464.793i 0.770387 0.637576i
\(730\) 0 0
\(731\) 657.018i 0.898794i
\(732\) 0 0
\(733\) 1073.15 1.46405 0.732025 0.681278i \(-0.238575\pi\)
0.732025 + 0.681278i \(0.238575\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 585.042i 0.793815i
\(738\) 0 0
\(739\) 76.4461 0.103445 0.0517226 0.998661i \(-0.483529\pi\)
0.0517226 + 0.998661i \(0.483529\pi\)
\(740\) 0 0
\(741\) −99.1031 133.433i −0.133742 0.180072i
\(742\) 0 0
\(743\) 78.2278i 0.105286i −0.998613 0.0526432i \(-0.983235\pi\)
0.998613 0.0526432i \(-0.0167646\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −616.409 186.061i −0.825179 0.249077i
\(748\) 0 0
\(749\) 2295.06i 3.06417i
\(750\) 0 0
\(751\) −1150.75 −1.53229 −0.766143 0.642670i \(-0.777827\pi\)
−0.766143 + 0.642670i \(0.777827\pi\)
\(752\) 0 0
\(753\) 841.269 624.824i 1.11722 0.829780i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −257.571 −0.340252 −0.170126 0.985422i \(-0.554418\pi\)
−0.170126 + 0.985422i \(0.554418\pi\)
\(758\) 0 0
\(759\) −631.081 849.693i −0.831463 1.11949i
\(760\) 0 0
\(761\) 1001.67i 1.31626i 0.752906 + 0.658128i \(0.228652\pi\)
−0.752906 + 0.658128i \(0.771348\pi\)
\(762\) 0 0
\(763\) 887.759 1.16351
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 595.792i 0.776782i
\(768\) 0 0
\(769\) −132.122 −0.171810 −0.0859050 0.996303i \(-0.527378\pi\)
−0.0859050 + 0.996303i \(0.527378\pi\)
\(770\) 0 0
\(771\) −30.6670 + 22.7769i −0.0397757 + 0.0295420i
\(772\) 0 0
\(773\) 254.447i 0.329168i −0.986363 0.164584i \(-0.947372\pi\)
0.986363 0.164584i \(-0.0526281\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −902.276 1214.83i −1.16123 1.56349i
\(778\) 0 0
\(779\) 97.0710i 0.124610i
\(780\) 0 0
\(781\) −305.525 −0.391197
\(782\) 0 0
\(783\) −45.2574 125.668i −0.0578000 0.160496i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1278.73 1.62481 0.812407 0.583091i \(-0.198157\pi\)
0.812407 + 0.583091i \(0.198157\pi\)
\(788\) 0 0
\(789\) −454.718 + 337.727i −0.576323 + 0.428044i
\(790\) 0 0
\(791\) 964.253i 1.21903i
\(792\) 0 0
\(793\) −165.756 −0.209024
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 747.744i 0.938199i −0.883145 0.469099i \(-0.844579\pi\)
0.883145 0.469099i \(-0.155421\pi\)
\(798\) 0 0
\(799\) 1300.99 1.62828
\(800\) 0 0
\(801\) 262.691 + 79.2922i 0.327954 + 0.0989915i
\(802\) 0 0
\(803\) 620.245i 0.772410i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −272.254 + 202.207i −0.337365 + 0.250567i
\(808\) 0 0
\(809\) 340.146i 0.420453i −0.977653 0.210226i \(-0.932580\pi\)
0.977653 0.210226i \(-0.0674201\pi\)
\(810\) 0 0
\(811\) 1112.71 1.37202 0.686011 0.727591i \(-0.259360\pi\)
0.686011 + 0.727591i \(0.259360\pi\)
\(812\) 0 0
\(813\) −40.5576 54.6071i −0.0498864 0.0671675i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −353.268 −0.432397
\(818\) 0 0
\(819\) −196.787 + 651.946i −0.240278 + 0.796027i
\(820\) 0 0
\(821\) 1283.05i 1.56279i −0.624036 0.781395i \(-0.714508\pi\)
0.624036 0.781395i \(-0.285492\pi\)
\(822\) 0 0
\(823\) −1430.32 −1.73794 −0.868968 0.494867i \(-0.835217\pi\)
−0.868968 + 0.494867i \(0.835217\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 144.113i 0.174260i 0.996197 + 0.0871300i \(0.0277695\pi\)
−0.996197 + 0.0871300i \(0.972230\pi\)
\(828\) 0 0
\(829\) 1116.06 1.34627 0.673137 0.739518i \(-0.264946\pi\)
0.673137 + 0.739518i \(0.264946\pi\)
\(830\) 0 0
\(831\) 610.472 + 821.945i 0.734624 + 0.989104i
\(832\) 0 0
\(833\) 1659.49i 1.99218i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1285.50 + 462.950i −1.53584 + 0.553106i
\(838\) 0 0
\(839\) 949.194i 1.13134i 0.824632 + 0.565670i \(0.191382\pi\)
−0.824632 + 0.565670i \(0.808618\pi\)
\(840\) 0 0
\(841\) 816.527 0.970900
\(842\) 0 0
\(843\) −13.9016 + 10.3249i −0.0164906 + 0.0122479i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −532.888 −0.629148
\(848\) 0 0
\(849\) −26.7251 35.9829i −0.0314783 0.0423827i
\(850\) 0 0
\(851\) 1658.63i 1.94904i
\(852\) 0 0
\(853\) 666.717 0.781614 0.390807 0.920473i \(-0.372196\pi\)
0.390807 + 0.920473i \(0.372196\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 788.585i 0.920169i 0.887875 + 0.460085i \(0.152181\pi\)
−0.887875 + 0.460085i \(0.847819\pi\)
\(858\) 0 0
\(859\) −406.487 −0.473209 −0.236605 0.971606i \(-0.576035\pi\)
−0.236605 + 0.971606i \(0.576035\pi\)
\(860\) 0 0
\(861\) −319.289 + 237.141i −0.370835 + 0.275425i
\(862\) 0 0
\(863\) 1031.38i 1.19512i −0.801826 0.597558i \(-0.796138\pi\)
0.801826 0.597558i \(-0.203862\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 23.1116 + 31.1176i 0.0266569 + 0.0358911i
\(868\) 0 0
\(869\) 274.501i 0.315882i
\(870\) 0 0
\(871\) 412.588 0.473695
\(872\) 0 0
\(873\) 281.381 932.202i 0.322316 1.06781i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 725.461 0.827208 0.413604 0.910457i \(-0.364270\pi\)
0.413604 + 0.910457i \(0.364270\pi\)
\(878\) 0 0
\(879\) 15.0188 11.1547i 0.0170862 0.0126902i
\(880\) 0 0
\(881\) 282.083i 0.320185i −0.987102 0.160092i \(-0.948821\pi\)
0.987102 0.160092i \(-0.0511792\pi\)
\(882\) 0 0
\(883\) 454.628 0.514868 0.257434 0.966296i \(-0.417123\pi\)
0.257434 + 0.966296i \(0.417123\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 309.991i 0.349482i 0.984614 + 0.174741i \(0.0559088\pi\)
−0.984614 + 0.174741i \(0.944091\pi\)
\(888\) 0 0
\(889\) 2372.08 2.66825
\(890\) 0 0
\(891\) −394.088 + 593.320i −0.442299 + 0.665904i
\(892\) 0 0
\(893\) 699.523i 0.783341i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −599.228 + 445.057i −0.668036 + 0.496161i
\(898\) 0 0
\(899\) 250.340i 0.278465i
\(900\) 0 0
\(901\) 1158.64 1.28594
\(902\) 0 0
\(903\) 863.022 + 1161.98i 0.955728 + 1.28680i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −87.5518 −0.0965290 −0.0482645 0.998835i \(-0.515369\pi\)
−0.0482645 + 0.998835i \(0.515369\pi\)
\(908\) 0 0
\(909\) 264.944 + 79.9723i 0.291468 + 0.0879784i
\(910\) 0 0
\(911\) 685.361i 0.752317i −0.926555 0.376158i \(-0.877245\pi\)
0.926555 0.376158i \(-0.122755\pi\)
\(912\) 0 0
\(913\) 629.105 0.689052
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2704.61i 2.94941i
\(918\) 0 0
\(919\) 285.772 0.310960 0.155480 0.987839i \(-0.450308\pi\)
0.155480 + 0.987839i \(0.450308\pi\)
\(920\) 0 0
\(921\) −507.135 682.811i −0.550635 0.741380i
\(922\) 0 0
\(923\) 215.465i 0.233440i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −129.349 + 428.526i −0.139535 + 0.462272i
\(928\) 0 0
\(929\) 1319.46i 1.42031i −0.704048 0.710153i \(-0.748626\pi\)
0.704048 0.710153i \(-0.251374\pi\)
\(930\) 0 0
\(931\) 892.281 0.958411
\(932\) 0 0
\(933\) −261.599 + 194.294i −0.280385 + 0.208246i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 820.446 0.875609 0.437805 0.899070i \(-0.355756\pi\)
0.437805 + 0.899070i \(0.355756\pi\)
\(938\) 0 0
\(939\) −692.600 932.522i −0.737593 0.993102i
\(940\) 0 0
\(941\) 1134.15i 1.20526i 0.798020 + 0.602631i \(0.205881\pi\)
−0.798020 + 0.602631i \(0.794119\pi\)
\(942\) 0 0
\(943\) −435.931 −0.462281
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 513.273i 0.541999i −0.962580 0.270999i \(-0.912646\pi\)
0.962580 0.270999i \(-0.0873541\pi\)
\(948\) 0 0
\(949\) −437.415 −0.460922
\(950\) 0 0
\(951\) −286.050 + 212.454i −0.300788 + 0.223401i
\(952\) 0 0
\(953\) 742.919i 0.779559i 0.920908 + 0.389779i \(0.127449\pi\)
−0.920908 + 0.389779i \(0.872551\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 77.8136 + 104.769i 0.0813099 + 0.109476i
\(958\) 0 0
\(959\) 3110.12i 3.24309i
\(960\) 0 0
\(961\) 1599.80 1.66472
\(962\) 0 0
\(963\) −1620.66 489.189i −1.68293 0.507985i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −152.272 −0.157468 −0.0787340 0.996896i \(-0.525088\pi\)
−0.0787340 + 0.996896i \(0.525088\pi\)
\(968\) 0 0
\(969\) −357.510 + 265.529i −0.368948 + 0.274024i
\(970\) 0 0
\(971\) 52.6817i 0.0542551i 0.999632 + 0.0271275i \(0.00863602\pi\)
−0.999632 + 0.0271275i \(0.991364\pi\)
\(972\) 0 0
\(973\) −1258.48 −1.29340
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 386.394i 0.395490i 0.980253 + 0.197745i \(0.0633618\pi\)
−0.980253 + 0.197745i \(0.936638\pi\)
\(978\) 0 0
\(979\) −268.101 −0.273852
\(980\) 0 0
\(981\) 189.225 626.891i 0.192889 0.639032i
\(982\) 0 0
\(983\) 1706.21i 1.73572i 0.496809 + 0.867860i \(0.334505\pi\)
−0.496809 + 0.867860i \(0.665495\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2300.89 + 1708.91i −2.33120 + 1.73142i
\(988\) 0 0
\(989\) 1586.47i 1.60412i
\(990\) 0 0
\(991\) −217.282 −0.219255 −0.109627 0.993973i \(-0.534966\pi\)
−0.109627 + 0.993973i \(0.534966\pi\)
\(992\) 0 0
\(993\) 884.798 + 1191.30i 0.891035 + 1.19970i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 730.791 0.732990 0.366495 0.930420i \(-0.380558\pi\)
0.366495 + 0.930420i \(0.380558\pi\)
\(998\) 0 0
\(999\) −1050.17 + 378.203i −1.05122 + 0.378581i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.3.l.w.401.4 6
3.2 odd 2 inner 1200.3.l.w.401.3 6
4.3 odd 2 600.3.l.d.401.3 6
5.2 odd 4 1200.3.c.l.449.11 12
5.3 odd 4 1200.3.c.l.449.2 12
5.4 even 2 1200.3.l.v.401.3 6
12.11 even 2 600.3.l.d.401.4 yes 6
15.2 even 4 1200.3.c.l.449.1 12
15.8 even 4 1200.3.c.l.449.12 12
15.14 odd 2 1200.3.l.v.401.4 6
20.3 even 4 600.3.c.c.449.11 12
20.7 even 4 600.3.c.c.449.2 12
20.19 odd 2 600.3.l.e.401.4 yes 6
60.23 odd 4 600.3.c.c.449.1 12
60.47 odd 4 600.3.c.c.449.12 12
60.59 even 2 600.3.l.e.401.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.3.c.c.449.1 12 60.23 odd 4
600.3.c.c.449.2 12 20.7 even 4
600.3.c.c.449.11 12 20.3 even 4
600.3.c.c.449.12 12 60.47 odd 4
600.3.l.d.401.3 6 4.3 odd 2
600.3.l.d.401.4 yes 6 12.11 even 2
600.3.l.e.401.3 yes 6 60.59 even 2
600.3.l.e.401.4 yes 6 20.19 odd 2
1200.3.c.l.449.1 12 15.2 even 4
1200.3.c.l.449.2 12 5.3 odd 4
1200.3.c.l.449.11 12 5.2 odd 4
1200.3.c.l.449.12 12 15.8 even 4
1200.3.l.v.401.3 6 5.4 even 2
1200.3.l.v.401.4 6 15.14 odd 2
1200.3.l.w.401.3 6 3.2 odd 2 inner
1200.3.l.w.401.4 6 1.1 even 1 trivial