Properties

Label 120.9.l.a.41.3
Level $120$
Weight $9$
Character 120.41
Analytic conductor $48.885$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [120,9,Mod(41,120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("120.41"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 120.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.8854332073\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 41.3
Character \(\chi\) \(=\) 120.41
Dual form 120.9.l.a.41.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-74.5360 - 31.7078i) q^{3} +279.508i q^{5} -171.670 q^{7} +(4550.23 + 4726.74i) q^{9} +6473.42i q^{11} -13007.6 q^{13} +(8862.59 - 20833.4i) q^{15} -90002.6i q^{17} +209646. q^{19} +(12795.6 + 5443.26i) q^{21} +142496. i q^{23} -78125.0 q^{25} +(-189282. - 496590. i) q^{27} -214871. i q^{29} +624531. q^{31} +(205258. - 482503. i) q^{33} -47983.1i q^{35} -1.54483e6 q^{37} +(969536. + 412443. i) q^{39} -716603. i q^{41} -2.19014e6 q^{43} +(-1.32116e6 + 1.27183e6i) q^{45} +4.57901e6i q^{47} -5.73533e6 q^{49} +(-2.85378e6 + 6.70844e6i) q^{51} +6.30043e6i q^{53} -1.80938e6 q^{55} +(-1.56261e7 - 6.64739e6i) q^{57} +1.68574e7i q^{59} -9.90116e6 q^{61} +(-781137. - 811438. i) q^{63} -3.63574e6i q^{65} -1.04269e7 q^{67} +(4.51822e6 - 1.06211e7i) q^{69} -2.23330e6i q^{71} -3.07135e7 q^{73} +(5.82313e6 + 2.47717e6i) q^{75} -1.11129e6i q^{77} -5.95888e7 q^{79} +(-1.63746e6 + 4.30156e7i) q^{81} -901913. i q^{83} +2.51565e7 q^{85} +(-6.81307e6 + 1.60156e7i) q^{87} -6.13760e7i q^{89} +2.23301e6 q^{91} +(-4.65500e7 - 1.98025e7i) q^{93} +5.85977e7i q^{95} -2.96725e7 q^{97} +(-3.05982e7 + 2.94556e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 112 q^{3} - 3008 q^{7} - 3184 q^{9} + 25696 q^{13} - 315872 q^{19} + 55216 q^{21} - 2500000 q^{25} + 605360 q^{27} - 1668576 q^{31} + 567104 q^{33} - 982624 q^{37} + 6709536 q^{39} - 13925344 q^{43}+ \cdots + 369200768 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −74.5360 31.7078i −0.920198 0.391454i
\(4\) 0 0
\(5\) 279.508i 0.447214i
\(6\) 0 0
\(7\) −171.670 −0.0714992 −0.0357496 0.999361i \(-0.511382\pi\)
−0.0357496 + 0.999361i \(0.511382\pi\)
\(8\) 0 0
\(9\) 4550.23 + 4726.74i 0.693528 + 0.720430i
\(10\) 0 0
\(11\) 6473.42i 0.442143i 0.975258 + 0.221072i \(0.0709555\pi\)
−0.975258 + 0.221072i \(0.929045\pi\)
\(12\) 0 0
\(13\) −13007.6 −0.455433 −0.227716 0.973728i \(-0.573126\pi\)
−0.227716 + 0.973728i \(0.573126\pi\)
\(14\) 0 0
\(15\) 8862.59 20833.4i 0.175064 0.411525i
\(16\) 0 0
\(17\) 90002.6i 1.07760i −0.842432 0.538802i \(-0.818877\pi\)
0.842432 0.538802i \(-0.181123\pi\)
\(18\) 0 0
\(19\) 209646. 1.60869 0.804343 0.594165i \(-0.202517\pi\)
0.804343 + 0.594165i \(0.202517\pi\)
\(20\) 0 0
\(21\) 12795.6 + 5443.26i 0.0657934 + 0.0279887i
\(22\) 0 0
\(23\) 142496.i 0.509203i 0.967046 + 0.254601i \(0.0819442\pi\)
−0.967046 + 0.254601i \(0.918056\pi\)
\(24\) 0 0
\(25\) −78125.0 −0.200000
\(26\) 0 0
\(27\) −189282. 496590.i −0.356167 0.934422i
\(28\) 0 0
\(29\) 214871.i 0.303798i −0.988396 0.151899i \(-0.951461\pi\)
0.988396 0.151899i \(-0.0485389\pi\)
\(30\) 0 0
\(31\) 624531. 0.676249 0.338125 0.941101i \(-0.390207\pi\)
0.338125 + 0.941101i \(0.390207\pi\)
\(32\) 0 0
\(33\) 205258. 482503.i 0.173079 0.406859i
\(34\) 0 0
\(35\) 47983.1i 0.0319754i
\(36\) 0 0
\(37\) −1.54483e6 −0.824276 −0.412138 0.911122i \(-0.635218\pi\)
−0.412138 + 0.911122i \(0.635218\pi\)
\(38\) 0 0
\(39\) 969536. + 412443.i 0.419088 + 0.178281i
\(40\) 0 0
\(41\) 716603.i 0.253596i −0.991929 0.126798i \(-0.959530\pi\)
0.991929 0.126798i \(-0.0404701\pi\)
\(42\) 0 0
\(43\) −2.19014e6 −0.640618 −0.320309 0.947313i \(-0.603787\pi\)
−0.320309 + 0.947313i \(0.603787\pi\)
\(44\) 0 0
\(45\) −1.32116e6 + 1.27183e6i −0.322186 + 0.310155i
\(46\) 0 0
\(47\) 4.57901e6i 0.938382i 0.883097 + 0.469191i \(0.155454\pi\)
−0.883097 + 0.469191i \(0.844546\pi\)
\(48\) 0 0
\(49\) −5.73533e6 −0.994888
\(50\) 0 0
\(51\) −2.85378e6 + 6.70844e6i −0.421833 + 0.991609i
\(52\) 0 0
\(53\) 6.30043e6i 0.798484i 0.916846 + 0.399242i \(0.130727\pi\)
−0.916846 + 0.399242i \(0.869273\pi\)
\(54\) 0 0
\(55\) −1.80938e6 −0.197732
\(56\) 0 0
\(57\) −1.56261e7 6.64739e6i −1.48031 0.629727i
\(58\) 0 0
\(59\) 1.68574e7i 1.39118i 0.718439 + 0.695590i \(0.244857\pi\)
−0.718439 + 0.695590i \(0.755143\pi\)
\(60\) 0 0
\(61\) −9.90116e6 −0.715100 −0.357550 0.933894i \(-0.616388\pi\)
−0.357550 + 0.933894i \(0.616388\pi\)
\(62\) 0 0
\(63\) −781137. 811438.i −0.0495867 0.0515102i
\(64\) 0 0
\(65\) 3.63574e6i 0.203676i
\(66\) 0 0
\(67\) −1.04269e7 −0.517437 −0.258719 0.965953i \(-0.583300\pi\)
−0.258719 + 0.965953i \(0.583300\pi\)
\(68\) 0 0
\(69\) 4.51822e6 1.06211e7i 0.199329 0.468567i
\(70\) 0 0
\(71\) 2.23330e6i 0.0878847i −0.999034 0.0439424i \(-0.986008\pi\)
0.999034 0.0439424i \(-0.0139918\pi\)
\(72\) 0 0
\(73\) −3.07135e7 −1.08153 −0.540764 0.841174i \(-0.681865\pi\)
−0.540764 + 0.841174i \(0.681865\pi\)
\(74\) 0 0
\(75\) 5.82313e6 + 2.47717e6i 0.184040 + 0.0782908i
\(76\) 0 0
\(77\) 1.11129e6i 0.0316129i
\(78\) 0 0
\(79\) −5.95888e7 −1.52988 −0.764938 0.644104i \(-0.777230\pi\)
−0.764938 + 0.644104i \(0.777230\pi\)
\(80\) 0 0
\(81\) −1.63746e6 + 4.30156e7i −0.0380392 + 0.999276i
\(82\) 0 0
\(83\) 901913.i 0.0190043i −0.999955 0.00950216i \(-0.996975\pi\)
0.999955 0.00950216i \(-0.00302468\pi\)
\(84\) 0 0
\(85\) 2.51565e7 0.481919
\(86\) 0 0
\(87\) −6.81307e6 + 1.60156e7i −0.118923 + 0.279554i
\(88\) 0 0
\(89\) 6.13760e7i 0.978225i −0.872221 0.489113i \(-0.837321\pi\)
0.872221 0.489113i \(-0.162679\pi\)
\(90\) 0 0
\(91\) 2.23301e6 0.0325631
\(92\) 0 0
\(93\) −4.65500e7 1.98025e7i −0.622283 0.264721i
\(94\) 0 0
\(95\) 5.85977e7i 0.719426i
\(96\) 0 0
\(97\) −2.96725e7 −0.335171 −0.167586 0.985858i \(-0.553597\pi\)
−0.167586 + 0.985858i \(0.553597\pi\)
\(98\) 0 0
\(99\) −3.05982e7 + 2.94556e7i −0.318533 + 0.306638i
\(100\) 0 0
\(101\) 8.54439e7i 0.821099i 0.911838 + 0.410549i \(0.134663\pi\)
−0.911838 + 0.410549i \(0.865337\pi\)
\(102\) 0 0
\(103\) −1.21936e7 −0.108338 −0.0541691 0.998532i \(-0.517251\pi\)
−0.0541691 + 0.998532i \(0.517251\pi\)
\(104\) 0 0
\(105\) −1.52144e6 + 3.57647e6i −0.0125169 + 0.0294237i
\(106\) 0 0
\(107\) 5.20836e7i 0.397343i −0.980066 0.198672i \(-0.936337\pi\)
0.980066 0.198672i \(-0.0636627\pi\)
\(108\) 0 0
\(109\) −2.09207e8 −1.48208 −0.741039 0.671462i \(-0.765667\pi\)
−0.741039 + 0.671462i \(0.765667\pi\)
\(110\) 0 0
\(111\) 1.15145e8 + 4.89830e7i 0.758497 + 0.322666i
\(112\) 0 0
\(113\) 1.77766e7i 0.109027i 0.998513 + 0.0545136i \(0.0173608\pi\)
−0.998513 + 0.0545136i \(0.982639\pi\)
\(114\) 0 0
\(115\) −3.98288e7 −0.227722
\(116\) 0 0
\(117\) −5.91877e7 6.14836e7i −0.315855 0.328108i
\(118\) 0 0
\(119\) 1.54507e7i 0.0770479i
\(120\) 0 0
\(121\) 1.72454e8 0.804509
\(122\) 0 0
\(123\) −2.27219e7 + 5.34127e7i −0.0992714 + 0.233359i
\(124\) 0 0
\(125\) 2.18366e7i 0.0894427i
\(126\) 0 0
\(127\) −4.57135e8 −1.75723 −0.878616 0.477528i \(-0.841533\pi\)
−0.878616 + 0.477528i \(0.841533\pi\)
\(128\) 0 0
\(129\) 1.63245e8 + 6.94446e7i 0.589495 + 0.250772i
\(130\) 0 0
\(131\) 4.95158e8i 1.68135i 0.541537 + 0.840677i \(0.317842\pi\)
−0.541537 + 0.840677i \(0.682158\pi\)
\(132\) 0 0
\(133\) −3.59898e7 −0.115020
\(134\) 0 0
\(135\) 1.38801e8 5.29059e7i 0.417886 0.159283i
\(136\) 0 0
\(137\) 5.97473e8i 1.69604i −0.529965 0.848020i \(-0.677795\pi\)
0.529965 0.848020i \(-0.322205\pi\)
\(138\) 0 0
\(139\) 5.92301e8 1.58666 0.793329 0.608794i \(-0.208346\pi\)
0.793329 + 0.608794i \(0.208346\pi\)
\(140\) 0 0
\(141\) 1.45190e8 3.41301e8i 0.367334 0.863497i
\(142\) 0 0
\(143\) 8.42037e7i 0.201367i
\(144\) 0 0
\(145\) 6.00582e7 0.135863
\(146\) 0 0
\(147\) 4.27489e8 + 1.81855e8i 0.915493 + 0.389453i
\(148\) 0 0
\(149\) 3.91213e8i 0.793722i −0.917879 0.396861i \(-0.870099\pi\)
0.917879 0.396861i \(-0.129901\pi\)
\(150\) 0 0
\(151\) 6.44987e8 1.24063 0.620316 0.784352i \(-0.287004\pi\)
0.620316 + 0.784352i \(0.287004\pi\)
\(152\) 0 0
\(153\) 4.25419e8 4.09533e8i 0.776339 0.747349i
\(154\) 0 0
\(155\) 1.74562e8i 0.302428i
\(156\) 0 0
\(157\) −1.47952e8 −0.243513 −0.121757 0.992560i \(-0.538853\pi\)
−0.121757 + 0.992560i \(0.538853\pi\)
\(158\) 0 0
\(159\) 1.99772e8 4.69609e8i 0.312570 0.734763i
\(160\) 0 0
\(161\) 2.44622e7i 0.0364076i
\(162\) 0 0
\(163\) 5.42924e8 0.769111 0.384555 0.923102i \(-0.374355\pi\)
0.384555 + 0.923102i \(0.374355\pi\)
\(164\) 0 0
\(165\) 1.34864e8 + 5.73713e7i 0.181953 + 0.0774032i
\(166\) 0 0
\(167\) 4.70654e8i 0.605113i 0.953132 + 0.302556i \(0.0978400\pi\)
−0.953132 + 0.302556i \(0.902160\pi\)
\(168\) 0 0
\(169\) −6.46533e8 −0.792581
\(170\) 0 0
\(171\) 9.53936e8 + 9.90941e8i 1.11567 + 1.15895i
\(172\) 0 0
\(173\) 1.34866e9i 1.50563i −0.658232 0.752815i \(-0.728696\pi\)
0.658232 0.752815i \(-0.271304\pi\)
\(174\) 0 0
\(175\) 1.34117e7 0.0142998
\(176\) 0 0
\(177\) 5.34511e8 1.25649e9i 0.544583 1.28016i
\(178\) 0 0
\(179\) 1.37350e8i 0.133788i 0.997760 + 0.0668939i \(0.0213089\pi\)
−0.997760 + 0.0668939i \(0.978691\pi\)
\(180\) 0 0
\(181\) −1.14873e8 −0.107030 −0.0535150 0.998567i \(-0.517042\pi\)
−0.0535150 + 0.998567i \(0.517042\pi\)
\(182\) 0 0
\(183\) 7.37993e8 + 3.13944e8i 0.658033 + 0.279929i
\(184\) 0 0
\(185\) 4.31792e8i 0.368627i
\(186\) 0 0
\(187\) 5.82625e8 0.476456
\(188\) 0 0
\(189\) 3.24939e7 + 8.52495e7i 0.0254657 + 0.0668105i
\(190\) 0 0
\(191\) 9.26491e7i 0.0696158i −0.999394 0.0348079i \(-0.988918\pi\)
0.999394 0.0348079i \(-0.0110819\pi\)
\(192\) 0 0
\(193\) −2.15772e9 −1.55512 −0.777562 0.628806i \(-0.783544\pi\)
−0.777562 + 0.628806i \(0.783544\pi\)
\(194\) 0 0
\(195\) −1.15281e8 + 2.70993e8i −0.0797297 + 0.187422i
\(196\) 0 0
\(197\) 4.88154e8i 0.324110i 0.986782 + 0.162055i \(0.0518122\pi\)
−0.986782 + 0.162055i \(0.948188\pi\)
\(198\) 0 0
\(199\) −8.37599e8 −0.534102 −0.267051 0.963682i \(-0.586049\pi\)
−0.267051 + 0.963682i \(0.586049\pi\)
\(200\) 0 0
\(201\) 7.77183e8 + 3.30615e8i 0.476145 + 0.202553i
\(202\) 0 0
\(203\) 3.68868e7i 0.0217213i
\(204\) 0 0
\(205\) 2.00297e8 0.113412
\(206\) 0 0
\(207\) −6.73541e8 + 6.48389e8i −0.366845 + 0.353146i
\(208\) 0 0
\(209\) 1.35712e9i 0.711270i
\(210\) 0 0
\(211\) −2.32062e9 −1.17078 −0.585390 0.810752i \(-0.699058\pi\)
−0.585390 + 0.810752i \(0.699058\pi\)
\(212\) 0 0
\(213\) −7.08129e7 + 1.66461e8i −0.0344028 + 0.0808713i
\(214\) 0 0
\(215\) 6.12164e8i 0.286493i
\(216\) 0 0
\(217\) −1.07213e8 −0.0483513
\(218\) 0 0
\(219\) 2.28926e9 + 9.73856e8i 0.995219 + 0.423368i
\(220\) 0 0
\(221\) 1.17072e9i 0.490777i
\(222\) 0 0
\(223\) −3.72404e9 −1.50590 −0.752948 0.658080i \(-0.771369\pi\)
−0.752948 + 0.658080i \(0.771369\pi\)
\(224\) 0 0
\(225\) −3.55487e8 3.69277e8i −0.138706 0.144086i
\(226\) 0 0
\(227\) 3.77637e9i 1.42223i 0.703074 + 0.711117i \(0.251810\pi\)
−0.703074 + 0.711117i \(0.748190\pi\)
\(228\) 0 0
\(229\) −2.18662e9 −0.795116 −0.397558 0.917577i \(-0.630142\pi\)
−0.397558 + 0.917577i \(0.630142\pi\)
\(230\) 0 0
\(231\) −3.52365e7 + 8.28311e7i −0.0123750 + 0.0290901i
\(232\) 0 0
\(233\) 1.55999e8i 0.0529296i −0.999650 0.0264648i \(-0.991575\pi\)
0.999650 0.0264648i \(-0.00842499\pi\)
\(234\) 0 0
\(235\) −1.27987e9 −0.419657
\(236\) 0 0
\(237\) 4.44151e9 + 1.88943e9i 1.40779 + 0.598876i
\(238\) 0 0
\(239\) 2.95576e9i 0.905895i −0.891537 0.452948i \(-0.850372\pi\)
0.891537 0.452948i \(-0.149628\pi\)
\(240\) 0 0
\(241\) −2.98059e9 −0.883557 −0.441778 0.897124i \(-0.645652\pi\)
−0.441778 + 0.897124i \(0.645652\pi\)
\(242\) 0 0
\(243\) 1.48598e9 3.15429e9i 0.426174 0.904641i
\(244\) 0 0
\(245\) 1.60307e9i 0.444927i
\(246\) 0 0
\(247\) −2.72699e9 −0.732648
\(248\) 0 0
\(249\) −2.85977e7 + 6.72250e7i −0.00743932 + 0.0174877i
\(250\) 0 0
\(251\) 1.27947e9i 0.322357i −0.986925 0.161178i \(-0.948471\pi\)
0.986925 0.161178i \(-0.0515294\pi\)
\(252\) 0 0
\(253\) −9.22435e8 −0.225140
\(254\) 0 0
\(255\) −1.87507e9 7.97657e8i −0.443461 0.188649i
\(256\) 0 0
\(257\) 6.71890e8i 0.154016i −0.997030 0.0770080i \(-0.975463\pi\)
0.997030 0.0770080i \(-0.0245367\pi\)
\(258\) 0 0
\(259\) 2.65200e8 0.0589351
\(260\) 0 0
\(261\) 1.01564e9 9.77712e8i 0.218865 0.210692i
\(262\) 0 0
\(263\) 6.42461e9i 1.34284i −0.741078 0.671419i \(-0.765685\pi\)
0.741078 0.671419i \(-0.234315\pi\)
\(264\) 0 0
\(265\) −1.76102e9 −0.357093
\(266\) 0 0
\(267\) −1.94610e9 + 4.57473e9i −0.382930 + 0.900161i
\(268\) 0 0
\(269\) 8.73020e9i 1.66730i 0.552289 + 0.833652i \(0.313754\pi\)
−0.552289 + 0.833652i \(0.686246\pi\)
\(270\) 0 0
\(271\) −5.68086e9 −1.05326 −0.526631 0.850094i \(-0.676545\pi\)
−0.526631 + 0.850094i \(0.676545\pi\)
\(272\) 0 0
\(273\) −1.66440e8 7.08039e7i −0.0299645 0.0127470i
\(274\) 0 0
\(275\) 5.05736e8i 0.0884286i
\(276\) 0 0
\(277\) −1.15644e9 −0.196429 −0.0982145 0.995165i \(-0.531313\pi\)
−0.0982145 + 0.995165i \(0.531313\pi\)
\(278\) 0 0
\(279\) 2.84176e9 + 2.95199e9i 0.468998 + 0.487190i
\(280\) 0 0
\(281\) 8.38190e9i 1.34437i 0.740385 + 0.672183i \(0.234643\pi\)
−0.740385 + 0.672183i \(0.765357\pi\)
\(282\) 0 0
\(283\) −2.84371e9 −0.443343 −0.221672 0.975121i \(-0.571151\pi\)
−0.221672 + 0.975121i \(0.571151\pi\)
\(284\) 0 0
\(285\) 1.85800e9 4.36764e9i 0.281622 0.662014i
\(286\) 0 0
\(287\) 1.23019e8i 0.0181320i
\(288\) 0 0
\(289\) −1.12471e9 −0.161232
\(290\) 0 0
\(291\) 2.21167e9 + 9.40848e8i 0.308424 + 0.131204i
\(292\) 0 0
\(293\) 3.40005e9i 0.461333i 0.973033 + 0.230666i \(0.0740906\pi\)
−0.973033 + 0.230666i \(0.925909\pi\)
\(294\) 0 0
\(295\) −4.71179e9 −0.622154
\(296\) 0 0
\(297\) 3.21464e9 1.22530e9i 0.413148 0.157477i
\(298\) 0 0
\(299\) 1.85353e9i 0.231908i
\(300\) 0 0
\(301\) 3.75981e8 0.0458037
\(302\) 0 0
\(303\) 2.70923e9 6.36865e9i 0.321422 0.755573i
\(304\) 0 0
\(305\) 2.76746e9i 0.319802i
\(306\) 0 0
\(307\) −2.61177e9 −0.294023 −0.147011 0.989135i \(-0.546965\pi\)
−0.147011 + 0.989135i \(0.546965\pi\)
\(308\) 0 0
\(309\) 9.08860e8 + 3.86631e8i 0.0996926 + 0.0424094i
\(310\) 0 0
\(311\) 6.14252e9i 0.656606i 0.944572 + 0.328303i \(0.106477\pi\)
−0.944572 + 0.328303i \(0.893523\pi\)
\(312\) 0 0
\(313\) −1.03834e10 −1.08183 −0.540917 0.841076i \(-0.681923\pi\)
−0.540917 + 0.841076i \(0.681923\pi\)
\(314\) 0 0
\(315\) 2.26804e8 2.18334e8i 0.0230361 0.0221758i
\(316\) 0 0
\(317\) 1.49393e10i 1.47942i 0.672924 + 0.739712i \(0.265038\pi\)
−0.672924 + 0.739712i \(0.734962\pi\)
\(318\) 0 0
\(319\) 1.39095e9 0.134322
\(320\) 0 0
\(321\) −1.65145e9 + 3.88210e9i −0.155542 + 0.365634i
\(322\) 0 0
\(323\) 1.88687e10i 1.73353i
\(324\) 0 0
\(325\) 1.01622e9 0.0910866
\(326\) 0 0
\(327\) 1.55935e10 + 6.63350e9i 1.36380 + 0.580165i
\(328\) 0 0
\(329\) 7.86077e8i 0.0670936i
\(330\) 0 0
\(331\) 1.04730e10 0.872487 0.436244 0.899829i \(-0.356309\pi\)
0.436244 + 0.899829i \(0.356309\pi\)
\(332\) 0 0
\(333\) −7.02932e9 7.30199e9i −0.571658 0.593833i
\(334\) 0 0
\(335\) 2.91442e9i 0.231405i
\(336\) 0 0
\(337\) 2.08868e10 1.61939 0.809696 0.586849i \(-0.199632\pi\)
0.809696 + 0.586849i \(0.199632\pi\)
\(338\) 0 0
\(339\) 5.63656e8 1.32500e9i 0.0426791 0.100327i
\(340\) 0 0
\(341\) 4.04285e9i 0.298999i
\(342\) 0 0
\(343\) 1.97422e9 0.142633
\(344\) 0 0
\(345\) 2.96868e9 + 1.26288e9i 0.209550 + 0.0891428i
\(346\) 0 0
\(347\) 4.58221e9i 0.316051i −0.987435 0.158026i \(-0.949487\pi\)
0.987435 0.158026i \(-0.0505129\pi\)
\(348\) 0 0
\(349\) 4.22524e9 0.284806 0.142403 0.989809i \(-0.454517\pi\)
0.142403 + 0.989809i \(0.454517\pi\)
\(350\) 0 0
\(351\) 2.46211e9 + 6.45946e9i 0.162210 + 0.425567i
\(352\) 0 0
\(353\) 2.14402e10i 1.38080i −0.723428 0.690399i \(-0.757435\pi\)
0.723428 0.690399i \(-0.242565\pi\)
\(354\) 0 0
\(355\) 6.24226e8 0.0393032
\(356\) 0 0
\(357\) 4.89908e8 1.15164e9i 0.0301607 0.0708993i
\(358\) 0 0
\(359\) 2.43580e10i 1.46644i −0.679992 0.733220i \(-0.738017\pi\)
0.679992 0.733220i \(-0.261983\pi\)
\(360\) 0 0
\(361\) 2.69677e10 1.58787
\(362\) 0 0
\(363\) −1.28540e10 5.46812e9i −0.740308 0.314928i
\(364\) 0 0
\(365\) 8.58468e9i 0.483674i
\(366\) 0 0
\(367\) 5.32515e9 0.293540 0.146770 0.989171i \(-0.453112\pi\)
0.146770 + 0.989171i \(0.453112\pi\)
\(368\) 0 0
\(369\) 3.38720e9 3.26071e9i 0.182699 0.175876i
\(370\) 0 0
\(371\) 1.08159e9i 0.0570910i
\(372\) 0 0
\(373\) 1.55435e10 0.802994 0.401497 0.915860i \(-0.368490\pi\)
0.401497 + 0.915860i \(0.368490\pi\)
\(374\) 0 0
\(375\) −6.92390e8 + 1.62761e9i −0.0350127 + 0.0823050i
\(376\) 0 0
\(377\) 2.79496e9i 0.138360i
\(378\) 0 0
\(379\) 9.25639e9 0.448626 0.224313 0.974517i \(-0.427986\pi\)
0.224313 + 0.974517i \(0.427986\pi\)
\(380\) 0 0
\(381\) 3.40730e10 + 1.44947e10i 1.61700 + 0.687876i
\(382\) 0 0
\(383\) 2.09394e10i 0.973128i −0.873645 0.486564i \(-0.838250\pi\)
0.873645 0.486564i \(-0.161750\pi\)
\(384\) 0 0
\(385\) 3.10615e8 0.0141377
\(386\) 0 0
\(387\) −9.96567e9 1.03522e10i −0.444286 0.461520i
\(388\) 0 0
\(389\) 4.05460e10i 1.77072i 0.464907 + 0.885359i \(0.346088\pi\)
−0.464907 + 0.885359i \(0.653912\pi\)
\(390\) 0 0
\(391\) 1.28250e10 0.548719
\(392\) 0 0
\(393\) 1.57004e10 3.69071e10i 0.658172 1.54718i
\(394\) 0 0
\(395\) 1.66556e10i 0.684181i
\(396\) 0 0
\(397\) −1.21222e10 −0.488001 −0.244001 0.969775i \(-0.578460\pi\)
−0.244001 + 0.969775i \(0.578460\pi\)
\(398\) 0 0
\(399\) 2.68254e9 + 1.14116e9i 0.105841 + 0.0450250i
\(400\) 0 0
\(401\) 4.59483e10i 1.77702i 0.458857 + 0.888510i \(0.348259\pi\)
−0.458857 + 0.888510i \(0.651741\pi\)
\(402\) 0 0
\(403\) −8.12365e9 −0.307986
\(404\) 0 0
\(405\) −1.20232e10 4.57684e8i −0.446890 0.0170116i
\(406\) 0 0
\(407\) 1.00003e10i 0.364448i
\(408\) 0 0
\(409\) −1.98882e10 −0.710725 −0.355363 0.934728i \(-0.615643\pi\)
−0.355363 + 0.934728i \(0.615643\pi\)
\(410\) 0 0
\(411\) −1.89445e10 + 4.45332e10i −0.663921 + 1.56069i
\(412\) 0 0
\(413\) 2.89391e9i 0.0994683i
\(414\) 0 0
\(415\) 2.52092e8 0.00849899
\(416\) 0 0
\(417\) −4.41477e10 1.87805e10i −1.46004 0.621103i
\(418\) 0 0
\(419\) 3.82490e9i 0.124098i −0.998073 0.0620490i \(-0.980237\pi\)
0.998073 0.0620490i \(-0.0197635\pi\)
\(420\) 0 0
\(421\) 3.10997e10 0.989983 0.494991 0.868898i \(-0.335171\pi\)
0.494991 + 0.868898i \(0.335171\pi\)
\(422\) 0 0
\(423\) −2.16438e10 + 2.08356e10i −0.676039 + 0.650794i
\(424\) 0 0
\(425\) 7.03145e9i 0.215521i
\(426\) 0 0
\(427\) 1.69973e9 0.0511291
\(428\) 0 0
\(429\) −2.66991e9 + 6.27621e9i −0.0788257 + 0.185297i
\(430\) 0 0
\(431\) 6.64386e10i 1.92536i 0.270648 + 0.962678i \(0.412762\pi\)
−0.270648 + 0.962678i \(0.587238\pi\)
\(432\) 0 0
\(433\) −3.41384e10 −0.971161 −0.485581 0.874192i \(-0.661392\pi\)
−0.485581 + 0.874192i \(0.661392\pi\)
\(434\) 0 0
\(435\) −4.47650e9 1.90431e9i −0.125021 0.0531840i
\(436\) 0 0
\(437\) 2.98736e10i 0.819147i
\(438\) 0 0
\(439\) 2.13285e10 0.574253 0.287126 0.957893i \(-0.407300\pi\)
0.287126 + 0.957893i \(0.407300\pi\)
\(440\) 0 0
\(441\) −2.60971e10 2.71094e10i −0.689982 0.716747i
\(442\) 0 0
\(443\) 6.09380e10i 1.58224i −0.611658 0.791122i \(-0.709497\pi\)
0.611658 0.791122i \(-0.290503\pi\)
\(444\) 0 0
\(445\) 1.71551e10 0.437476
\(446\) 0 0
\(447\) −1.24045e10 + 2.91595e10i −0.310706 + 0.730381i
\(448\) 0 0
\(449\) 6.72168e10i 1.65384i −0.562323 0.826918i \(-0.690092\pi\)
0.562323 0.826918i \(-0.309908\pi\)
\(450\) 0 0
\(451\) 4.63887e9 0.112126
\(452\) 0 0
\(453\) −4.80747e10 2.04511e10i −1.14163 0.485650i
\(454\) 0 0
\(455\) 6.24146e8i 0.0145627i
\(456\) 0 0
\(457\) −3.19081e10 −0.731536 −0.365768 0.930706i \(-0.619194\pi\)
−0.365768 + 0.930706i \(0.619194\pi\)
\(458\) 0 0
\(459\) −4.46944e10 + 1.70359e10i −1.00694 + 0.383807i
\(460\) 0 0
\(461\) 5.46837e10i 1.21075i 0.795940 + 0.605375i \(0.206977\pi\)
−0.795940 + 0.605375i \(0.793023\pi\)
\(462\) 0 0
\(463\) −2.01111e10 −0.437634 −0.218817 0.975766i \(-0.570220\pi\)
−0.218817 + 0.975766i \(0.570220\pi\)
\(464\) 0 0
\(465\) 5.53496e9 1.30111e10i 0.118387 0.278293i
\(466\) 0 0
\(467\) 7.69028e9i 0.161687i 0.996727 + 0.0808434i \(0.0257614\pi\)
−0.996727 + 0.0808434i \(0.974239\pi\)
\(468\) 0 0
\(469\) 1.78999e9 0.0369964
\(470\) 0 0
\(471\) 1.10278e10 + 4.69124e9i 0.224081 + 0.0953243i
\(472\) 0 0
\(473\) 1.41777e10i 0.283245i
\(474\) 0 0
\(475\) −1.63786e10 −0.321737
\(476\) 0 0
\(477\) −2.97805e10 + 2.86684e10i −0.575252 + 0.553771i
\(478\) 0 0
\(479\) 7.15869e10i 1.35985i 0.733281 + 0.679925i \(0.237988\pi\)
−0.733281 + 0.679925i \(0.762012\pi\)
\(480\) 0 0
\(481\) 2.00945e10 0.375402
\(482\) 0 0
\(483\) −7.75642e8 + 1.82332e9i −0.0142519 + 0.0335022i
\(484\) 0 0
\(485\) 8.29371e9i 0.149893i
\(486\) 0 0
\(487\) 7.70589e10 1.36996 0.684978 0.728564i \(-0.259812\pi\)
0.684978 + 0.728564i \(0.259812\pi\)
\(488\) 0 0
\(489\) −4.04674e10 1.72149e10i −0.707734 0.301071i
\(490\) 0 0
\(491\) 5.00758e10i 0.861592i 0.902449 + 0.430796i \(0.141767\pi\)
−0.902449 + 0.430796i \(0.858233\pi\)
\(492\) 0 0
\(493\) −1.93389e10 −0.327374
\(494\) 0 0
\(495\) −8.23308e9 8.55245e9i −0.137133 0.142452i
\(496\) 0 0
\(497\) 3.83390e8i 0.00628369i
\(498\) 0 0
\(499\) −1.20598e10 −0.194507 −0.0972537 0.995260i \(-0.531006\pi\)
−0.0972537 + 0.995260i \(0.531006\pi\)
\(500\) 0 0
\(501\) 1.49234e10 3.50807e10i 0.236874 0.556823i
\(502\) 0 0
\(503\) 6.52535e9i 0.101937i 0.998700 + 0.0509685i \(0.0162308\pi\)
−0.998700 + 0.0509685i \(0.983769\pi\)
\(504\) 0 0
\(505\) −2.38823e10 −0.367207
\(506\) 0 0
\(507\) 4.81900e10 + 2.05001e10i 0.729331 + 0.310259i
\(508\) 0 0
\(509\) 2.77909e10i 0.414030i −0.978338 0.207015i \(-0.933625\pi\)
0.978338 0.207015i \(-0.0663748\pi\)
\(510\) 0 0
\(511\) 5.27257e9 0.0773284
\(512\) 0 0
\(513\) −3.96821e10 1.04108e11i −0.572961 1.50319i
\(514\) 0 0
\(515\) 3.40820e9i 0.0484503i
\(516\) 0 0
\(517\) −2.96418e10 −0.414899
\(518\) 0 0
\(519\) −4.27630e10 + 1.00524e11i −0.589385 + 1.38548i
\(520\) 0 0
\(521\) 7.02333e10i 0.953218i −0.879116 0.476609i \(-0.841866\pi\)
0.879116 0.476609i \(-0.158134\pi\)
\(522\) 0 0
\(523\) 3.64311e10 0.486929 0.243464 0.969910i \(-0.421716\pi\)
0.243464 + 0.969910i \(0.421716\pi\)
\(524\) 0 0
\(525\) −9.99654e8 4.25255e8i −0.0131587 0.00559773i
\(526\) 0 0
\(527\) 5.62094e10i 0.728730i
\(528\) 0 0
\(529\) 5.80059e10 0.740713
\(530\) 0 0
\(531\) −7.96807e10 + 7.67052e10i −1.00225 + 0.964821i
\(532\) 0 0
\(533\) 9.32130e9i 0.115496i
\(534\) 0 0
\(535\) 1.45578e10 0.177697
\(536\) 0 0
\(537\) 4.35506e9 1.02375e10i 0.0523718 0.123111i
\(538\) 0 0
\(539\) 3.71272e10i 0.439883i
\(540\) 0 0
\(541\) 5.72377e10 0.668180 0.334090 0.942541i \(-0.391571\pi\)
0.334090 + 0.942541i \(0.391571\pi\)
\(542\) 0 0
\(543\) 8.56221e9 + 3.64238e9i 0.0984887 + 0.0418973i
\(544\) 0 0
\(545\) 5.84752e10i 0.662805i
\(546\) 0 0
\(547\) 1.62638e11 1.81665 0.908327 0.418262i \(-0.137361\pi\)
0.908327 + 0.418262i \(0.137361\pi\)
\(548\) 0 0
\(549\) −4.50526e10 4.68002e10i −0.495941 0.515179i
\(550\) 0 0
\(551\) 4.50467e10i 0.488716i
\(552\) 0 0
\(553\) 1.02296e10 0.109385
\(554\) 0 0
\(555\) −1.36912e10 + 3.21840e10i −0.144301 + 0.339210i
\(556\) 0 0
\(557\) 1.76310e11i 1.83170i 0.401516 + 0.915852i \(0.368483\pi\)
−0.401516 + 0.915852i \(0.631517\pi\)
\(558\) 0 0
\(559\) 2.84886e10 0.291758
\(560\) 0 0
\(561\) −4.34265e10 1.84737e10i −0.438433 0.186510i
\(562\) 0 0
\(563\) 5.08629e10i 0.506253i 0.967433 + 0.253127i \(0.0814589\pi\)
−0.967433 + 0.253127i \(0.918541\pi\)
\(564\) 0 0
\(565\) −4.96871e9 −0.0487584
\(566\) 0 0
\(567\) 2.81103e8 7.38447e9i 0.00271977 0.0714475i
\(568\) 0 0
\(569\) 1.16156e10i 0.110813i 0.998464 + 0.0554065i \(0.0176455\pi\)
−0.998464 + 0.0554065i \(0.982355\pi\)
\(570\) 0 0
\(571\) −1.60785e11 −1.51252 −0.756259 0.654272i \(-0.772975\pi\)
−0.756259 + 0.654272i \(0.772975\pi\)
\(572\) 0 0
\(573\) −2.93770e9 + 6.90569e9i −0.0272514 + 0.0640603i
\(574\) 0 0
\(575\) 1.11325e10i 0.101841i
\(576\) 0 0
\(577\) −1.68755e11 −1.52248 −0.761242 0.648468i \(-0.775410\pi\)
−0.761242 + 0.648468i \(0.775410\pi\)
\(578\) 0 0
\(579\) 1.60828e11 + 6.84164e10i 1.43102 + 0.608760i
\(580\) 0 0
\(581\) 1.54831e8i 0.00135879i
\(582\) 0 0
\(583\) −4.07853e10 −0.353044
\(584\) 0 0
\(585\) 1.71852e10 1.65435e10i 0.146734 0.141255i
\(586\) 0 0
\(587\) 5.48415e9i 0.0461909i −0.999733 0.0230955i \(-0.992648\pi\)
0.999733 0.0230955i \(-0.00735217\pi\)
\(588\) 0 0
\(589\) 1.30930e11 1.08787
\(590\) 0 0
\(591\) 1.54783e10 3.63851e10i 0.126874 0.298245i
\(592\) 0 0
\(593\) 4.89042e10i 0.395483i −0.980254 0.197741i \(-0.936639\pi\)
0.980254 0.197741i \(-0.0633606\pi\)
\(594\) 0 0
\(595\) −4.31861e9 −0.0344569
\(596\) 0 0
\(597\) 6.24313e10 + 2.65584e10i 0.491479 + 0.209076i
\(598\) 0 0
\(599\) 1.15033e11i 0.893540i −0.894649 0.446770i \(-0.852574\pi\)
0.894649 0.446770i \(-0.147426\pi\)
\(600\) 0 0
\(601\) 1.45871e11 1.11807 0.559036 0.829143i \(-0.311171\pi\)
0.559036 + 0.829143i \(0.311171\pi\)
\(602\) 0 0
\(603\) −4.74450e10 4.92855e10i −0.358857 0.372778i
\(604\) 0 0
\(605\) 4.82023e10i 0.359788i
\(606\) 0 0
\(607\) 1.39678e11 1.02890 0.514451 0.857520i \(-0.327996\pi\)
0.514451 + 0.857520i \(0.327996\pi\)
\(608\) 0 0
\(609\) 1.16960e9 2.74939e9i 0.00850291 0.0199879i
\(610\) 0 0
\(611\) 5.95620e10i 0.427370i
\(612\) 0 0
\(613\) 2.36975e11 1.67826 0.839132 0.543929i \(-0.183064\pi\)
0.839132 + 0.543929i \(0.183064\pi\)
\(614\) 0 0
\(615\) −1.49293e10 6.35096e9i −0.104361 0.0443955i
\(616\) 0 0
\(617\) 9.46540e10i 0.653128i 0.945175 + 0.326564i \(0.105891\pi\)
−0.945175 + 0.326564i \(0.894109\pi\)
\(618\) 0 0
\(619\) 1.58887e10 0.108224 0.0541122 0.998535i \(-0.482767\pi\)
0.0541122 + 0.998535i \(0.482767\pi\)
\(620\) 0 0
\(621\) 7.07620e10 2.69719e10i 0.475810 0.181361i
\(622\) 0 0
\(623\) 1.05364e10i 0.0699424i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) 0 0
\(627\) 4.30314e10 1.01155e11i 0.278429 0.654509i
\(628\) 0 0
\(629\) 1.39038e11i 0.888243i
\(630\) 0 0
\(631\) −1.76082e11 −1.11070 −0.555352 0.831615i \(-0.687417\pi\)
−0.555352 + 0.831615i \(0.687417\pi\)
\(632\) 0 0
\(633\) 1.72970e11 + 7.35818e10i 1.07735 + 0.458306i
\(634\) 0 0
\(635\) 1.27773e11i 0.785858i
\(636\) 0 0
\(637\) 7.46030e10 0.453105
\(638\) 0 0
\(639\) 1.05562e10 1.01620e10i 0.0633148 0.0609505i
\(640\) 0 0
\(641\) 3.17452e11i 1.88038i −0.340645 0.940192i \(-0.610646\pi\)
0.340645 0.940192i \(-0.389354\pi\)
\(642\) 0 0
\(643\) 2.56942e11 1.50311 0.751556 0.659670i \(-0.229304\pi\)
0.751556 + 0.659670i \(0.229304\pi\)
\(644\) 0 0
\(645\) −1.94104e10 + 4.56283e10i −0.112149 + 0.263630i
\(646\) 0 0
\(647\) 2.10683e11i 1.20230i −0.799137 0.601150i \(-0.794710\pi\)
0.799137 0.601150i \(-0.205290\pi\)
\(648\) 0 0
\(649\) −1.09125e11 −0.615101
\(650\) 0 0
\(651\) 7.99123e9 + 3.39948e9i 0.0444928 + 0.0189273i
\(652\) 0 0
\(653\) 2.94654e11i 1.62054i 0.586056 + 0.810271i \(0.300680\pi\)
−0.586056 + 0.810271i \(0.699320\pi\)
\(654\) 0 0
\(655\) −1.38401e11 −0.751924
\(656\) 0 0
\(657\) −1.39754e11 1.45175e11i −0.750069 0.779165i
\(658\) 0 0
\(659\) 8.29850e10i 0.440005i −0.975499 0.220003i \(-0.929393\pi\)
0.975499 0.220003i \(-0.0706066\pi\)
\(660\) 0 0
\(661\) 5.70901e10 0.299058 0.149529 0.988757i \(-0.452224\pi\)
0.149529 + 0.988757i \(0.452224\pi\)
\(662\) 0 0
\(663\) 3.71209e10 8.72608e10i 0.192116 0.451611i
\(664\) 0 0
\(665\) 1.00595e10i 0.0514384i
\(666\) 0 0
\(667\) 3.06182e10 0.154695
\(668\) 0 0
\(669\) 2.77575e11 + 1.18081e11i 1.38572 + 0.589489i
\(670\) 0 0
\(671\) 6.40943e10i 0.316176i
\(672\) 0 0
\(673\) −2.61393e11 −1.27419 −0.637094 0.770787i \(-0.719864\pi\)
−0.637094 + 0.770787i \(0.719864\pi\)
\(674\) 0 0
\(675\) 1.47876e10 + 3.87961e10i 0.0712334 + 0.186884i
\(676\) 0 0
\(677\) 1.30471e10i 0.0621098i 0.999518 + 0.0310549i \(0.00988668\pi\)
−0.999518 + 0.0310549i \(0.990113\pi\)
\(678\) 0 0
\(679\) 5.09387e9 0.0239645
\(680\) 0 0
\(681\) 1.19740e11 2.81475e11i 0.556739 1.30874i
\(682\) 0 0
\(683\) 1.50022e11i 0.689402i 0.938713 + 0.344701i \(0.112020\pi\)
−0.938713 + 0.344701i \(0.887980\pi\)
\(684\) 0 0
\(685\) 1.66999e11 0.758492
\(686\) 0 0
\(687\) 1.62982e11 + 6.93327e10i 0.731664 + 0.311251i
\(688\) 0 0
\(689\) 8.19535e10i 0.363656i
\(690\) 0 0
\(691\) −1.92476e11 −0.844239 −0.422119 0.906540i \(-0.638714\pi\)
−0.422119 + 0.906540i \(0.638714\pi\)
\(692\) 0 0
\(693\) 5.25278e9 5.05663e9i 0.0227749 0.0219244i
\(694\) 0 0
\(695\) 1.65553e11i 0.709575i
\(696\) 0 0
\(697\) −6.44961e10 −0.273277
\(698\) 0 0
\(699\) −4.94639e9 + 1.16276e10i −0.0207195 + 0.0487057i
\(700\) 0 0
\(701\) 3.50902e11i 1.45316i 0.687081 + 0.726581i \(0.258892\pi\)
−0.687081 + 0.726581i \(0.741108\pi\)
\(702\) 0 0
\(703\) −3.23866e11 −1.32600
\(704\) 0 0
\(705\) 9.53965e10 + 4.05819e10i 0.386168 + 0.164277i
\(706\) 0 0
\(707\) 1.46681e10i 0.0587079i
\(708\) 0 0
\(709\) −4.83201e11 −1.91224 −0.956122 0.292969i \(-0.905357\pi\)
−0.956122 + 0.292969i \(0.905357\pi\)
\(710\) 0 0
\(711\) −2.71143e11 2.81661e11i −1.06101 1.10217i
\(712\) 0 0
\(713\) 8.89930e10i 0.344348i
\(714\) 0 0
\(715\) 2.35357e10 0.0900538
\(716\) 0 0
\(717\) −9.37207e10 + 2.20311e11i −0.354616 + 0.833603i
\(718\) 0 0
\(719\) 4.66620e11i 1.74601i −0.487707 0.873007i \(-0.662167\pi\)
0.487707 0.873007i \(-0.337833\pi\)
\(720\) 0 0
\(721\) 2.09326e9 0.00774610
\(722\) 0 0
\(723\) 2.22161e11 + 9.45079e10i 0.813047 + 0.345872i
\(724\) 0 0
\(725\) 1.67868e10i 0.0607596i
\(726\) 0 0
\(727\) −1.26030e11 −0.451167 −0.225584 0.974224i \(-0.572429\pi\)
−0.225584 + 0.974224i \(0.572429\pi\)
\(728\) 0 0
\(729\) −2.10774e11 + 1.87991e11i −0.746290 + 0.665621i
\(730\) 0 0
\(731\) 1.97119e11i 0.690333i
\(732\) 0 0
\(733\) −1.62979e11 −0.564568 −0.282284 0.959331i \(-0.591092\pi\)
−0.282284 + 0.959331i \(0.591092\pi\)
\(734\) 0 0
\(735\) −5.08299e10 + 1.19487e11i −0.174169 + 0.409421i
\(736\) 0 0
\(737\) 6.74980e10i 0.228781i
\(738\) 0 0
\(739\) −1.24100e11 −0.416096 −0.208048 0.978119i \(-0.566711\pi\)
−0.208048 + 0.978119i \(0.566711\pi\)
\(740\) 0 0
\(741\) 2.03259e11 + 8.64668e10i 0.674181 + 0.286798i
\(742\) 0 0
\(743\) 5.23314e11i 1.71715i 0.512691 + 0.858573i \(0.328649\pi\)
−0.512691 + 0.858573i \(0.671351\pi\)
\(744\) 0 0
\(745\) 1.09347e11 0.354963
\(746\) 0 0
\(747\) 4.26311e9 4.10392e9i 0.0136913 0.0131800i
\(748\) 0 0
\(749\) 8.94117e9i 0.0284097i
\(750\) 0 0
\(751\) −3.61299e11 −1.13581 −0.567907 0.823093i \(-0.692247\pi\)
−0.567907 + 0.823093i \(0.692247\pi\)
\(752\) 0 0
\(753\) −4.05693e10 + 9.53669e10i −0.126188 + 0.296632i
\(754\) 0 0
\(755\) 1.80279e11i 0.554828i
\(756\) 0 0
\(757\) −5.00926e11 −1.52542 −0.762711 0.646740i \(-0.776132\pi\)
−0.762711 + 0.646740i \(0.776132\pi\)
\(758\) 0 0
\(759\) 6.87546e10 + 2.92484e10i 0.207174 + 0.0881321i
\(760\) 0 0
\(761\) 7.17674e10i 0.213988i −0.994260 0.106994i \(-0.965877\pi\)
0.994260 0.106994i \(-0.0341225\pi\)
\(762\) 0 0
\(763\) 3.59146e10 0.105967
\(764\) 0 0
\(765\) 1.14468e11 + 1.18908e11i 0.334224 + 0.347189i
\(766\) 0 0
\(767\) 2.19275e11i 0.633589i
\(768\) 0 0
\(769\) −4.37235e11 −1.25029 −0.625144 0.780509i \(-0.714960\pi\)
−0.625144 + 0.780509i \(0.714960\pi\)
\(770\) 0 0
\(771\) −2.13042e10 + 5.00800e10i −0.0602902 + 0.141725i
\(772\) 0 0
\(773\) 5.36529e11i 1.50271i 0.659898 + 0.751355i \(0.270599\pi\)
−0.659898 + 0.751355i \(0.729401\pi\)
\(774\) 0 0
\(775\) −4.87914e10 −0.135250
\(776\) 0 0
\(777\) −1.97669e10 8.40889e9i −0.0542319 0.0230704i
\(778\) 0 0
\(779\) 1.50233e11i 0.407957i
\(780\) 0 0
\(781\) 1.44571e10 0.0388576
\(782\) 0 0
\(783\) −1.06703e11 + 4.06711e10i −0.283876 + 0.108203i
\(784\) 0 0
\(785\) 4.13539e10i 0.108903i
\(786\) 0 0
\(787\) −6.69453e11 −1.74510 −0.872551 0.488523i \(-0.837536\pi\)
−0.872551 + 0.488523i \(0.837536\pi\)
\(788\) 0 0
\(789\) −2.03710e11 + 4.78865e11i −0.525659 + 1.23568i
\(790\) 0 0
\(791\) 3.05170e9i 0.00779536i
\(792\) 0 0
\(793\) 1.28790e11 0.325680
\(794\) 0 0
\(795\) 1.31260e11 + 5.58381e10i 0.328596 + 0.139786i
\(796\) 0 0
\(797\) 5.50542e11i 1.36445i −0.731143 0.682225i \(-0.761013\pi\)
0.731143 0.682225i \(-0.238987\pi\)
\(798\) 0 0
\(799\) 4.12123e11 1.01121
\(800\) 0 0
\(801\) 2.90109e11 2.79275e11i 0.704743 0.678426i
\(802\) 0 0
\(803\) 1.98821e11i 0.478190i
\(804\) 0 0
\(805\) 6.83739e9 0.0162820
\(806\) 0 0
\(807\) 2.76815e11 6.50714e11i 0.652673 1.53425i
\(808\) 0 0
\(809\) 3.06384e11i 0.715274i −0.933861 0.357637i \(-0.883583\pi\)
0.933861 0.357637i \(-0.116417\pi\)
\(810\) 0 0
\(811\) −4.43688e11 −1.02564 −0.512819 0.858497i \(-0.671399\pi\)
−0.512819 + 0.858497i \(0.671399\pi\)
\(812\) 0 0
\(813\) 4.23429e11 + 1.80127e11i 0.969210 + 0.412304i
\(814\) 0 0
\(815\) 1.51752e11i 0.343957i
\(816\) 0 0
\(817\) −4.59154e11 −1.03055
\(818\) 0 0
\(819\) 1.01607e10 + 1.05549e10i 0.0225834 + 0.0234594i
\(820\) 0 0
\(821\) 2.98689e11i 0.657426i −0.944430 0.328713i \(-0.893385\pi\)
0.944430 0.328713i \(-0.106615\pi\)
\(822\) 0 0
\(823\) 5.31239e11 1.15795 0.578976 0.815344i \(-0.303452\pi\)
0.578976 + 0.815344i \(0.303452\pi\)
\(824\) 0 0
\(825\) −1.60358e10 + 3.76955e10i −0.0346157 + 0.0813718i
\(826\) 0 0
\(827\) 3.61075e10i 0.0771926i −0.999255 0.0385963i \(-0.987711\pi\)
0.999255 0.0385963i \(-0.0122886\pi\)
\(828\) 0 0
\(829\) 1.86943e11 0.395815 0.197907 0.980221i \(-0.436585\pi\)
0.197907 + 0.980221i \(0.436585\pi\)
\(830\) 0 0
\(831\) 8.61968e10 + 3.66683e10i 0.180754 + 0.0768929i
\(832\) 0 0
\(833\) 5.16195e11i 1.07210i
\(834\) 0 0
\(835\) −1.31552e11 −0.270615
\(836\) 0 0
\(837\) −1.18212e11 3.10136e11i −0.240858 0.631902i
\(838\) 0 0
\(839\) 6.44305e9i 0.0130030i 0.999979 + 0.00650150i \(0.00206951\pi\)
−0.999979 + 0.00650150i \(0.997930\pi\)
\(840\) 0 0
\(841\) 4.54077e11 0.907707
\(842\) 0 0
\(843\) 2.65771e11 6.24753e11i 0.526257 1.23708i
\(844\) 0 0
\(845\) 1.80711e11i 0.354453i
\(846\) 0 0
\(847\) −2.96051e10 −0.0575218
\(848\) 0 0
\(849\) 2.11959e11 + 9.01679e10i 0.407964 + 0.173549i
\(850\) 0 0
\(851\) 2.20131e11i 0.419723i
\(852\) 0 0
\(853\) −1.72700e11 −0.326209 −0.163105 0.986609i \(-0.552151\pi\)
−0.163105 + 0.986609i \(0.552151\pi\)
\(854\) 0 0
\(855\) −2.76976e11 + 2.66633e11i −0.518296 + 0.498942i
\(856\) 0 0
\(857\) 7.95922e10i 0.147553i 0.997275 + 0.0737763i \(0.0235051\pi\)
−0.997275 + 0.0737763i \(0.976495\pi\)
\(858\) 0 0
\(859\) 8.64486e10 0.158776 0.0793881 0.996844i \(-0.474703\pi\)
0.0793881 + 0.996844i \(0.474703\pi\)
\(860\) 0 0
\(861\) 3.90066e9 9.16935e9i 0.00709783 0.0166850i
\(862\) 0 0
\(863\) 9.99047e11i 1.80112i 0.434731 + 0.900560i \(0.356843\pi\)
−0.434731 + 0.900560i \(0.643157\pi\)
\(864\) 0 0
\(865\) 3.76962e11 0.673338
\(866\) 0 0
\(867\) 8.38318e10 + 3.56622e10i 0.148365 + 0.0631149i
\(868\) 0 0
\(869\) 3.85743e11i 0.676424i
\(870\) 0 0
\(871\) 1.35630e11 0.235658
\(872\) 0 0
\(873\) −1.35017e11 1.40254e11i −0.232451 0.241468i
\(874\) 0 0
\(875\) 3.74868e9i 0.00639509i
\(876\) 0 0
\(877\) 2.38490e11 0.403155 0.201578 0.979473i \(-0.435393\pi\)
0.201578 + 0.979473i \(0.435393\pi\)
\(878\) 0 0
\(879\) 1.07808e11 2.53426e11i 0.180591 0.424518i
\(880\) 0 0
\(881\) 1.03350e12i 1.71556i −0.514016 0.857781i \(-0.671843\pi\)
0.514016 0.857781i \(-0.328157\pi\)
\(882\) 0 0
\(883\) 2.82764e11 0.465137 0.232569 0.972580i \(-0.425287\pi\)
0.232569 + 0.972580i \(0.425287\pi\)
\(884\) 0 0
\(885\) 3.51198e11 + 1.49400e11i 0.572505 + 0.243545i
\(886\) 0 0
\(887\) 3.71450e11i 0.600075i 0.953927 + 0.300038i \(0.0969992\pi\)
−0.953927 + 0.300038i \(0.903001\pi\)
\(888\) 0 0
\(889\) 7.84762e10 0.125641
\(890\) 0 0
\(891\) −2.78458e11 1.06000e10i −0.441823 0.0168188i
\(892\) 0 0
\(893\) 9.59968e11i 1.50956i
\(894\) 0 0
\(895\) −3.83905e10 −0.0598317
\(896\) 0 0
\(897\) −5.87713e10 + 1.38155e11i −0.0907812 + 0.213401i
\(898\) 0 0
\(899\) 1.34193e11i 0.205443i
\(900\) 0 0
\(901\) 5.67055e11 0.860450
\(902\) 0 0
\(903\) −2.80241e10 1.19215e10i −0.0421484 0.0179300i
\(904\) 0 0
\(905\) 3.21081e10i 0.0478653i
\(906\) 0 0
\(907\) 8.73952e11 1.29139 0.645697 0.763594i \(-0.276567\pi\)
0.645697 + 0.763594i \(0.276567\pi\)
\(908\) 0 0
\(909\) −4.03871e11 + 3.88790e11i −0.591544 + 0.569455i
\(910\) 0 0
\(911\) 3.02963e11i 0.439862i 0.975515 + 0.219931i \(0.0705832\pi\)
−0.975515 + 0.219931i \(0.929417\pi\)
\(912\) 0 0
\(913\) 5.83846e9 0.00840263
\(914\) 0 0
\(915\) −8.77499e10 + 2.06275e11i −0.125188 + 0.294281i
\(916\) 0 0
\(917\) 8.50037e10i 0.120215i
\(918\) 0 0
\(919\) −6.44252e10 −0.0903220 −0.0451610 0.998980i \(-0.514380\pi\)
−0.0451610 + 0.998980i \(0.514380\pi\)
\(920\) 0 0
\(921\) 1.94671e11 + 8.28134e10i 0.270559 + 0.115096i
\(922\) 0 0
\(923\) 2.90499e10i 0.0400256i
\(924\) 0 0
\(925\) 1.20689e11 0.164855
\(926\) 0 0
\(927\) −5.54836e10 5.76358e10i −0.0751355 0.0780501i
\(928\) 0 0
\(929\) 1.28458e12i 1.72464i −0.506363 0.862320i \(-0.669010\pi\)
0.506363 0.862320i \(-0.330990\pi\)
\(930\) 0 0
\(931\) −1.20239e12 −1.60046
\(932\) 0 0
\(933\) 1.94766e11 4.57839e11i 0.257031 0.604207i
\(934\) 0 0
\(935\) 1.62849e11i 0.213077i
\(936\) 0 0
\(937\) 1.51713e11 0.196818 0.0984091 0.995146i \(-0.468625\pi\)
0.0984091 + 0.995146i \(0.468625\pi\)
\(938\) 0 0
\(939\) 7.73934e11 + 3.29233e11i 0.995501 + 0.423488i
\(940\) 0 0
\(941\) 5.73298e11i 0.731176i −0.930777 0.365588i \(-0.880868\pi\)
0.930777 0.365588i \(-0.119132\pi\)
\(942\) 0 0
\(943\) 1.02113e11 0.129132
\(944\) 0 0
\(945\) −2.38280e10 + 9.08233e9i −0.0298786 + 0.0113886i
\(946\) 0 0
\(947\) 1.42399e11i 0.177055i 0.996074 + 0.0885273i \(0.0282161\pi\)
−0.996074 + 0.0885273i \(0.971784\pi\)
\(948\) 0 0
\(949\) 3.99509e11 0.492563
\(950\) 0 0
\(951\) 4.73691e11 1.11351e12i 0.579126 1.36136i
\(952\) 0 0
\(953\) 2.81542e11i 0.341327i −0.985329 0.170664i \(-0.945409\pi\)
0.985329 0.170664i \(-0.0545912\pi\)
\(954\) 0 0
\(955\) 2.58962e10 0.0311331
\(956\) 0 0
\(957\) −1.03676e11 4.41039e10i −0.123603 0.0525810i
\(958\) 0 0
\(959\) 1.02568e11i 0.121266i
\(960\) 0 0
\(961\) −4.62853e11 −0.542687
\(962\) 0 0
\(963\) 2.46186e11 2.36993e11i 0.286258 0.275568i
\(964\) 0 0
\(965\) 6.03100e11i 0.695473i
\(966\) 0 0
\(967\) 1.59050e12 1.81898 0.909488 0.415729i \(-0.136474\pi\)
0.909488 + 0.415729i \(0.136474\pi\)
\(968\) 0 0
\(969\) −5.98283e11 + 1.40639e12i −0.678596 + 1.59519i
\(970\) 0 0
\(971\) 1.52892e12i 1.71992i 0.510365 + 0.859958i \(0.329510\pi\)
−0.510365 + 0.859958i \(0.670490\pi\)
\(972\) 0 0
\(973\) −1.01680e11 −0.113445
\(974\) 0 0
\(975\) −7.57450e10 3.22221e10i −0.0838176 0.0356562i
\(976\) 0 0
\(977\) 1.07377e12i 1.17851i −0.807947 0.589255i \(-0.799421\pi\)
0.807947 0.589255i \(-0.200579\pi\)
\(978\) 0 0
\(979\) 3.97313e11 0.432516
\(980\) 0 0
\(981\) −9.51943e11 9.88869e11i −1.02786 1.06773i
\(982\) 0 0
\(983\) 1.76471e12i 1.88998i 0.327093 + 0.944992i \(0.393931\pi\)
−0.327093 + 0.944992i \(0.606069\pi\)
\(984\) 0 0
\(985\) −1.36443e11 −0.144946
\(986\) 0 0
\(987\) −2.49247e10 + 5.85910e10i −0.0262641 + 0.0617394i
\(988\) 0 0
\(989\) 3.12086e11i 0.326204i
\(990\) 0 0
\(991\) 7.95898e11 0.825206 0.412603 0.910911i \(-0.364620\pi\)
0.412603 + 0.910911i \(0.364620\pi\)
\(992\) 0 0
\(993\) −7.80615e11 3.32075e11i −0.802861 0.341539i
\(994\) 0 0
\(995\) 2.34116e11i 0.238858i
\(996\) 0 0
\(997\) −1.04577e11 −0.105842 −0.0529209 0.998599i \(-0.516853\pi\)
−0.0529209 + 0.998599i \(0.516853\pi\)
\(998\) 0 0
\(999\) 2.92407e11 + 7.67145e11i 0.293580 + 0.770222i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 120.9.l.a.41.3 32
3.2 odd 2 inner 120.9.l.a.41.4 yes 32
4.3 odd 2 240.9.l.d.161.30 32
12.11 even 2 240.9.l.d.161.29 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.9.l.a.41.3 32 1.1 even 1 trivial
120.9.l.a.41.4 yes 32 3.2 odd 2 inner
240.9.l.d.161.29 32 12.11 even 2
240.9.l.d.161.30 32 4.3 odd 2