# Properties

 Label 1200.2.f.b.49.2 Level $1200$ Weight $2$ Character 1200.49 Analytic conductor $9.582$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1200 = 2^{4} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1200.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$9.58204824255$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 24) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 49.2 Root $$-1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 1200.49 Dual form 1200.2.f.b.49.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+1.00000i q^{3} -1.00000 q^{9} +O(q^{10})$$ $$q+1.00000i q^{3} -1.00000 q^{9} -4.00000 q^{11} -2.00000i q^{13} -2.00000i q^{17} -4.00000 q^{19} +8.00000i q^{23} -1.00000i q^{27} -6.00000 q^{29} -8.00000 q^{31} -4.00000i q^{33} -6.00000i q^{37} +2.00000 q^{39} -6.00000 q^{41} -4.00000i q^{43} +7.00000 q^{49} +2.00000 q^{51} -2.00000i q^{53} -4.00000i q^{57} +4.00000 q^{59} -2.00000 q^{61} -4.00000i q^{67} -8.00000 q^{69} -8.00000 q^{71} +10.0000i q^{73} -8.00000 q^{79} +1.00000 q^{81} +4.00000i q^{83} -6.00000i q^{87} +6.00000 q^{89} -8.00000i q^{93} -2.00000i q^{97} +4.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{9} + O(q^{10})$$ $$2q - 2q^{9} - 8q^{11} - 8q^{19} - 12q^{29} - 16q^{31} + 4q^{39} - 12q^{41} + 14q^{49} + 4q^{51} + 8q^{59} - 4q^{61} - 16q^{69} - 16q^{71} - 16q^{79} + 2q^{81} + 12q^{89} + 8q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times$$.

 $$n$$ $$401$$ $$577$$ $$751$$ $$901$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.00000i 0.577350i
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$8$$ 0 0
$$9$$ −1.00000 −0.333333
$$10$$ 0 0
$$11$$ −4.00000 −1.20605 −0.603023 0.797724i $$-0.706037\pi$$
−0.603023 + 0.797724i $$0.706037\pi$$
$$12$$ 0 0
$$13$$ − 2.00000i − 0.554700i −0.960769 0.277350i $$-0.910544\pi$$
0.960769 0.277350i $$-0.0894562\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ − 2.00000i − 0.485071i −0.970143 0.242536i $$-0.922021\pi$$
0.970143 0.242536i $$-0.0779791\pi$$
$$18$$ 0 0
$$19$$ −4.00000 −0.917663 −0.458831 0.888523i $$-0.651732\pi$$
−0.458831 + 0.888523i $$0.651732\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 8.00000i 1.66812i 0.551677 + 0.834058i $$0.313988\pi$$
−0.551677 + 0.834058i $$0.686012\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ − 1.00000i − 0.192450i
$$28$$ 0 0
$$29$$ −6.00000 −1.11417 −0.557086 0.830455i $$-0.688081\pi$$
−0.557086 + 0.830455i $$0.688081\pi$$
$$30$$ 0 0
$$31$$ −8.00000 −1.43684 −0.718421 0.695608i $$-0.755135\pi$$
−0.718421 + 0.695608i $$0.755135\pi$$
$$32$$ 0 0
$$33$$ − 4.00000i − 0.696311i
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ − 6.00000i − 0.986394i −0.869918 0.493197i $$-0.835828\pi$$
0.869918 0.493197i $$-0.164172\pi$$
$$38$$ 0 0
$$39$$ 2.00000 0.320256
$$40$$ 0 0
$$41$$ −6.00000 −0.937043 −0.468521 0.883452i $$-0.655213\pi$$
−0.468521 + 0.883452i $$0.655213\pi$$
$$42$$ 0 0
$$43$$ − 4.00000i − 0.609994i −0.952353 0.304997i $$-0.901344\pi$$
0.952353 0.304997i $$-0.0986555\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$48$$ 0 0
$$49$$ 7.00000 1.00000
$$50$$ 0 0
$$51$$ 2.00000 0.280056
$$52$$ 0 0
$$53$$ − 2.00000i − 0.274721i −0.990521 0.137361i $$-0.956138\pi$$
0.990521 0.137361i $$-0.0438619\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ − 4.00000i − 0.529813i
$$58$$ 0 0
$$59$$ 4.00000 0.520756 0.260378 0.965507i $$-0.416153\pi$$
0.260378 + 0.965507i $$0.416153\pi$$
$$60$$ 0 0
$$61$$ −2.00000 −0.256074 −0.128037 0.991769i $$-0.540868\pi$$
−0.128037 + 0.991769i $$0.540868\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ − 4.00000i − 0.488678i −0.969690 0.244339i $$-0.921429\pi$$
0.969690 0.244339i $$-0.0785709\pi$$
$$68$$ 0 0
$$69$$ −8.00000 −0.963087
$$70$$ 0 0
$$71$$ −8.00000 −0.949425 −0.474713 0.880141i $$-0.657448\pi$$
−0.474713 + 0.880141i $$0.657448\pi$$
$$72$$ 0 0
$$73$$ 10.0000i 1.17041i 0.810885 + 0.585206i $$0.198986\pi$$
−0.810885 + 0.585206i $$0.801014\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −8.00000 −0.900070 −0.450035 0.893011i $$-0.648589\pi$$
−0.450035 + 0.893011i $$0.648589\pi$$
$$80$$ 0 0
$$81$$ 1.00000 0.111111
$$82$$ 0 0
$$83$$ 4.00000i 0.439057i 0.975606 + 0.219529i $$0.0704519\pi$$
−0.975606 + 0.219529i $$0.929548\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ − 6.00000i − 0.643268i
$$88$$ 0 0
$$89$$ 6.00000 0.635999 0.317999 0.948091i $$-0.396989\pi$$
0.317999 + 0.948091i $$0.396989\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ − 8.00000i − 0.829561i
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ − 2.00000i − 0.203069i −0.994832 0.101535i $$-0.967625\pi$$
0.994832 0.101535i $$-0.0323753\pi$$
$$98$$ 0 0
$$99$$ 4.00000 0.402015
$$100$$ 0 0
$$101$$ −18.0000 −1.79107 −0.895533 0.444994i $$-0.853206\pi$$
−0.895533 + 0.444994i $$0.853206\pi$$
$$102$$ 0 0
$$103$$ − 16.0000i − 1.57653i −0.615338 0.788263i $$-0.710980\pi$$
0.615338 0.788263i $$-0.289020\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ − 12.0000i − 1.16008i −0.814587 0.580042i $$-0.803036\pi$$
0.814587 0.580042i $$-0.196964\pi$$
$$108$$ 0 0
$$109$$ 2.00000 0.191565 0.0957826 0.995402i $$-0.469465\pi$$
0.0957826 + 0.995402i $$0.469465\pi$$
$$110$$ 0 0
$$111$$ 6.00000 0.569495
$$112$$ 0 0
$$113$$ 18.0000i 1.69330i 0.532152 + 0.846649i $$0.321383\pi$$
−0.532152 + 0.846649i $$0.678617\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 2.00000i 0.184900i
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 5.00000 0.454545
$$122$$ 0 0
$$123$$ − 6.00000i − 0.541002i
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ − 8.00000i − 0.709885i −0.934888 0.354943i $$-0.884500\pi$$
0.934888 0.354943i $$-0.115500\pi$$
$$128$$ 0 0
$$129$$ 4.00000 0.352180
$$130$$ 0 0
$$131$$ 4.00000 0.349482 0.174741 0.984614i $$-0.444091\pi$$
0.174741 + 0.984614i $$0.444091\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 6.00000i 0.512615i 0.966595 + 0.256307i $$0.0825059\pi$$
−0.966595 + 0.256307i $$0.917494\pi$$
$$138$$ 0 0
$$139$$ −12.0000 −1.01783 −0.508913 0.860818i $$-0.669953\pi$$
−0.508913 + 0.860818i $$0.669953\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 8.00000i 0.668994i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 7.00000i 0.577350i
$$148$$ 0 0
$$149$$ −14.0000 −1.14692 −0.573462 0.819232i $$-0.694400\pi$$
−0.573462 + 0.819232i $$0.694400\pi$$
$$150$$ 0 0
$$151$$ 16.0000 1.30206 0.651031 0.759051i $$-0.274337\pi$$
0.651031 + 0.759051i $$0.274337\pi$$
$$152$$ 0 0
$$153$$ 2.00000i 0.161690i
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 2.00000i 0.159617i 0.996810 + 0.0798087i $$0.0254309\pi$$
−0.996810 + 0.0798087i $$0.974569\pi$$
$$158$$ 0 0
$$159$$ 2.00000 0.158610
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ − 12.0000i − 0.939913i −0.882690 0.469956i $$-0.844270\pi$$
0.882690 0.469956i $$-0.155730\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 24.0000i 1.85718i 0.371113 + 0.928588i $$0.378976\pi$$
−0.371113 + 0.928588i $$0.621024\pi$$
$$168$$ 0 0
$$169$$ 9.00000 0.692308
$$170$$ 0 0
$$171$$ 4.00000 0.305888
$$172$$ 0 0
$$173$$ 6.00000i 0.456172i 0.973641 + 0.228086i $$0.0732467\pi$$
−0.973641 + 0.228086i $$0.926753\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 4.00000i 0.300658i
$$178$$ 0 0
$$179$$ 12.0000 0.896922 0.448461 0.893802i $$-0.351972\pi$$
0.448461 + 0.893802i $$0.351972\pi$$
$$180$$ 0 0
$$181$$ 6.00000 0.445976 0.222988 0.974821i $$-0.428419\pi$$
0.222988 + 0.974821i $$0.428419\pi$$
$$182$$ 0 0
$$183$$ − 2.00000i − 0.147844i
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 8.00000i 0.585018i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$192$$ 0 0
$$193$$ 2.00000i 0.143963i 0.997406 + 0.0719816i $$0.0229323\pi$$
−0.997406 + 0.0719816i $$0.977068\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 18.0000i 1.28245i 0.767354 + 0.641223i $$0.221573\pi$$
−0.767354 + 0.641223i $$0.778427\pi$$
$$198$$ 0 0
$$199$$ 16.0000 1.13421 0.567105 0.823646i $$-0.308063\pi$$
0.567105 + 0.823646i $$0.308063\pi$$
$$200$$ 0 0
$$201$$ 4.00000 0.282138
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ − 8.00000i − 0.556038i
$$208$$ 0 0
$$209$$ 16.0000 1.10674
$$210$$ 0 0
$$211$$ 20.0000 1.37686 0.688428 0.725304i $$-0.258301\pi$$
0.688428 + 0.725304i $$0.258301\pi$$
$$212$$ 0 0
$$213$$ − 8.00000i − 0.548151i
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ −10.0000 −0.675737
$$220$$ 0 0
$$221$$ −4.00000 −0.269069
$$222$$ 0 0
$$223$$ 8.00000i 0.535720i 0.963458 + 0.267860i $$0.0863164\pi$$
−0.963458 + 0.267860i $$0.913684\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 12.0000i 0.796468i 0.917284 + 0.398234i $$0.130377\pi$$
−0.917284 + 0.398234i $$0.869623\pi$$
$$228$$ 0 0
$$229$$ −22.0000 −1.45380 −0.726900 0.686743i $$-0.759040\pi$$
−0.726900 + 0.686743i $$0.759040\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 10.0000i 0.655122i 0.944830 + 0.327561i $$0.106227\pi$$
−0.944830 + 0.327561i $$0.893773\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ − 8.00000i − 0.519656i
$$238$$ 0 0
$$239$$ −16.0000 −1.03495 −0.517477 0.855697i $$-0.673129\pi$$
−0.517477 + 0.855697i $$0.673129\pi$$
$$240$$ 0 0
$$241$$ 18.0000 1.15948 0.579741 0.814801i $$-0.303154\pi$$
0.579741 + 0.814801i $$0.303154\pi$$
$$242$$ 0 0
$$243$$ 1.00000i 0.0641500i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 8.00000i 0.509028i
$$248$$ 0 0
$$249$$ −4.00000 −0.253490
$$250$$ 0 0
$$251$$ −20.0000 −1.26239 −0.631194 0.775625i $$-0.717435\pi$$
−0.631194 + 0.775625i $$0.717435\pi$$
$$252$$ 0 0
$$253$$ − 32.0000i − 2.01182i
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ − 2.00000i − 0.124757i −0.998053 0.0623783i $$-0.980131\pi$$
0.998053 0.0623783i $$-0.0198685\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 6.00000 0.371391
$$262$$ 0 0
$$263$$ 8.00000i 0.493301i 0.969104 + 0.246651i $$0.0793300\pi$$
−0.969104 + 0.246651i $$0.920670\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 6.00000i 0.367194i
$$268$$ 0 0
$$269$$ 10.0000 0.609711 0.304855 0.952399i $$-0.401392\pi$$
0.304855 + 0.952399i $$0.401392\pi$$
$$270$$ 0 0
$$271$$ −8.00000 −0.485965 −0.242983 0.970031i $$-0.578126\pi$$
−0.242983 + 0.970031i $$0.578126\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 26.0000i 1.56219i 0.624413 + 0.781094i $$0.285338\pi$$
−0.624413 + 0.781094i $$0.714662\pi$$
$$278$$ 0 0
$$279$$ 8.00000 0.478947
$$280$$ 0 0
$$281$$ 26.0000 1.55103 0.775515 0.631329i $$-0.217490\pi$$
0.775515 + 0.631329i $$0.217490\pi$$
$$282$$ 0 0
$$283$$ 28.0000i 1.66443i 0.554455 + 0.832214i $$0.312927\pi$$
−0.554455 + 0.832214i $$0.687073\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 13.0000 0.764706
$$290$$ 0 0
$$291$$ 2.00000 0.117242
$$292$$ 0 0
$$293$$ − 18.0000i − 1.05157i −0.850617 0.525786i $$-0.823771\pi$$
0.850617 0.525786i $$-0.176229\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 4.00000i 0.232104i
$$298$$ 0 0
$$299$$ 16.0000 0.925304
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ − 18.0000i − 1.03407i
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 12.0000i 0.684876i 0.939540 + 0.342438i $$0.111253\pi$$
−0.939540 + 0.342438i $$0.888747\pi$$
$$308$$ 0 0
$$309$$ 16.0000 0.910208
$$310$$ 0 0
$$311$$ 24.0000 1.36092 0.680458 0.732787i $$-0.261781\pi$$
0.680458 + 0.732787i $$0.261781\pi$$
$$312$$ 0 0
$$313$$ − 6.00000i − 0.339140i −0.985518 0.169570i $$-0.945762\pi$$
0.985518 0.169570i $$-0.0542379\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ − 6.00000i − 0.336994i −0.985702 0.168497i $$-0.946109\pi$$
0.985702 0.168497i $$-0.0538913\pi$$
$$318$$ 0 0
$$319$$ 24.0000 1.34374
$$320$$ 0 0
$$321$$ 12.0000 0.669775
$$322$$ 0 0
$$323$$ 8.00000i 0.445132i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 2.00000i 0.110600i
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −20.0000 −1.09930 −0.549650 0.835395i $$-0.685239\pi$$
−0.549650 + 0.835395i $$0.685239\pi$$
$$332$$ 0 0
$$333$$ 6.00000i 0.328798i
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ − 18.0000i − 0.980522i −0.871576 0.490261i $$-0.836901\pi$$
0.871576 0.490261i $$-0.163099\pi$$
$$338$$ 0 0
$$339$$ −18.0000 −0.977626
$$340$$ 0 0
$$341$$ 32.0000 1.73290
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ − 12.0000i − 0.644194i −0.946707 0.322097i $$-0.895612\pi$$
0.946707 0.322097i $$-0.104388\pi$$
$$348$$ 0 0
$$349$$ −30.0000 −1.60586 −0.802932 0.596071i $$-0.796728\pi$$
−0.802932 + 0.596071i $$0.796728\pi$$
$$350$$ 0 0
$$351$$ −2.00000 −0.106752
$$352$$ 0 0
$$353$$ 2.00000i 0.106449i 0.998583 + 0.0532246i $$0.0169499\pi$$
−0.998583 + 0.0532246i $$0.983050\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −24.0000 −1.26667 −0.633336 0.773877i $$-0.718315\pi$$
−0.633336 + 0.773877i $$0.718315\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ 0 0
$$363$$ 5.00000i 0.262432i
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ − 8.00000i − 0.417597i −0.977959 0.208798i $$-0.933045\pi$$
0.977959 0.208798i $$-0.0669552\pi$$
$$368$$ 0 0
$$369$$ 6.00000 0.312348
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ − 10.0000i − 0.517780i −0.965907 0.258890i $$-0.916643\pi$$
0.965907 0.258890i $$-0.0833568\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 12.0000i 0.618031i
$$378$$ 0 0
$$379$$ 20.0000 1.02733 0.513665 0.857991i $$-0.328287\pi$$
0.513665 + 0.857991i $$0.328287\pi$$
$$380$$ 0 0
$$381$$ 8.00000 0.409852
$$382$$ 0 0
$$383$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 4.00000i 0.203331i
$$388$$ 0 0
$$389$$ 2.00000 0.101404 0.0507020 0.998714i $$-0.483854\pi$$
0.0507020 + 0.998714i $$0.483854\pi$$
$$390$$ 0 0
$$391$$ 16.0000 0.809155
$$392$$ 0 0
$$393$$ 4.00000i 0.201773i
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ − 14.0000i − 0.702640i −0.936255 0.351320i $$-0.885733\pi$$
0.936255 0.351320i $$-0.114267\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −30.0000 −1.49813 −0.749064 0.662497i $$-0.769497\pi$$
−0.749064 + 0.662497i $$0.769497\pi$$
$$402$$ 0 0
$$403$$ 16.0000i 0.797017i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 24.0000i 1.18964i
$$408$$ 0 0
$$409$$ 6.00000 0.296681 0.148340 0.988936i $$-0.452607\pi$$
0.148340 + 0.988936i $$0.452607\pi$$
$$410$$ 0 0
$$411$$ −6.00000 −0.295958
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ − 12.0000i − 0.587643i
$$418$$ 0 0
$$419$$ 12.0000 0.586238 0.293119 0.956076i $$-0.405307\pi$$
0.293119 + 0.956076i $$0.405307\pi$$
$$420$$ 0 0
$$421$$ −10.0000 −0.487370 −0.243685 0.969854i $$-0.578356\pi$$
−0.243685 + 0.969854i $$0.578356\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ −8.00000 −0.386244
$$430$$ 0 0
$$431$$ −32.0000 −1.54139 −0.770693 0.637207i $$-0.780090\pi$$
−0.770693 + 0.637207i $$0.780090\pi$$
$$432$$ 0 0
$$433$$ − 14.0000i − 0.672797i −0.941720 0.336399i $$-0.890791\pi$$
0.941720 0.336399i $$-0.109209\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ − 32.0000i − 1.53077i
$$438$$ 0 0
$$439$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$440$$ 0 0
$$441$$ −7.00000 −0.333333
$$442$$ 0 0
$$443$$ − 20.0000i − 0.950229i −0.879924 0.475114i $$-0.842407\pi$$
0.879924 0.475114i $$-0.157593\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ − 14.0000i − 0.662177i
$$448$$ 0 0
$$449$$ 14.0000 0.660701 0.330350 0.943858i $$-0.392833\pi$$
0.330350 + 0.943858i $$0.392833\pi$$
$$450$$ 0 0
$$451$$ 24.0000 1.13012
$$452$$ 0 0
$$453$$ 16.0000i 0.751746i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 22.0000i 1.02912i 0.857455 + 0.514558i $$0.172044\pi$$
−0.857455 + 0.514558i $$0.827956\pi$$
$$458$$ 0 0
$$459$$ −2.00000 −0.0933520
$$460$$ 0 0
$$461$$ −26.0000 −1.21094 −0.605470 0.795868i $$-0.707015\pi$$
−0.605470 + 0.795868i $$0.707015\pi$$
$$462$$ 0 0
$$463$$ − 8.00000i − 0.371792i −0.982569 0.185896i $$-0.940481\pi$$
0.982569 0.185896i $$-0.0595187\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ − 36.0000i − 1.66588i −0.553362 0.832941i $$-0.686655\pi$$
0.553362 0.832941i $$-0.313345\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ −2.00000 −0.0921551
$$472$$ 0 0
$$473$$ 16.0000i 0.735681i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 2.00000i 0.0915737i
$$478$$ 0 0
$$479$$ −16.0000 −0.731059 −0.365529 0.930800i $$-0.619112\pi$$
−0.365529 + 0.930800i $$0.619112\pi$$
$$480$$ 0 0
$$481$$ −12.0000 −0.547153
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ − 32.0000i − 1.45006i −0.688718 0.725029i $$-0.741826\pi$$
0.688718 0.725029i $$-0.258174\pi$$
$$488$$ 0 0
$$489$$ 12.0000 0.542659
$$490$$ 0 0
$$491$$ 12.0000 0.541552 0.270776 0.962642i $$-0.412720\pi$$
0.270776 + 0.962642i $$0.412720\pi$$
$$492$$ 0 0
$$493$$ 12.0000i 0.540453i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 12.0000 0.537194 0.268597 0.963253i $$-0.413440\pi$$
0.268597 + 0.963253i $$0.413440\pi$$
$$500$$ 0 0
$$501$$ −24.0000 −1.07224
$$502$$ 0 0
$$503$$ − 24.0000i − 1.07011i −0.844818 0.535054i $$-0.820291\pi$$
0.844818 0.535054i $$-0.179709\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 9.00000i 0.399704i
$$508$$ 0 0
$$509$$ −6.00000 −0.265945 −0.132973 0.991120i $$-0.542452\pi$$
−0.132973 + 0.991120i $$0.542452\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 4.00000i 0.176604i
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ −6.00000 −0.263371
$$520$$ 0 0
$$521$$ 26.0000 1.13908 0.569540 0.821963i $$-0.307121\pi$$
0.569540 + 0.821963i $$0.307121\pi$$
$$522$$ 0 0
$$523$$ − 4.00000i − 0.174908i −0.996169 0.0874539i $$-0.972127\pi$$
0.996169 0.0874539i $$-0.0278730\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 16.0000i 0.696971i
$$528$$ 0 0
$$529$$ −41.0000 −1.78261
$$530$$ 0 0
$$531$$ −4.00000 −0.173585
$$532$$ 0 0
$$533$$ 12.0000i 0.519778i
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 12.0000i 0.517838i
$$538$$ 0 0
$$539$$ −28.0000 −1.20605
$$540$$ 0 0
$$541$$ −18.0000 −0.773880 −0.386940 0.922105i $$-0.626468\pi$$
−0.386940 + 0.922105i $$0.626468\pi$$
$$542$$ 0 0
$$543$$ 6.00000i 0.257485i
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 44.0000i 1.88130i 0.339372 + 0.940652i $$0.389785\pi$$
−0.339372 + 0.940652i $$0.610215\pi$$
$$548$$ 0 0
$$549$$ 2.00000 0.0853579
$$550$$ 0 0
$$551$$ 24.0000 1.02243
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 26.0000i 1.10166i 0.834619 + 0.550828i $$0.185688\pi$$
−0.834619 + 0.550828i $$0.814312\pi$$
$$558$$ 0 0
$$559$$ −8.00000 −0.338364
$$560$$ 0 0
$$561$$ −8.00000 −0.337760
$$562$$ 0 0
$$563$$ − 28.0000i − 1.18006i −0.807382 0.590030i $$-0.799116\pi$$
0.807382 0.590030i $$-0.200884\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −10.0000 −0.419222 −0.209611 0.977785i $$-0.567220\pi$$
−0.209611 + 0.977785i $$0.567220\pi$$
$$570$$ 0 0
$$571$$ −36.0000 −1.50655 −0.753277 0.657704i $$-0.771528\pi$$
−0.753277 + 0.657704i $$0.771528\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ − 2.00000i − 0.0832611i −0.999133 0.0416305i $$-0.986745\pi$$
0.999133 0.0416305i $$-0.0132552\pi$$
$$578$$ 0 0
$$579$$ −2.00000 −0.0831172
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 8.00000i 0.331326i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ − 44.0000i − 1.81607i −0.418890 0.908037i $$-0.637581\pi$$
0.418890 0.908037i $$-0.362419\pi$$
$$588$$ 0 0
$$589$$ 32.0000 1.31854
$$590$$ 0 0
$$591$$ −18.0000 −0.740421
$$592$$ 0 0
$$593$$ − 14.0000i − 0.574911i −0.957794 0.287456i $$-0.907191\pi$$
0.957794 0.287456i $$-0.0928094\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 16.0000i 0.654836i
$$598$$ 0 0
$$599$$ 24.0000 0.980613 0.490307 0.871550i $$-0.336885\pi$$
0.490307 + 0.871550i $$0.336885\pi$$
$$600$$ 0 0
$$601$$ −38.0000 −1.55005 −0.775026 0.631929i $$-0.782263\pi$$
−0.775026 + 0.631929i $$0.782263\pi$$
$$602$$ 0 0
$$603$$ 4.00000i 0.162893i
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ − 40.0000i − 1.62355i −0.583970 0.811775i $$-0.698502\pi$$
0.583970 0.811775i $$-0.301498\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 38.0000i 1.53481i 0.641165 + 0.767403i $$0.278451\pi$$
−0.641165 + 0.767403i $$0.721549\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ − 42.0000i − 1.69086i −0.534089 0.845428i $$-0.679345\pi$$
0.534089 0.845428i $$-0.320655\pi$$
$$618$$ 0 0
$$619$$ −44.0000 −1.76851 −0.884255 0.467005i $$-0.845333\pi$$
−0.884255 + 0.467005i $$0.845333\pi$$
$$620$$ 0 0
$$621$$ 8.00000 0.321029
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 16.0000i 0.638978i
$$628$$ 0 0
$$629$$ −12.0000 −0.478471
$$630$$ 0 0
$$631$$ −16.0000 −0.636950 −0.318475 0.947931i $$-0.603171\pi$$
−0.318475 + 0.947931i $$0.603171\pi$$
$$632$$ 0 0
$$633$$ 20.0000i 0.794929i
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ − 14.0000i − 0.554700i
$$638$$ 0 0
$$639$$ 8.00000 0.316475
$$640$$ 0 0
$$641$$ −14.0000 −0.552967 −0.276483 0.961019i $$-0.589169\pi$$
−0.276483 + 0.961019i $$0.589169\pi$$
$$642$$ 0 0
$$643$$ − 12.0000i − 0.473234i −0.971603 0.236617i $$-0.923961\pi$$
0.971603 0.236617i $$-0.0760386\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 8.00000i 0.314512i 0.987558 + 0.157256i $$0.0502649\pi$$
−0.987558 + 0.157256i $$0.949735\pi$$
$$648$$ 0 0
$$649$$ −16.0000 −0.628055
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 6.00000i 0.234798i 0.993085 + 0.117399i $$0.0374557\pi$$
−0.993085 + 0.117399i $$0.962544\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ − 10.0000i − 0.390137i
$$658$$ 0 0
$$659$$ 12.0000 0.467454 0.233727 0.972302i $$-0.424908\pi$$
0.233727 + 0.972302i $$0.424908\pi$$
$$660$$ 0 0
$$661$$ −10.0000 −0.388955 −0.194477 0.980907i $$-0.562301\pi$$
−0.194477 + 0.980907i $$0.562301\pi$$
$$662$$ 0 0
$$663$$ − 4.00000i − 0.155347i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ − 48.0000i − 1.85857i
$$668$$ 0 0
$$669$$ −8.00000 −0.309298
$$670$$ 0 0
$$671$$ 8.00000 0.308837
$$672$$ 0 0
$$673$$ 34.0000i 1.31060i 0.755367 + 0.655302i $$0.227459\pi$$
−0.755367 + 0.655302i $$0.772541\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 2.00000i 0.0768662i 0.999261 + 0.0384331i $$0.0122367\pi$$
−0.999261 + 0.0384331i $$0.987763\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ −12.0000 −0.459841
$$682$$ 0 0
$$683$$ − 4.00000i − 0.153056i −0.997067 0.0765279i $$-0.975617\pi$$
0.997067 0.0765279i $$-0.0243834\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ − 22.0000i − 0.839352i
$$688$$ 0 0
$$689$$ −4.00000 −0.152388
$$690$$ 0 0
$$691$$ 4.00000 0.152167 0.0760836 0.997101i $$-0.475758\pi$$
0.0760836 + 0.997101i $$0.475758\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 12.0000i 0.454532i
$$698$$ 0 0
$$699$$ −10.0000 −0.378235
$$700$$ 0 0
$$701$$ 6.00000 0.226617 0.113308 0.993560i $$-0.463855\pi$$
0.113308 + 0.993560i $$0.463855\pi$$
$$702$$ 0 0
$$703$$ 24.0000i 0.905177i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 10.0000 0.375558 0.187779 0.982211i $$-0.439871\pi$$
0.187779 + 0.982211i $$0.439871\pi$$
$$710$$ 0 0
$$711$$ 8.00000 0.300023
$$712$$ 0 0
$$713$$ − 64.0000i − 2.39682i
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ − 16.0000i − 0.597531i
$$718$$ 0 0
$$719$$ −32.0000 −1.19340 −0.596699 0.802465i $$-0.703521\pi$$
−0.596699 + 0.802465i $$0.703521\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 18.0000i 0.669427i
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 48.0000i 1.78022i 0.455744 + 0.890111i $$0.349373\pi$$
−0.455744 + 0.890111i $$0.650627\pi$$
$$728$$ 0 0
$$729$$ −1.00000 −0.0370370
$$730$$ 0 0
$$731$$ −8.00000 −0.295891
$$732$$ 0 0
$$733$$ 14.0000i 0.517102i 0.965998 + 0.258551i $$0.0832450\pi$$
−0.965998 + 0.258551i $$0.916755\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 16.0000i 0.589368i
$$738$$ 0 0
$$739$$ −4.00000 −0.147142 −0.0735712 0.997290i $$-0.523440\pi$$
−0.0735712 + 0.997290i $$0.523440\pi$$
$$740$$ 0 0
$$741$$ −8.00000 −0.293887
$$742$$ 0 0
$$743$$ 8.00000i 0.293492i 0.989174 + 0.146746i $$0.0468799\pi$$
−0.989174 + 0.146746i $$0.953120\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ − 4.00000i − 0.146352i
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ −24.0000 −0.875772 −0.437886 0.899030i $$-0.644273\pi$$
−0.437886 + 0.899030i $$0.644273\pi$$
$$752$$ 0 0
$$753$$ − 20.0000i − 0.728841i
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ − 38.0000i − 1.38113i −0.723269 0.690567i $$-0.757361\pi$$
0.723269 0.690567i $$-0.242639\pi$$
$$758$$ 0 0
$$759$$ 32.0000 1.16153
$$760$$ 0 0
$$761$$ −22.0000 −0.797499 −0.398750 0.917060i $$-0.630556\pi$$
−0.398750 + 0.917060i $$0.630556\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ − 8.00000i − 0.288863i
$$768$$ 0 0
$$769$$ −2.00000 −0.0721218 −0.0360609 0.999350i $$-0.511481\pi$$
−0.0360609 + 0.999350i $$0.511481\pi$$
$$770$$ 0 0
$$771$$ 2.00000 0.0720282
$$772$$ 0 0
$$773$$ − 18.0000i − 0.647415i −0.946157 0.323708i $$-0.895071\pi$$
0.946157 0.323708i $$-0.104929\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 24.0000 0.859889
$$780$$ 0 0
$$781$$ 32.0000 1.14505
$$782$$ 0 0
$$783$$ 6.00000i 0.214423i
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 28.0000i 0.998092i 0.866575 + 0.499046i $$0.166316\pi$$
−0.866575 + 0.499046i $$0.833684\pi$$
$$788$$ 0 0
$$789$$ −8.00000 −0.284808
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 4.00000i 0.142044i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ − 22.0000i − 0.779280i −0.920967 0.389640i $$-0.872599\pi$$
0.920967 0.389640i $$-0.127401\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ −6.00000 −0.212000
$$802$$ 0 0
$$803$$ − 40.0000i − 1.41157i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 10.0000i 0.352017i
$$808$$ 0 0
$$809$$ −26.0000 −0.914111 −0.457056 0.889438i $$-0.651096\pi$$
−0.457056 + 0.889438i $$0.651096\pi$$
$$810$$ 0 0
$$811$$ −4.00000 −0.140459 −0.0702295 0.997531i $$-0.522373\pi$$
−0.0702295 + 0.997531i $$0.522373\pi$$
$$812$$ 0 0
$$813$$ − 8.00000i − 0.280572i
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 16.0000i 0.559769i
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 30.0000 1.04701 0.523504 0.852023i $$-0.324625\pi$$
0.523504 + 0.852023i $$0.324625\pi$$
$$822$$ 0 0
$$823$$ 16.0000i 0.557725i 0.960331 + 0.278862i $$0.0899574\pi$$
−0.960331 + 0.278862i $$0.910043\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ − 28.0000i − 0.973655i −0.873498 0.486828i $$-0.838154\pi$$
0.873498 0.486828i $$-0.161846\pi$$
$$828$$ 0 0
$$829$$ 50.0000 1.73657 0.868286 0.496064i $$-0.165222\pi$$
0.868286 + 0.496064i $$0.165222\pi$$
$$830$$ 0 0
$$831$$ −26.0000 −0.901930
$$832$$ 0 0
$$833$$ − 14.0000i − 0.485071i
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 8.00000i 0.276520i
$$838$$ 0 0
$$839$$ −24.0000 −0.828572 −0.414286 0.910147i $$-0.635969\pi$$
−0.414286 + 0.910147i $$0.635969\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ 26.0000i 0.895488i
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ −28.0000 −0.960958
$$850$$ 0 0
$$851$$ 48.0000 1.64542
$$852$$ 0 0
$$853$$ − 10.0000i − 0.342393i −0.985237 0.171197i $$-0.945237\pi$$
0.985237 0.171197i $$-0.0547634\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ − 42.0000i − 1.43469i −0.696717 0.717346i $$-0.745357\pi$$
0.696717 0.717346i $$-0.254643\pi$$
$$858$$ 0 0
$$859$$ −12.0000 −0.409435 −0.204717 0.978821i $$-0.565628\pi$$
−0.204717 + 0.978821i $$0.565628\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 32.0000i 1.08929i 0.838666 + 0.544646i $$0.183336\pi$$
−0.838666 + 0.544646i $$0.816664\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 13.0000i 0.441503i
$$868$$ 0 0
$$869$$ 32.0000 1.08553
$$870$$ 0 0
$$871$$ −8.00000 −0.271070
$$872$$ 0 0
$$873$$ 2.00000i 0.0676897i
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 18.0000i 0.607817i 0.952701 + 0.303908i $$0.0982917\pi$$
−0.952701 + 0.303908i $$0.901708\pi$$
$$878$$ 0 0
$$879$$ 18.0000 0.607125
$$880$$ 0 0
$$881$$ 50.0000 1.68454 0.842271 0.539054i $$-0.181218\pi$$
0.842271 + 0.539054i $$0.181218\pi$$
$$882$$ 0 0
$$883$$ 4.00000i 0.134611i 0.997732 + 0.0673054i $$0.0214402\pi$$
−0.997732 + 0.0673054i $$0.978560\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 8.00000i 0.268614i 0.990940 + 0.134307i $$0.0428808\pi$$
−0.990940 + 0.134307i $$0.957119\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ −4.00000 −0.134005
$$892$$ 0 0
$$893$$ 0 0
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 16.0000i 0.534224i
$$898$$ 0 0
$$899$$ 48.0000 1.60089
$$900$$ 0 0
$$901$$ −4.00000 −0.133259
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ 4.00000i 0.132818i 0.997792 + 0.0664089i $$0.0211542\pi$$
−0.997792 + 0.0664089i $$0.978846\pi$$
$$908$$ 0 0
$$909$$ 18.0000 0.597022
$$910$$ 0 0
$$911$$ −16.0000 −0.530104 −0.265052 0.964234i $$-0.585389\pi$$
−0.265052 + 0.964234i $$0.585389\pi$$
$$912$$ 0 0
$$913$$ − 16.0000i − 0.529523i
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 16.0000 0.527791 0.263896 0.964551i $$-0.414993\pi$$
0.263896 + 0.964551i $$0.414993\pi$$
$$920$$ 0 0
$$921$$ −12.0000 −0.395413
$$922$$ 0 0
$$923$$ 16.0000i 0.526646i
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 16.0000i 0.525509i
$$928$$ 0 0
$$929$$ −50.0000 −1.64045 −0.820223 0.572043i $$-0.806151\pi$$
−0.820223 + 0.572043i $$0.806151\pi$$
$$930$$ 0 0
$$931$$ −28.0000 −0.917663
$$932$$ 0 0
$$933$$ 24.0000i 0.785725i
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ − 42.0000i − 1.37208i −0.727564 0.686040i $$-0.759347\pi$$
0.727564 0.686040i $$-0.240653\pi$$
$$938$$ 0 0
$$939$$ 6.00000 0.195803
$$940$$ 0 0
$$941$$ 6.00000 0.195594 0.0977972 0.995206i $$-0.468820\pi$$
0.0977972 + 0.995206i $$0.468820\pi$$
$$942$$ 0 0
$$943$$ − 48.0000i − 1.56310i
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 12.0000i 0.389948i 0.980808 + 0.194974i $$0.0624622\pi$$
−0.980808 + 0.194974i $$0.937538\pi$$
$$948$$ 0 0
$$949$$ 20.0000 0.649227
$$950$$ 0 0
$$951$$ 6.00000 0.194563
$$952$$ 0 0
$$953$$ − 54.0000i − 1.74923i −0.484817 0.874616i $$-0.661114\pi$$
0.484817 0.874616i $$-0.338886\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 24.0000i 0.775810i
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ 33.0000 1.06452
$$962$$ 0 0
$$963$$ 12.0000i 0.386695i
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ − 16.0000i − 0.514525i −0.966342 0.257263i $$-0.917179\pi$$
0.966342 0.257263i $$-0.0828206\pi$$
$$968$$ 0 0
$$969$$ −8.00000 −0.256997
$$970$$ 0 0
$$971$$ −36.0000 −1.15529 −0.577647 0.816286i $$-0.696029\pi$$
−0.577647 + 0.816286i $$0.696029\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 30.0000i 0.959785i 0.877327 + 0.479893i $$0.159324\pi$$
−0.877327 + 0.479893i $$0.840676\pi$$
$$978$$ 0 0
$$979$$ −24.0000 −0.767043
$$980$$ 0 0
$$981$$ −2.00000 −0.0638551
$$982$$ 0 0
$$983$$ 24.0000i 0.765481i 0.923856 + 0.382741i $$0.125020\pi$$
−0.923856 + 0.382741i $$0.874980\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 32.0000 1.01754
$$990$$ 0 0
$$991$$ −40.0000 −1.27064 −0.635321 0.772248i $$-0.719132\pi$$
−0.635321 + 0.772248i $$0.719132\pi$$
$$992$$ 0 0
$$993$$ − 20.0000i − 0.634681i
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 26.0000i 0.823428i 0.911313 + 0.411714i $$0.135070\pi$$
−0.911313 + 0.411714i $$0.864930\pi$$
$$998$$ 0 0
$$999$$ −6.00000 −0.189832
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.2.f.b.49.2 2
3.2 odd 2 3600.2.f.r.2449.1 2
4.3 odd 2 600.2.f.e.49.1 2
5.2 odd 4 48.2.a.a.1.1 1
5.3 odd 4 1200.2.a.d.1.1 1
5.4 even 2 inner 1200.2.f.b.49.1 2
8.3 odd 2 4800.2.f.d.3649.2 2
8.5 even 2 4800.2.f.bg.3649.1 2
12.11 even 2 1800.2.f.c.649.1 2
15.2 even 4 144.2.a.b.1.1 1
15.8 even 4 3600.2.a.v.1.1 1
15.14 odd 2 3600.2.f.r.2449.2 2
20.3 even 4 600.2.a.h.1.1 1
20.7 even 4 24.2.a.a.1.1 1
20.19 odd 2 600.2.f.e.49.2 2
35.2 odd 12 2352.2.q.l.1537.1 2
35.12 even 12 2352.2.q.r.1537.1 2
35.17 even 12 2352.2.q.r.961.1 2
35.27 even 4 2352.2.a.i.1.1 1
35.32 odd 12 2352.2.q.l.961.1 2
40.3 even 4 4800.2.a.q.1.1 1
40.13 odd 4 4800.2.a.cc.1.1 1
40.19 odd 2 4800.2.f.d.3649.1 2
40.27 even 4 192.2.a.d.1.1 1
40.29 even 2 4800.2.f.bg.3649.2 2
40.37 odd 4 192.2.a.b.1.1 1
45.2 even 12 1296.2.i.e.433.1 2
45.7 odd 12 1296.2.i.m.433.1 2
45.22 odd 12 1296.2.i.m.865.1 2
45.32 even 12 1296.2.i.e.865.1 2
55.32 even 4 5808.2.a.s.1.1 1
60.23 odd 4 1800.2.a.m.1.1 1
60.47 odd 4 72.2.a.a.1.1 1
60.59 even 2 1800.2.f.c.649.2 2
65.12 odd 4 8112.2.a.be.1.1 1
80.27 even 4 768.2.d.e.385.2 2
80.37 odd 4 768.2.d.d.385.1 2
80.67 even 4 768.2.d.e.385.1 2
80.77 odd 4 768.2.d.d.385.2 2
105.62 odd 4 7056.2.a.q.1.1 1
120.77 even 4 576.2.a.b.1.1 1
120.107 odd 4 576.2.a.d.1.1 1
140.27 odd 4 1176.2.a.i.1.1 1
140.47 odd 12 1176.2.q.a.361.1 2
140.67 even 12 1176.2.q.i.961.1 2
140.87 odd 12 1176.2.q.a.961.1 2
140.107 even 12 1176.2.q.i.361.1 2
180.7 even 12 648.2.i.g.433.1 2
180.47 odd 12 648.2.i.b.433.1 2
180.67 even 12 648.2.i.g.217.1 2
180.167 odd 12 648.2.i.b.217.1 2
220.87 odd 4 2904.2.a.c.1.1 1
240.77 even 4 2304.2.d.k.1153.1 2
240.107 odd 4 2304.2.d.i.1153.2 2
240.197 even 4 2304.2.d.k.1153.2 2
240.227 odd 4 2304.2.d.i.1153.1 2
260.47 odd 4 4056.2.c.e.337.1 2
260.187 odd 4 4056.2.c.e.337.2 2
260.207 even 4 4056.2.a.i.1.1 1
280.27 odd 4 9408.2.a.h.1.1 1
280.237 even 4 9408.2.a.cc.1.1 1
340.67 even 4 6936.2.a.p.1.1 1
380.227 odd 4 8664.2.a.j.1.1 1
420.47 even 12 3528.2.s.y.361.1 2
420.107 odd 12 3528.2.s.j.361.1 2
420.167 even 4 3528.2.a.d.1.1 1
420.227 even 12 3528.2.s.y.3313.1 2
420.347 odd 12 3528.2.s.j.3313.1 2
660.527 even 4 8712.2.a.u.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
24.2.a.a.1.1 1 20.7 even 4
48.2.a.a.1.1 1 5.2 odd 4
72.2.a.a.1.1 1 60.47 odd 4
144.2.a.b.1.1 1 15.2 even 4
192.2.a.b.1.1 1 40.37 odd 4
192.2.a.d.1.1 1 40.27 even 4
576.2.a.b.1.1 1 120.77 even 4
576.2.a.d.1.1 1 120.107 odd 4
600.2.a.h.1.1 1 20.3 even 4
600.2.f.e.49.1 2 4.3 odd 2
600.2.f.e.49.2 2 20.19 odd 2
648.2.i.b.217.1 2 180.167 odd 12
648.2.i.b.433.1 2 180.47 odd 12
648.2.i.g.217.1 2 180.67 even 12
648.2.i.g.433.1 2 180.7 even 12
768.2.d.d.385.1 2 80.37 odd 4
768.2.d.d.385.2 2 80.77 odd 4
768.2.d.e.385.1 2 80.67 even 4
768.2.d.e.385.2 2 80.27 even 4
1176.2.a.i.1.1 1 140.27 odd 4
1176.2.q.a.361.1 2 140.47 odd 12
1176.2.q.a.961.1 2 140.87 odd 12
1176.2.q.i.361.1 2 140.107 even 12
1176.2.q.i.961.1 2 140.67 even 12
1200.2.a.d.1.1 1 5.3 odd 4
1200.2.f.b.49.1 2 5.4 even 2 inner
1200.2.f.b.49.2 2 1.1 even 1 trivial
1296.2.i.e.433.1 2 45.2 even 12
1296.2.i.e.865.1 2 45.32 even 12
1296.2.i.m.433.1 2 45.7 odd 12
1296.2.i.m.865.1 2 45.22 odd 12
1800.2.a.m.1.1 1 60.23 odd 4
1800.2.f.c.649.1 2 12.11 even 2
1800.2.f.c.649.2 2 60.59 even 2
2304.2.d.i.1153.1 2 240.227 odd 4
2304.2.d.i.1153.2 2 240.107 odd 4
2304.2.d.k.1153.1 2 240.77 even 4
2304.2.d.k.1153.2 2 240.197 even 4
2352.2.a.i.1.1 1 35.27 even 4
2352.2.q.l.961.1 2 35.32 odd 12
2352.2.q.l.1537.1 2 35.2 odd 12
2352.2.q.r.961.1 2 35.17 even 12
2352.2.q.r.1537.1 2 35.12 even 12
2904.2.a.c.1.1 1 220.87 odd 4
3528.2.a.d.1.1 1 420.167 even 4
3528.2.s.j.361.1 2 420.107 odd 12
3528.2.s.j.3313.1 2 420.347 odd 12
3528.2.s.y.361.1 2 420.47 even 12
3528.2.s.y.3313.1 2 420.227 even 12
3600.2.a.v.1.1 1 15.8 even 4
3600.2.f.r.2449.1 2 3.2 odd 2
3600.2.f.r.2449.2 2 15.14 odd 2
4056.2.a.i.1.1 1 260.207 even 4
4056.2.c.e.337.1 2 260.47 odd 4
4056.2.c.e.337.2 2 260.187 odd 4
4800.2.a.q.1.1 1 40.3 even 4
4800.2.a.cc.1.1 1 40.13 odd 4
4800.2.f.d.3649.1 2 40.19 odd 2
4800.2.f.d.3649.2 2 8.3 odd 2
4800.2.f.bg.3649.1 2 8.5 even 2
4800.2.f.bg.3649.2 2 40.29 even 2
5808.2.a.s.1.1 1 55.32 even 4
6936.2.a.p.1.1 1 340.67 even 4
7056.2.a.q.1.1 1 105.62 odd 4
8112.2.a.be.1.1 1 65.12 odd 4
8664.2.a.j.1.1 1 380.227 odd 4
8712.2.a.u.1.1 1 660.527 even 4
9408.2.a.h.1.1 1 280.27 odd 4
9408.2.a.cc.1.1 1 280.237 even 4