Properties

Label 120.9.c.a.89.44
Level $120$
Weight $9$
Character 120.89
Analytic conductor $48.885$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [120,9,Mod(89,120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("120.89"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 120.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.8854332073\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 89.44
Character \(\chi\) \(=\) 120.89
Dual form 120.9.c.a.89.43

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(76.6243 + 26.2625i) q^{3} +(-461.945 - 420.989i) q^{5} +982.121i q^{7} +(5181.56 + 4024.69i) q^{9} +8653.99i q^{11} -18173.3i q^{13} +(-24340.0 - 44389.8i) q^{15} -4881.66 q^{17} -73530.2 q^{19} +(-25793.0 + 75254.3i) q^{21} +11644.6 q^{23} +(36161.6 + 388948. i) q^{25} +(291335. + 444470. i) q^{27} +981664. i q^{29} -853304. q^{31} +(-227276. + 663106. i) q^{33} +(413462. - 453686. i) q^{35} +712787. i q^{37} +(477276. - 1.39251e6i) q^{39} +4.65194e6i q^{41} -2.20493e6i q^{43} +(-699245. - 4.04057e6i) q^{45} -3.60712e6 q^{47} +4.80024e6 q^{49} +(-374053. - 128205. i) q^{51} -1.28038e7 q^{53} +(3.64323e6 - 3.99767e6i) q^{55} +(-5.63420e6 - 1.93109e6i) q^{57} +1.13258e7i q^{59} +8.48249e6 q^{61} +(-3.95273e6 + 5.08892e6i) q^{63} +(-7.65074e6 + 8.39505e6i) q^{65} +9.68738e6i q^{67} +(892256. + 305815. i) q^{69} +1.68485e7i q^{71} +4.32871e7i q^{73} +(-7.44389e6 + 3.07525e7i) q^{75} -8.49926e6 q^{77} -1.15899e7 q^{79} +(1.06504e7 + 4.17084e7i) q^{81} -7.18688e7 q^{83} +(2.25506e6 + 2.05512e6i) q^{85} +(-2.57810e7 + 7.52193e7i) q^{87} +7.55168e7i q^{89} +1.78483e7 q^{91} +(-6.53838e7 - 2.24099e7i) q^{93} +(3.39669e7 + 3.09554e7i) q^{95} -1.21749e8i q^{97} +(-3.48297e7 + 4.48412e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2528 q^{9} + 132352 q^{15} + 116176 q^{21} + 56976 q^{25} + 1395648 q^{31} + 6888832 q^{39} - 4287056 q^{45} - 30813552 q^{49} - 22815168 q^{51} - 6062784 q^{55} + 14031936 q^{61} + 2522608 q^{69}+ \cdots - 21719360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 76.6243 + 26.2625i 0.945979 + 0.324229i
\(4\) 0 0
\(5\) −461.945 420.989i −0.739112 0.673582i
\(6\) 0 0
\(7\) 982.121i 0.409047i 0.978862 + 0.204523i \(0.0655644\pi\)
−0.978862 + 0.204523i \(0.934436\pi\)
\(8\) 0 0
\(9\) 5181.56 + 4024.69i 0.789752 + 0.613427i
\(10\) 0 0
\(11\) 8653.99i 0.591079i 0.955330 + 0.295540i \(0.0954994\pi\)
−0.955330 + 0.295540i \(0.904501\pi\)
\(12\) 0 0
\(13\) 18173.3i 0.636296i −0.948041 0.318148i \(-0.896939\pi\)
0.948041 0.318148i \(-0.103061\pi\)
\(14\) 0 0
\(15\) −24340.0 44389.8i −0.480790 0.876836i
\(16\) 0 0
\(17\) −4881.66 −0.0584483 −0.0292241 0.999573i \(-0.509304\pi\)
−0.0292241 + 0.999573i \(0.509304\pi\)
\(18\) 0 0
\(19\) −73530.2 −0.564224 −0.282112 0.959381i \(-0.591035\pi\)
−0.282112 + 0.959381i \(0.591035\pi\)
\(20\) 0 0
\(21\) −25793.0 + 75254.3i −0.132625 + 0.386949i
\(22\) 0 0
\(23\) 11644.6 0.0416113 0.0208057 0.999784i \(-0.493377\pi\)
0.0208057 + 0.999784i \(0.493377\pi\)
\(24\) 0 0
\(25\) 36161.6 + 388948.i 0.0925737 + 0.995706i
\(26\) 0 0
\(27\) 291335. + 444470.i 0.548198 + 0.836349i
\(28\) 0 0
\(29\) 981664.i 1.38794i 0.720003 + 0.693971i \(0.244140\pi\)
−0.720003 + 0.693971i \(0.755860\pi\)
\(30\) 0 0
\(31\) −853304. −0.923968 −0.461984 0.886888i \(-0.652862\pi\)
−0.461984 + 0.886888i \(0.652862\pi\)
\(32\) 0 0
\(33\) −227276. + 663106.i −0.191645 + 0.559148i
\(34\) 0 0
\(35\) 413462. 453686.i 0.275526 0.302331i
\(36\) 0 0
\(37\) 712787.i 0.380323i 0.981753 + 0.190162i \(0.0609012\pi\)
−0.981753 + 0.190162i \(0.939099\pi\)
\(38\) 0 0
\(39\) 477276. 1.39251e6i 0.206305 0.601923i
\(40\) 0 0
\(41\) 4.65194e6i 1.64626i 0.567852 + 0.823130i \(0.307774\pi\)
−0.567852 + 0.823130i \(0.692226\pi\)
\(42\) 0 0
\(43\) 2.20493e6i 0.644942i −0.946579 0.322471i \(-0.895487\pi\)
0.946579 0.322471i \(-0.104513\pi\)
\(44\) 0 0
\(45\) −699245. 4.04057e6i −0.170522 0.985354i
\(46\) 0 0
\(47\) −3.60712e6 −0.739212 −0.369606 0.929188i \(-0.620507\pi\)
−0.369606 + 0.929188i \(0.620507\pi\)
\(48\) 0 0
\(49\) 4.80024e6 0.832681
\(50\) 0 0
\(51\) −374053. 128205.i −0.0552908 0.0189506i
\(52\) 0 0
\(53\) −1.28038e7 −1.62269 −0.811344 0.584569i \(-0.801264\pi\)
−0.811344 + 0.584569i \(0.801264\pi\)
\(54\) 0 0
\(55\) 3.64323e6 3.99767e6i 0.398141 0.436874i
\(56\) 0 0
\(57\) −5.63420e6 1.93109e6i −0.533744 0.182938i
\(58\) 0 0
\(59\) 1.13258e7i 0.934679i 0.884078 + 0.467339i \(0.154787\pi\)
−0.884078 + 0.467339i \(0.845213\pi\)
\(60\) 0 0
\(61\) 8.48249e6 0.612638 0.306319 0.951929i \(-0.400903\pi\)
0.306319 + 0.951929i \(0.400903\pi\)
\(62\) 0 0
\(63\) −3.95273e6 + 5.08892e6i −0.250920 + 0.323045i
\(64\) 0 0
\(65\) −7.65074e6 + 8.39505e6i −0.428598 + 0.470294i
\(66\) 0 0
\(67\) 9.68738e6i 0.480737i 0.970682 + 0.240368i \(0.0772682\pi\)
−0.970682 + 0.240368i \(0.922732\pi\)
\(68\) 0 0
\(69\) 892256. + 305815.i 0.0393634 + 0.0134916i
\(70\) 0 0
\(71\) 1.68485e7i 0.663021i 0.943452 + 0.331510i \(0.107558\pi\)
−0.943452 + 0.331510i \(0.892442\pi\)
\(72\) 0 0
\(73\) 4.32871e7i 1.52429i 0.647407 + 0.762145i \(0.275853\pi\)
−0.647407 + 0.762145i \(0.724147\pi\)
\(74\) 0 0
\(75\) −7.44389e6 + 3.07525e7i −0.235264 + 0.971932i
\(76\) 0 0
\(77\) −8.49926e6 −0.241779
\(78\) 0 0
\(79\) −1.15899e7 −0.297559 −0.148780 0.988870i \(-0.547534\pi\)
−0.148780 + 0.988870i \(0.547534\pi\)
\(80\) 0 0
\(81\) 1.06504e7 + 4.17084e7i 0.247415 + 0.968910i
\(82\) 0 0
\(83\) −7.18688e7 −1.51436 −0.757178 0.653208i \(-0.773423\pi\)
−0.757178 + 0.653208i \(0.773423\pi\)
\(84\) 0 0
\(85\) 2.25506e6 + 2.05512e6i 0.0431998 + 0.0393697i
\(86\) 0 0
\(87\) −2.57810e7 + 7.52193e7i −0.450010 + 1.31296i
\(88\) 0 0
\(89\) 7.55168e7i 1.20360i 0.798645 + 0.601802i \(0.205550\pi\)
−0.798645 + 0.601802i \(0.794450\pi\)
\(90\) 0 0
\(91\) 1.78483e7 0.260275
\(92\) 0 0
\(93\) −6.53838e7 2.24099e7i −0.874054 0.299577i
\(94\) 0 0
\(95\) 3.39669e7 + 3.09554e7i 0.417025 + 0.380051i
\(96\) 0 0
\(97\) 1.21749e8i 1.37524i −0.726073 0.687618i \(-0.758657\pi\)
0.726073 0.687618i \(-0.241343\pi\)
\(98\) 0 0
\(99\) −3.48297e7 + 4.48412e7i −0.362584 + 0.466806i
\(100\) 0 0
\(101\) 1.01046e8i 0.971033i −0.874228 0.485516i \(-0.838632\pi\)
0.874228 0.485516i \(-0.161368\pi\)
\(102\) 0 0
\(103\) 7.00996e7i 0.622826i 0.950275 + 0.311413i \(0.100802\pi\)
−0.950275 + 0.311413i \(0.899198\pi\)
\(104\) 0 0
\(105\) 4.35962e7 2.39048e7i 0.358667 0.196665i
\(106\) 0 0
\(107\) −3.07384e7 −0.234502 −0.117251 0.993102i \(-0.537408\pi\)
−0.117251 + 0.993102i \(0.537408\pi\)
\(108\) 0 0
\(109\) 1.12561e8 0.797409 0.398705 0.917079i \(-0.369460\pi\)
0.398705 + 0.917079i \(0.369460\pi\)
\(110\) 0 0
\(111\) −1.87196e7 + 5.46168e7i −0.123312 + 0.359778i
\(112\) 0 0
\(113\) −1.58169e8 −0.970082 −0.485041 0.874491i \(-0.661195\pi\)
−0.485041 + 0.874491i \(0.661195\pi\)
\(114\) 0 0
\(115\) −5.37915e6 4.90223e6i −0.0307554 0.0280287i
\(116\) 0 0
\(117\) 7.31418e7 9.41658e7i 0.390321 0.502516i
\(118\) 0 0
\(119\) 4.79438e6i 0.0239081i
\(120\) 0 0
\(121\) 1.39467e8 0.650625
\(122\) 0 0
\(123\) −1.22172e8 + 3.56451e8i −0.533765 + 1.55733i
\(124\) 0 0
\(125\) 1.47038e8 1.94896e8i 0.602267 0.798294i
\(126\) 0 0
\(127\) 1.14202e8i 0.438993i −0.975613 0.219496i \(-0.929559\pi\)
0.975613 0.219496i \(-0.0704414\pi\)
\(128\) 0 0
\(129\) 5.79070e7 1.68951e8i 0.209109 0.610101i
\(130\) 0 0
\(131\) 5.08690e7i 0.172730i 0.996264 + 0.0863650i \(0.0275251\pi\)
−0.996264 + 0.0863650i \(0.972475\pi\)
\(132\) 0 0
\(133\) 7.22156e7i 0.230794i
\(134\) 0 0
\(135\) 5.25363e7 3.27969e8i 0.158170 0.987412i
\(136\) 0 0
\(137\) 1.70775e8 0.484776 0.242388 0.970179i \(-0.422069\pi\)
0.242388 + 0.970179i \(0.422069\pi\)
\(138\) 0 0
\(139\) −2.48000e8 −0.664344 −0.332172 0.943219i \(-0.607781\pi\)
−0.332172 + 0.943219i \(0.607781\pi\)
\(140\) 0 0
\(141\) −2.76393e8 9.47321e7i −0.699279 0.239674i
\(142\) 0 0
\(143\) 1.57271e8 0.376102
\(144\) 0 0
\(145\) 4.13270e8 4.53475e8i 0.934893 1.02584i
\(146\) 0 0
\(147\) 3.67815e8 + 1.26066e8i 0.787698 + 0.269979i
\(148\) 0 0
\(149\) 3.04126e8i 0.617034i −0.951219 0.308517i \(-0.900167\pi\)
0.951219 0.308517i \(-0.0998326\pi\)
\(150\) 0 0
\(151\) −2.94615e8 −0.566692 −0.283346 0.959018i \(-0.591445\pi\)
−0.283346 + 0.959018i \(0.591445\pi\)
\(152\) 0 0
\(153\) −2.52946e7 1.96472e7i −0.0461596 0.0358537i
\(154\) 0 0
\(155\) 3.94180e8 + 3.59231e8i 0.682916 + 0.622369i
\(156\) 0 0
\(157\) 5.91610e8i 0.973727i −0.873478 0.486864i \(-0.838141\pi\)
0.873478 0.486864i \(-0.161859\pi\)
\(158\) 0 0
\(159\) −9.81081e8 3.36260e8i −1.53503 0.526122i
\(160\) 0 0
\(161\) 1.14364e7i 0.0170210i
\(162\) 0 0
\(163\) 4.81315e8i 0.681835i 0.940093 + 0.340918i \(0.110738\pi\)
−0.940093 + 0.340918i \(0.889262\pi\)
\(164\) 0 0
\(165\) 3.84149e8 2.10638e8i 0.518280 0.284185i
\(166\) 0 0
\(167\) 1.29753e9 1.66821 0.834104 0.551607i \(-0.185985\pi\)
0.834104 + 0.551607i \(0.185985\pi\)
\(168\) 0 0
\(169\) 4.85463e8 0.595127
\(170\) 0 0
\(171\) −3.81001e8 2.95937e8i −0.445597 0.346110i
\(172\) 0 0
\(173\) −1.42317e8 −0.158881 −0.0794403 0.996840i \(-0.525313\pi\)
−0.0794403 + 0.996840i \(0.525313\pi\)
\(174\) 0 0
\(175\) −3.81993e8 + 3.55151e7i −0.407290 + 0.0378670i
\(176\) 0 0
\(177\) −2.97445e8 + 8.67834e8i −0.303050 + 0.884186i
\(178\) 0 0
\(179\) 2.71626e7i 0.0264582i 0.999912 + 0.0132291i \(0.00421107\pi\)
−0.999912 + 0.0132291i \(0.995789\pi\)
\(180\) 0 0
\(181\) 1.10557e9 1.03008 0.515039 0.857167i \(-0.327777\pi\)
0.515039 + 0.857167i \(0.327777\pi\)
\(182\) 0 0
\(183\) 6.49965e8 + 2.22772e8i 0.579543 + 0.198635i
\(184\) 0 0
\(185\) 3.00075e8 3.29268e8i 0.256179 0.281101i
\(186\) 0 0
\(187\) 4.22458e7i 0.0345476i
\(188\) 0 0
\(189\) −4.36523e8 + 2.86126e8i −0.342106 + 0.224238i
\(190\) 0 0
\(191\) 2.33274e9i 1.75280i −0.481585 0.876399i \(-0.659939\pi\)
0.481585 0.876399i \(-0.340061\pi\)
\(192\) 0 0
\(193\) 1.94812e9i 1.40406i −0.712146 0.702031i \(-0.752277\pi\)
0.712146 0.702031i \(-0.247723\pi\)
\(194\) 0 0
\(195\) −8.06708e8 + 4.42337e8i −0.557927 + 0.305925i
\(196\) 0 0
\(197\) −3.91016e8 −0.259615 −0.129807 0.991539i \(-0.541436\pi\)
−0.129807 + 0.991539i \(0.541436\pi\)
\(198\) 0 0
\(199\) −1.05716e9 −0.674104 −0.337052 0.941486i \(-0.609430\pi\)
−0.337052 + 0.941486i \(0.609430\pi\)
\(200\) 0 0
\(201\) −2.54415e8 + 7.42289e8i −0.155869 + 0.454767i
\(202\) 0 0
\(203\) −9.64113e8 −0.567733
\(204\) 0 0
\(205\) 1.95842e9 2.14894e9i 1.10889 1.21677i
\(206\) 0 0
\(207\) 6.03370e7 + 4.68658e7i 0.0328626 + 0.0255255i
\(208\) 0 0
\(209\) 6.36330e8i 0.333501i
\(210\) 0 0
\(211\) 3.51802e9 1.77488 0.887440 0.460924i \(-0.152482\pi\)
0.887440 + 0.460924i \(0.152482\pi\)
\(212\) 0 0
\(213\) −4.42483e8 + 1.29100e9i −0.214970 + 0.627203i
\(214\) 0 0
\(215\) −9.28250e8 + 1.01856e9i −0.434421 + 0.476684i
\(216\) 0 0
\(217\) 8.38047e8i 0.377946i
\(218\) 0 0
\(219\) −1.13683e9 + 3.31684e9i −0.494218 + 1.44194i
\(220\) 0 0
\(221\) 8.87156e7i 0.0371904i
\(222\) 0 0
\(223\) 2.16380e9i 0.874981i −0.899223 0.437491i \(-0.855867\pi\)
0.899223 0.437491i \(-0.144133\pi\)
\(224\) 0 0
\(225\) −1.37802e9 + 2.16089e9i −0.537682 + 0.843147i
\(226\) 0 0
\(227\) −3.66824e9 −1.38151 −0.690755 0.723089i \(-0.742722\pi\)
−0.690755 + 0.723089i \(0.742722\pi\)
\(228\) 0 0
\(229\) 1.22572e9 0.445707 0.222853 0.974852i \(-0.428463\pi\)
0.222853 + 0.974852i \(0.428463\pi\)
\(230\) 0 0
\(231\) −6.51250e8 2.23212e8i −0.228718 0.0783916i
\(232\) 0 0
\(233\) 2.59519e9 0.880531 0.440266 0.897868i \(-0.354884\pi\)
0.440266 + 0.897868i \(0.354884\pi\)
\(234\) 0 0
\(235\) 1.66629e9 + 1.51856e9i 0.546361 + 0.497920i
\(236\) 0 0
\(237\) −8.88071e8 3.04381e8i −0.281484 0.0964772i
\(238\) 0 0
\(239\) 4.00336e9i 1.22697i 0.789707 + 0.613484i \(0.210233\pi\)
−0.789707 + 0.613484i \(0.789767\pi\)
\(240\) 0 0
\(241\) −2.29228e9 −0.679515 −0.339758 0.940513i \(-0.610345\pi\)
−0.339758 + 0.940513i \(0.610345\pi\)
\(242\) 0 0
\(243\) −2.79287e8 + 3.47558e9i −0.0800988 + 0.996787i
\(244\) 0 0
\(245\) −2.21745e9 2.02085e9i −0.615445 0.560879i
\(246\) 0 0
\(247\) 1.33628e9i 0.359014i
\(248\) 0 0
\(249\) −5.50690e9 1.88746e9i −1.43255 0.490998i
\(250\) 0 0
\(251\) 6.02678e9i 1.51842i 0.650849 + 0.759208i \(0.274413\pi\)
−0.650849 + 0.759208i \(0.725587\pi\)
\(252\) 0 0
\(253\) 1.00772e8i 0.0245956i
\(254\) 0 0
\(255\) 1.18819e8 + 2.16696e8i 0.0281013 + 0.0512495i
\(256\) 0 0
\(257\) −5.11464e8 −0.117242 −0.0586209 0.998280i \(-0.518670\pi\)
−0.0586209 + 0.998280i \(0.518670\pi\)
\(258\) 0 0
\(259\) −7.00043e8 −0.155570
\(260\) 0 0
\(261\) −3.95090e9 + 5.08655e9i −0.851400 + 1.09613i
\(262\) 0 0
\(263\) 5.43681e8 0.113637 0.0568186 0.998385i \(-0.481904\pi\)
0.0568186 + 0.998385i \(0.481904\pi\)
\(264\) 0 0
\(265\) 5.91465e9 + 5.39025e9i 1.19935 + 1.09301i
\(266\) 0 0
\(267\) −1.98326e9 + 5.78642e9i −0.390243 + 1.13858i
\(268\) 0 0
\(269\) 6.14651e9i 1.17387i 0.809635 + 0.586934i \(0.199665\pi\)
−0.809635 + 0.586934i \(0.800335\pi\)
\(270\) 0 0
\(271\) 9.86706e9 1.82941 0.914704 0.404125i \(-0.132424\pi\)
0.914704 + 0.404125i \(0.132424\pi\)
\(272\) 0 0
\(273\) 1.36762e9 + 4.68742e8i 0.246214 + 0.0843885i
\(274\) 0 0
\(275\) −3.36595e9 + 3.12942e8i −0.588541 + 0.0547184i
\(276\) 0 0
\(277\) 8.51275e8i 0.144594i 0.997383 + 0.0722971i \(0.0230330\pi\)
−0.997383 + 0.0722971i \(0.976967\pi\)
\(278\) 0 0
\(279\) −4.42145e9 3.43429e9i −0.729705 0.566787i
\(280\) 0 0
\(281\) 3.47324e9i 0.557070i 0.960426 + 0.278535i \(0.0898488\pi\)
−0.960426 + 0.278535i \(0.910151\pi\)
\(282\) 0 0
\(283\) 9.60563e9i 1.49755i −0.662826 0.748773i \(-0.730643\pi\)
0.662826 0.748773i \(-0.269357\pi\)
\(284\) 0 0
\(285\) 1.78972e9 + 3.26399e9i 0.271273 + 0.494732i
\(286\) 0 0
\(287\) −4.56877e9 −0.673397
\(288\) 0 0
\(289\) −6.95193e9 −0.996584
\(290\) 0 0
\(291\) 3.19742e9 9.32890e9i 0.445891 1.30094i
\(292\) 0 0
\(293\) 1.51538e9 0.205613 0.102807 0.994701i \(-0.467218\pi\)
0.102807 + 0.994701i \(0.467218\pi\)
\(294\) 0 0
\(295\) 4.76805e9 5.23192e9i 0.629583 0.690832i
\(296\) 0 0
\(297\) −3.84644e9 + 2.52121e9i −0.494348 + 0.324028i
\(298\) 0 0
\(299\) 2.11620e8i 0.0264771i
\(300\) 0 0
\(301\) 2.16551e9 0.263811
\(302\) 0 0
\(303\) 2.65372e9 7.74258e9i 0.314837 0.918576i
\(304\) 0 0
\(305\) −3.91845e9 3.57104e9i −0.452808 0.412662i
\(306\) 0 0
\(307\) 1.76009e10i 1.98144i −0.135927 0.990719i \(-0.543401\pi\)
0.135927 0.990719i \(-0.456599\pi\)
\(308\) 0 0
\(309\) −1.84099e9 + 5.37133e9i −0.201938 + 0.589180i
\(310\) 0 0
\(311\) 1.18673e10i 1.26856i −0.773104 0.634280i \(-0.781297\pi\)
0.773104 0.634280i \(-0.218703\pi\)
\(312\) 0 0
\(313\) 2.01409e9i 0.209846i −0.994480 0.104923i \(-0.966540\pi\)
0.994480 0.104923i \(-0.0334596\pi\)
\(314\) 0 0
\(315\) 3.96832e9 6.86743e8i 0.403056 0.0697513i
\(316\) 0 0
\(317\) 5.91329e9 0.585588 0.292794 0.956176i \(-0.405415\pi\)
0.292794 + 0.956176i \(0.405415\pi\)
\(318\) 0 0
\(319\) −8.49532e9 −0.820383
\(320\) 0 0
\(321\) −2.35531e9 8.07268e8i −0.221834 0.0760322i
\(322\) 0 0
\(323\) 3.58949e8 0.0329779
\(324\) 0 0
\(325\) 7.06844e9 6.57174e8i 0.633564 0.0589043i
\(326\) 0 0
\(327\) 8.62489e9 + 2.95613e9i 0.754332 + 0.258543i
\(328\) 0 0
\(329\) 3.54263e9i 0.302372i
\(330\) 0 0
\(331\) 1.31827e10 1.09822 0.549112 0.835749i \(-0.314966\pi\)
0.549112 + 0.835749i \(0.314966\pi\)
\(332\) 0 0
\(333\) −2.86875e9 + 3.69335e9i −0.233300 + 0.300361i
\(334\) 0 0
\(335\) 4.07828e9 4.47504e9i 0.323816 0.355318i
\(336\) 0 0
\(337\) 1.66709e10i 1.29253i 0.763114 + 0.646264i \(0.223669\pi\)
−0.763114 + 0.646264i \(0.776331\pi\)
\(338\) 0 0
\(339\) −1.21196e10 4.15393e9i −0.917677 0.314528i
\(340\) 0 0
\(341\) 7.38448e9i 0.546138i
\(342\) 0 0
\(343\) 1.03761e10i 0.749652i
\(344\) 0 0
\(345\) −2.83428e8 5.16900e8i −0.0200063 0.0364863i
\(346\) 0 0
\(347\) 1.10956e10 0.765302 0.382651 0.923893i \(-0.375011\pi\)
0.382651 + 0.923893i \(0.375011\pi\)
\(348\) 0 0
\(349\) −2.56004e10 −1.72562 −0.862808 0.505531i \(-0.831296\pi\)
−0.862808 + 0.505531i \(0.831296\pi\)
\(350\) 0 0
\(351\) 8.07747e9 5.29450e9i 0.532166 0.348816i
\(352\) 0 0
\(353\) 2.46652e10 1.58850 0.794249 0.607593i \(-0.207865\pi\)
0.794249 + 0.607593i \(0.207865\pi\)
\(354\) 0 0
\(355\) 7.09302e9 7.78307e9i 0.446599 0.490047i
\(356\) 0 0
\(357\) 1.25912e8 3.67366e8i 0.00775168 0.0226165i
\(358\) 0 0
\(359\) 1.65018e10i 0.993467i 0.867903 + 0.496734i \(0.165467\pi\)
−0.867903 + 0.496734i \(0.834533\pi\)
\(360\) 0 0
\(361\) −1.15769e10 −0.681651
\(362\) 0 0
\(363\) 1.06866e10 + 3.66276e9i 0.615478 + 0.210951i
\(364\) 0 0
\(365\) 1.82234e10 1.99963e10i 1.02673 1.12662i
\(366\) 0 0
\(367\) 3.02033e9i 0.166491i −0.996529 0.0832455i \(-0.973471\pi\)
0.996529 0.0832455i \(-0.0265286\pi\)
\(368\) 0 0
\(369\) −1.87226e10 + 2.41043e10i −1.00986 + 1.30014i
\(370\) 0 0
\(371\) 1.25749e10i 0.663755i
\(372\) 0 0
\(373\) 6.87055e8i 0.0354941i −0.999843 0.0177471i \(-0.994351\pi\)
0.999843 0.0177471i \(-0.00564936\pi\)
\(374\) 0 0
\(375\) 1.63851e10 1.10722e10i 0.828562 0.559897i
\(376\) 0 0
\(377\) 1.78400e10 0.883142
\(378\) 0 0
\(379\) −2.27101e10 −1.10068 −0.550342 0.834939i \(-0.685503\pi\)
−0.550342 + 0.834939i \(0.685503\pi\)
\(380\) 0 0
\(381\) 2.99922e9 8.75061e9i 0.142334 0.415278i
\(382\) 0 0
\(383\) −3.67251e10 −1.70674 −0.853370 0.521305i \(-0.825445\pi\)
−0.853370 + 0.521305i \(0.825445\pi\)
\(384\) 0 0
\(385\) 3.92619e9 + 3.57810e9i 0.178702 + 0.162858i
\(386\) 0 0
\(387\) 8.87416e9 1.14250e10i 0.395625 0.509344i
\(388\) 0 0
\(389\) 2.81535e10i 1.22951i −0.788716 0.614757i \(-0.789254\pi\)
0.788716 0.614757i \(-0.210746\pi\)
\(390\) 0 0
\(391\) −5.68447e7 −0.00243211
\(392\) 0 0
\(393\) −1.33595e9 + 3.89780e9i −0.0560040 + 0.163399i
\(394\) 0 0
\(395\) 5.35392e9 + 4.87924e9i 0.219929 + 0.200430i
\(396\) 0 0
\(397\) 2.03348e10i 0.818611i −0.912397 0.409305i \(-0.865771\pi\)
0.912397 0.409305i \(-0.134229\pi\)
\(398\) 0 0
\(399\) 1.89656e9 5.53346e9i 0.0748300 0.218326i
\(400\) 0 0
\(401\) 1.72949e9i 0.0668870i 0.999441 + 0.0334435i \(0.0106474\pi\)
−0.999441 + 0.0334435i \(0.989353\pi\)
\(402\) 0 0
\(403\) 1.55073e10i 0.587917i
\(404\) 0 0
\(405\) 1.26389e10 2.37507e10i 0.469773 0.882787i
\(406\) 0 0
\(407\) −6.16845e9 −0.224801
\(408\) 0 0
\(409\) −3.80233e10 −1.35880 −0.679401 0.733767i \(-0.737761\pi\)
−0.679401 + 0.733767i \(0.737761\pi\)
\(410\) 0 0
\(411\) 1.30855e10 + 4.48498e9i 0.458588 + 0.157178i
\(412\) 0 0
\(413\) −1.11233e10 −0.382327
\(414\) 0 0
\(415\) 3.31995e10 + 3.02560e10i 1.11928 + 1.02004i
\(416\) 0 0
\(417\) −1.90028e10 6.51311e9i −0.628455 0.215399i
\(418\) 0 0
\(419\) 2.94257e9i 0.0954708i −0.998860 0.0477354i \(-0.984800\pi\)
0.998860 0.0477354i \(-0.0152004\pi\)
\(420\) 0 0
\(421\) 3.68482e10 1.17297 0.586487 0.809959i \(-0.300511\pi\)
0.586487 + 0.809959i \(0.300511\pi\)
\(422\) 0 0
\(423\) −1.86905e10 1.45176e10i −0.583794 0.453453i
\(424\) 0 0
\(425\) −1.76529e8 1.89871e9i −0.00541077 0.0581973i
\(426\) 0 0
\(427\) 8.33083e9i 0.250598i
\(428\) 0 0
\(429\) 1.20508e10 + 4.13034e9i 0.355784 + 0.121943i
\(430\) 0 0
\(431\) 6.01364e10i 1.74272i 0.490641 + 0.871362i \(0.336763\pi\)
−0.490641 + 0.871362i \(0.663237\pi\)
\(432\) 0 0
\(433\) 9.53893e9i 0.271362i 0.990753 + 0.135681i \(0.0433221\pi\)
−0.990753 + 0.135681i \(0.956678\pi\)
\(434\) 0 0
\(435\) 4.35759e10 2.38937e10i 1.21700 0.667308i
\(436\) 0 0
\(437\) −8.56227e8 −0.0234781
\(438\) 0 0
\(439\) −5.74956e10 −1.54802 −0.774010 0.633173i \(-0.781752\pi\)
−0.774010 + 0.633173i \(0.781752\pi\)
\(440\) 0 0
\(441\) 2.48727e10 + 1.93195e10i 0.657611 + 0.510789i
\(442\) 0 0
\(443\) −5.41194e10 −1.40520 −0.702600 0.711585i \(-0.747978\pi\)
−0.702600 + 0.711585i \(0.747978\pi\)
\(444\) 0 0
\(445\) 3.17917e10 3.48846e10i 0.810726 0.889598i
\(446\) 0 0
\(447\) 7.98712e9 2.33035e10i 0.200060 0.583701i
\(448\) 0 0
\(449\) 4.91595e10i 1.20954i 0.796399 + 0.604772i \(0.206736\pi\)
−0.796399 + 0.604772i \(0.793264\pi\)
\(450\) 0 0
\(451\) −4.02578e10 −0.973071
\(452\) 0 0
\(453\) −2.25747e10 7.73734e9i −0.536079 0.183738i
\(454\) 0 0
\(455\) −8.24495e9 7.51395e9i −0.192372 0.175316i
\(456\) 0 0
\(457\) 3.97700e10i 0.911781i 0.890036 + 0.455891i \(0.150679\pi\)
−0.890036 + 0.455891i \(0.849321\pi\)
\(458\) 0 0
\(459\) −1.42220e9 2.16975e9i −0.0320412 0.0488831i
\(460\) 0 0
\(461\) 4.29664e10i 0.951317i −0.879630 0.475658i \(-0.842210\pi\)
0.879630 0.475658i \(-0.157790\pi\)
\(462\) 0 0
\(463\) 8.71101e10i 1.89559i 0.318879 + 0.947795i \(0.396694\pi\)
−0.318879 + 0.947795i \(0.603306\pi\)
\(464\) 0 0
\(465\) 2.07694e10 + 3.78780e10i 0.444234 + 0.810168i
\(466\) 0 0
\(467\) −8.13998e9 −0.171142 −0.0855708 0.996332i \(-0.527271\pi\)
−0.0855708 + 0.996332i \(0.527271\pi\)
\(468\) 0 0
\(469\) −9.51418e9 −0.196644
\(470\) 0 0
\(471\) 1.55372e10 4.53317e10i 0.315710 0.921125i
\(472\) 0 0
\(473\) 1.90814e10 0.381212
\(474\) 0 0
\(475\) −2.65897e9 2.85994e10i −0.0522323 0.561801i
\(476\) 0 0
\(477\) −6.63436e10 5.15313e10i −1.28152 0.995400i
\(478\) 0 0
\(479\) 9.99358e10i 1.89836i 0.314729 + 0.949181i \(0.398086\pi\)
−0.314729 + 0.949181i \(0.601914\pi\)
\(480\) 0 0
\(481\) 1.29537e10 0.241998
\(482\) 0 0
\(483\) −3.00348e8 + 8.76303e8i −0.00551869 + 0.0161015i
\(484\) 0 0
\(485\) −5.12548e10 + 5.62412e10i −0.926334 + 1.01645i
\(486\) 0 0
\(487\) 6.38070e10i 1.13436i 0.823592 + 0.567182i \(0.191967\pi\)
−0.823592 + 0.567182i \(0.808033\pi\)
\(488\) 0 0
\(489\) −1.26406e10 + 3.68805e10i −0.221071 + 0.645002i
\(490\) 0 0
\(491\) 5.68113e10i 0.977482i 0.872429 + 0.488741i \(0.162544\pi\)
−0.872429 + 0.488741i \(0.837456\pi\)
\(492\) 0 0
\(493\) 4.79215e9i 0.0811228i
\(494\) 0 0
\(495\) 3.49670e10 6.05126e9i 0.582422 0.100792i
\(496\) 0 0
\(497\) −1.65472e10 −0.271206
\(498\) 0 0
\(499\) −6.67795e10 −1.07706 −0.538531 0.842606i \(-0.681021\pi\)
−0.538531 + 0.842606i \(0.681021\pi\)
\(500\) 0 0
\(501\) 9.94220e10 + 3.40763e10i 1.57809 + 0.540881i
\(502\) 0 0
\(503\) −4.26338e10 −0.666011 −0.333006 0.942925i \(-0.608063\pi\)
−0.333006 + 0.942925i \(0.608063\pi\)
\(504\) 0 0
\(505\) −4.25393e10 + 4.66777e10i −0.654070 + 0.717702i
\(506\) 0 0
\(507\) 3.71983e10 + 1.27495e10i 0.562978 + 0.192957i
\(508\) 0 0
\(509\) 6.75807e9i 0.100682i −0.998732 0.0503410i \(-0.983969\pi\)
0.998732 0.0503410i \(-0.0160308\pi\)
\(510\) 0 0
\(511\) −4.25132e10 −0.623505
\(512\) 0 0
\(513\) −2.14219e10 3.26820e10i −0.309306 0.471888i
\(514\) 0 0
\(515\) 2.95112e10 3.23822e10i 0.419524 0.460338i
\(516\) 0 0
\(517\) 3.12160e10i 0.436933i
\(518\) 0 0
\(519\) −1.09049e10 3.73759e9i −0.150298 0.0515137i
\(520\) 0 0
\(521\) 9.33239e10i 1.26661i −0.773903 0.633304i \(-0.781698\pi\)
0.773903 0.633304i \(-0.218302\pi\)
\(522\) 0 0
\(523\) 1.23745e10i 0.165394i −0.996575 0.0826969i \(-0.973647\pi\)
0.996575 0.0826969i \(-0.0263533\pi\)
\(524\) 0 0
\(525\) −3.02027e10 7.31079e9i −0.397565 0.0962337i
\(526\) 0 0
\(527\) 4.16554e9 0.0540043
\(528\) 0 0
\(529\) −7.81754e10 −0.998268
\(530\) 0 0
\(531\) −4.55830e10 + 5.86855e10i −0.573357 + 0.738164i
\(532\) 0 0
\(533\) 8.45409e10 1.04751
\(534\) 0 0
\(535\) 1.41994e10 + 1.29405e10i 0.173323 + 0.157956i
\(536\) 0 0
\(537\) −7.13359e8 + 2.08132e9i −0.00857850 + 0.0250289i
\(538\) 0 0
\(539\) 4.15412e10i 0.492180i
\(540\) 0 0
\(541\) 1.16854e11 1.36413 0.682066 0.731291i \(-0.261082\pi\)
0.682066 + 0.731291i \(0.261082\pi\)
\(542\) 0 0
\(543\) 8.47132e10 + 2.90349e10i 0.974432 + 0.333981i
\(544\) 0 0
\(545\) −5.19969e10 4.73868e10i −0.589375 0.537121i
\(546\) 0 0
\(547\) 7.76902e10i 0.867795i 0.900962 + 0.433897i \(0.142862\pi\)
−0.900962 + 0.433897i \(0.857138\pi\)
\(548\) 0 0
\(549\) 4.39525e10 + 3.41394e10i 0.483832 + 0.375809i
\(550\) 0 0
\(551\) 7.21820e10i 0.783110i
\(552\) 0 0
\(553\) 1.13827e10i 0.121715i
\(554\) 0 0
\(555\) 3.16405e10 1.73492e10i 0.333481 0.182855i
\(556\) 0 0
\(557\) 3.10264e10 0.322338 0.161169 0.986927i \(-0.448474\pi\)
0.161169 + 0.986927i \(0.448474\pi\)
\(558\) 0 0
\(559\) −4.00707e10 −0.410374
\(560\) 0 0
\(561\) 1.10948e9 3.23706e9i 0.0112013 0.0326813i
\(562\) 0 0
\(563\) −2.20379e10 −0.219349 −0.109675 0.993968i \(-0.534981\pi\)
−0.109675 + 0.993968i \(0.534981\pi\)
\(564\) 0 0
\(565\) 7.30656e10 + 6.65875e10i 0.717000 + 0.653430i
\(566\) 0 0
\(567\) −4.09627e10 + 1.04600e10i −0.396329 + 0.101204i
\(568\) 0 0
\(569\) 1.19586e11i 1.14086i −0.821346 0.570431i \(-0.806776\pi\)
0.821346 0.570431i \(-0.193224\pi\)
\(570\) 0 0
\(571\) −4.63953e10 −0.436445 −0.218223 0.975899i \(-0.570026\pi\)
−0.218223 + 0.975899i \(0.570026\pi\)
\(572\) 0 0
\(573\) 6.12635e10 1.78744e11i 0.568308 1.65811i
\(574\) 0 0
\(575\) 4.21086e8 + 4.52912e9i 0.00385212 + 0.0414326i
\(576\) 0 0
\(577\) 6.88056e10i 0.620755i 0.950613 + 0.310378i \(0.100456\pi\)
−0.950613 + 0.310378i \(0.899544\pi\)
\(578\) 0 0
\(579\) 5.11625e10 1.49273e11i 0.455237 1.32821i
\(580\) 0 0
\(581\) 7.05839e10i 0.619442i
\(582\) 0 0
\(583\) 1.10804e11i 0.959137i
\(584\) 0 0
\(585\) −7.34303e10 + 1.27076e10i −0.626977 + 0.108502i
\(586\) 0 0
\(587\) 4.11725e10 0.346780 0.173390 0.984853i \(-0.444528\pi\)
0.173390 + 0.984853i \(0.444528\pi\)
\(588\) 0 0
\(589\) 6.27436e10 0.521325
\(590\) 0 0
\(591\) −2.99613e10 1.02691e10i −0.245590 0.0841745i
\(592\) 0 0
\(593\) 1.89369e11 1.53140 0.765701 0.643197i \(-0.222392\pi\)
0.765701 + 0.643197i \(0.222392\pi\)
\(594\) 0 0
\(595\) −2.01838e9 + 2.21474e9i −0.0161040 + 0.0176707i
\(596\) 0 0
\(597\) −8.10038e10 2.77636e10i −0.637688 0.218564i
\(598\) 0 0
\(599\) 1.15097e11i 0.894040i −0.894524 0.447020i \(-0.852485\pi\)
0.894524 0.447020i \(-0.147515\pi\)
\(600\) 0 0
\(601\) −1.43025e11 −1.09626 −0.548131 0.836393i \(-0.684660\pi\)
−0.548131 + 0.836393i \(0.684660\pi\)
\(602\) 0 0
\(603\) −3.89887e10 + 5.01957e10i −0.294897 + 0.379662i
\(604\) 0 0
\(605\) −6.44262e10 5.87142e10i −0.480885 0.438250i
\(606\) 0 0
\(607\) 1.61784e11i 1.19174i −0.803081 0.595870i \(-0.796807\pi\)
0.803081 0.595870i \(-0.203193\pi\)
\(608\) 0 0
\(609\) −7.38745e10 2.53200e10i −0.537063 0.184075i
\(610\) 0 0
\(611\) 6.55531e10i 0.470358i
\(612\) 0 0
\(613\) 2.20878e11i 1.56427i −0.623112 0.782133i \(-0.714132\pi\)
0.623112 0.782133i \(-0.285868\pi\)
\(614\) 0 0
\(615\) 2.06499e11 1.13228e11i 1.44350 0.791505i
\(616\) 0 0
\(617\) 1.71444e11 1.18299 0.591495 0.806309i \(-0.298538\pi\)
0.591495 + 0.806309i \(0.298538\pi\)
\(618\) 0 0
\(619\) 1.87051e11 1.27408 0.637042 0.770829i \(-0.280158\pi\)
0.637042 + 0.770829i \(0.280158\pi\)
\(620\) 0 0
\(621\) 3.39246e9 + 5.17566e9i 0.0228112 + 0.0348016i
\(622\) 0 0
\(623\) −7.41666e10 −0.492330
\(624\) 0 0
\(625\) −1.49973e11 + 2.81299e10i −0.982860 + 0.184352i
\(626\) 0 0
\(627\) 1.67116e10 4.87583e10i 0.108131 0.315485i
\(628\) 0 0
\(629\) 3.47958e9i 0.0222292i
\(630\) 0 0
\(631\) −4.85806e10 −0.306440 −0.153220 0.988192i \(-0.548964\pi\)
−0.153220 + 0.988192i \(0.548964\pi\)
\(632\) 0 0
\(633\) 2.69566e11 + 9.23921e10i 1.67900 + 0.575467i
\(634\) 0 0
\(635\) −4.80776e10 + 5.27549e10i −0.295698 + 0.324465i
\(636\) 0 0
\(637\) 8.72360e10i 0.529832i
\(638\) 0 0
\(639\) −6.78099e10 + 8.73013e10i −0.406715 + 0.523622i
\(640\) 0 0
\(641\) 1.11927e11i 0.662984i 0.943458 + 0.331492i \(0.107552\pi\)
−0.943458 + 0.331492i \(0.892448\pi\)
\(642\) 0 0
\(643\) 4.88967e10i 0.286046i 0.989719 + 0.143023i \(0.0456822\pi\)
−0.989719 + 0.143023i \(0.954318\pi\)
\(644\) 0 0
\(645\) −9.78764e10 + 5.36679e10i −0.565508 + 0.310081i
\(646\) 0 0
\(647\) 1.53100e11 0.873694 0.436847 0.899536i \(-0.356095\pi\)
0.436847 + 0.899536i \(0.356095\pi\)
\(648\) 0 0
\(649\) −9.80137e10 −0.552469
\(650\) 0 0
\(651\) 2.20092e10 6.42148e10i 0.122541 0.357529i
\(652\) 0 0
\(653\) 2.87587e11 1.58167 0.790836 0.612028i \(-0.209646\pi\)
0.790836 + 0.612028i \(0.209646\pi\)
\(654\) 0 0
\(655\) 2.14153e10 2.34987e10i 0.116348 0.127667i
\(656\) 0 0
\(657\) −1.74217e11 + 2.24295e11i −0.935040 + 1.20381i
\(658\) 0 0
\(659\) 3.92994e10i 0.208374i −0.994558 0.104187i \(-0.966776\pi\)
0.994558 0.104187i \(-0.0332241\pi\)
\(660\) 0 0
\(661\) 5.99838e9 0.0314216 0.0157108 0.999877i \(-0.494999\pi\)
0.0157108 + 0.999877i \(0.494999\pi\)
\(662\) 0 0
\(663\) −2.32990e9 + 6.79777e9i −0.0120582 + 0.0351813i
\(664\) 0 0
\(665\) −3.04020e10 + 3.33596e10i −0.155459 + 0.170583i
\(666\) 0 0
\(667\) 1.14310e10i 0.0577541i
\(668\) 0 0
\(669\) 5.68270e10 1.65800e11i 0.283694 0.827713i
\(670\) 0 0
\(671\) 7.34074e10i 0.362118i
\(672\) 0 0
\(673\) 3.78758e11i 1.84630i 0.384442 + 0.923149i \(0.374394\pi\)
−0.384442 + 0.923149i \(0.625606\pi\)
\(674\) 0 0
\(675\) −1.62340e11 + 1.29387e11i −0.782009 + 0.623268i
\(676\) 0 0
\(677\) −1.64834e11 −0.784681 −0.392340 0.919820i \(-0.628334\pi\)
−0.392340 + 0.919820i \(0.628334\pi\)
\(678\) 0 0
\(679\) 1.19572e11 0.562535
\(680\) 0 0
\(681\) −2.81076e11 9.63371e10i −1.30688 0.447925i
\(682\) 0 0
\(683\) −3.32594e11 −1.52838 −0.764189 0.644992i \(-0.776861\pi\)
−0.764189 + 0.644992i \(0.776861\pi\)
\(684\) 0 0
\(685\) −7.88886e10 7.18943e10i −0.358304 0.326537i
\(686\) 0 0
\(687\) 9.39199e10 + 3.21905e10i 0.421629 + 0.144511i
\(688\) 0 0
\(689\) 2.32687e11i 1.03251i
\(690\) 0 0
\(691\) 1.93057e11 0.846787 0.423394 0.905946i \(-0.360839\pi\)
0.423394 + 0.905946i \(0.360839\pi\)
\(692\) 0 0
\(693\) −4.40394e10 3.42069e10i −0.190945 0.148314i
\(694\) 0 0
\(695\) 1.14563e11 + 1.04405e11i 0.491025 + 0.447490i
\(696\) 0 0
\(697\) 2.27092e10i 0.0962211i
\(698\) 0 0
\(699\) 1.98854e11 + 6.81561e10i 0.832964 + 0.285493i
\(700\) 0 0
\(701\) 1.43333e11i 0.593572i −0.954944 0.296786i \(-0.904085\pi\)
0.954944 0.296786i \(-0.0959148\pi\)
\(702\) 0 0
\(703\) 5.24114e10i 0.214587i
\(704\) 0 0
\(705\) 8.77973e10 + 1.60119e11i 0.355406 + 0.648168i
\(706\) 0 0
\(707\) 9.92394e10 0.397197
\(708\) 0 0
\(709\) 4.78173e11 1.89235 0.946173 0.323662i \(-0.104914\pi\)
0.946173 + 0.323662i \(0.104914\pi\)
\(710\) 0 0
\(711\) −6.00540e10 4.66460e10i −0.234998 0.182531i
\(712\) 0 0
\(713\) −9.93635e9 −0.0384475
\(714\) 0 0
\(715\) −7.26507e10 6.62094e10i −0.277981 0.253335i
\(716\) 0 0
\(717\) −1.05138e11 + 3.06755e11i −0.397818 + 1.16069i
\(718\) 0 0
\(719\) 2.12668e11i 0.795769i −0.917436 0.397885i \(-0.869744\pi\)
0.917436 0.397885i \(-0.130256\pi\)
\(720\) 0 0
\(721\) −6.88463e10 −0.254765
\(722\) 0 0
\(723\) −1.75644e11 6.02010e10i −0.642807 0.220318i
\(724\) 0 0
\(725\) −3.81816e11 + 3.54986e10i −1.38198 + 0.128487i
\(726\) 0 0
\(727\) 4.90130e11i 1.75458i −0.479959 0.877291i \(-0.659349\pi\)
0.479959 0.877291i \(-0.340651\pi\)
\(728\) 0 0
\(729\) −1.12678e11 + 2.58979e11i −0.398959 + 0.916969i
\(730\) 0 0
\(731\) 1.07637e10i 0.0376957i
\(732\) 0 0
\(733\) 4.32453e11i 1.49804i −0.662548 0.749020i \(-0.730525\pi\)
0.662548 0.749020i \(-0.269475\pi\)
\(734\) 0 0
\(735\) −1.16838e11 2.13082e11i −0.400344 0.730125i
\(736\) 0 0
\(737\) −8.38345e10 −0.284153
\(738\) 0 0
\(739\) 5.43589e11 1.82261 0.911304 0.411734i \(-0.135077\pi\)
0.911304 + 0.411734i \(0.135077\pi\)
\(740\) 0 0
\(741\) −3.50942e10 + 1.02392e11i −0.116402 + 0.339619i
\(742\) 0 0
\(743\) −5.04564e11 −1.65562 −0.827811 0.561007i \(-0.810414\pi\)
−0.827811 + 0.561007i \(0.810414\pi\)
\(744\) 0 0
\(745\) −1.28034e11 + 1.40490e11i −0.415623 + 0.456057i
\(746\) 0 0
\(747\) −3.72393e11 2.89250e11i −1.19597 0.928947i
\(748\) 0 0
\(749\) 3.01888e10i 0.0959221i
\(750\) 0 0
\(751\) 4.04292e11 1.27097 0.635485 0.772113i \(-0.280800\pi\)
0.635485 + 0.772113i \(0.280800\pi\)
\(752\) 0 0
\(753\) −1.58278e11 + 4.61798e11i −0.492314 + 1.43639i
\(754\) 0 0
\(755\) 1.36096e11 + 1.24030e11i 0.418849 + 0.381714i
\(756\) 0 0
\(757\) 1.17725e11i 0.358497i 0.983804 + 0.179248i \(0.0573666\pi\)
−0.983804 + 0.179248i \(0.942633\pi\)
\(758\) 0 0
\(759\) −2.64652e9 + 7.72157e9i −0.00797460 + 0.0232669i
\(760\) 0 0
\(761\) 5.94214e11i 1.77176i 0.463917 + 0.885879i \(0.346443\pi\)
−0.463917 + 0.885879i \(0.653557\pi\)
\(762\) 0 0
\(763\) 1.10548e11i 0.326177i
\(764\) 0 0
\(765\) 3.41347e9 + 1.97247e10i 0.00996669 + 0.0575922i
\(766\) 0 0
\(767\) 2.05827e11 0.594733
\(768\) 0 0
\(769\) 4.55193e11 1.30164 0.650820 0.759232i \(-0.274425\pi\)
0.650820 + 0.759232i \(0.274425\pi\)
\(770\) 0 0
\(771\) −3.91906e10 1.34323e10i −0.110908 0.0380132i
\(772\) 0 0
\(773\) −1.90114e11 −0.532470 −0.266235 0.963908i \(-0.585780\pi\)
−0.266235 + 0.963908i \(0.585780\pi\)
\(774\) 0 0
\(775\) −3.08568e10 3.31890e11i −0.0855352 0.920000i
\(776\) 0 0
\(777\) −5.36403e10 1.83849e10i −0.147166 0.0504402i
\(778\) 0 0
\(779\) 3.42058e11i 0.928860i
\(780\) 0 0
\(781\) −1.45806e11 −0.391898
\(782\) 0 0
\(783\) −4.36320e11 + 2.85993e11i −1.16080 + 0.760866i
\(784\) 0 0
\(785\) −2.49061e11 + 2.73292e11i −0.655885 + 0.719694i
\(786\) 0 0
\(787\) 3.73829e11i 0.974483i 0.873267 + 0.487241i \(0.161997\pi\)
−0.873267 + 0.487241i \(0.838003\pi\)
\(788\) 0 0
\(789\) 4.16591e10 + 1.42784e10i 0.107498 + 0.0368445i
\(790\) 0 0
\(791\) 1.55341e11i 0.396809i
\(792\) 0 0
\(793\) 1.54155e11i 0.389819i
\(794\) 0 0
\(795\) 3.11644e11 + 5.68358e11i 0.780172 + 1.42283i
\(796\) 0 0
\(797\) 9.22241e10 0.228566 0.114283 0.993448i \(-0.463543\pi\)
0.114283 + 0.993448i \(0.463543\pi\)
\(798\) 0 0
\(799\) 1.76087e10 0.0432057
\(800\) 0 0
\(801\) −3.03932e11 + 3.91295e11i −0.738323 + 0.950548i
\(802\) 0 0
\(803\) −3.74606e11 −0.900976
\(804\) 0 0
\(805\) 4.81458e9 5.28297e9i 0.0114650 0.0125804i
\(806\) 0 0
\(807\) −1.61423e11 + 4.70972e11i −0.380602 + 1.11045i
\(808\) 0 0
\(809\) 4.59130e11i 1.07187i −0.844260 0.535934i \(-0.819960\pi\)
0.844260 0.535934i \(-0.180040\pi\)
\(810\) 0 0
\(811\) −3.20148e11 −0.740060 −0.370030 0.929020i \(-0.620653\pi\)
−0.370030 + 0.929020i \(0.620653\pi\)
\(812\) 0 0
\(813\) 7.56056e11 + 2.59134e11i 1.73058 + 0.593146i
\(814\) 0 0
\(815\) 2.02629e11 2.22341e11i 0.459272 0.503953i
\(816\) 0 0
\(817\) 1.62129e11i 0.363892i
\(818\) 0 0
\(819\) 9.24822e10 + 7.18341e10i 0.205552 + 0.159660i
\(820\) 0 0
\(821\) 2.06997e11i 0.455608i 0.973707 + 0.227804i \(0.0731545\pi\)
−0.973707 + 0.227804i \(0.926846\pi\)
\(822\) 0 0
\(823\) 3.04522e11i 0.663774i 0.943319 + 0.331887i \(0.107685\pi\)
−0.943319 + 0.331887i \(0.892315\pi\)
\(824\) 0 0
\(825\) −2.66132e11 6.44193e10i −0.574489 0.139059i
\(826\) 0 0
\(827\) 7.16880e11 1.53258 0.766292 0.642493i \(-0.222100\pi\)
0.766292 + 0.642493i \(0.222100\pi\)
\(828\) 0 0
\(829\) 4.07865e11 0.863572 0.431786 0.901976i \(-0.357884\pi\)
0.431786 + 0.901976i \(0.357884\pi\)
\(830\) 0 0
\(831\) −2.23566e10 + 6.52284e10i −0.0468816 + 0.136783i
\(832\) 0 0
\(833\) −2.34331e10 −0.0486688
\(834\) 0 0
\(835\) −5.99386e11 5.46244e11i −1.23299 1.12368i
\(836\) 0 0
\(837\) −2.48597e11 3.79268e11i −0.506517 0.772760i
\(838\) 0 0
\(839\) 8.70596e11i 1.75699i 0.477753 + 0.878494i \(0.341452\pi\)
−0.477753 + 0.878494i \(0.658548\pi\)
\(840\) 0 0
\(841\) −4.63419e11 −0.926381
\(842\) 0 0
\(843\) −9.12160e10 + 2.66134e11i −0.180618 + 0.526976i
\(844\) 0 0
\(845\) −2.24257e11 2.04375e11i −0.439866 0.400867i
\(846\) 0 0
\(847\) 1.36974e11i 0.266136i
\(848\) 0 0
\(849\) 2.52268e11 7.36025e11i 0.485547 1.41665i
\(850\) 0 0
\(851\) 8.30009e9i 0.0158258i
\(852\) 0 0
\(853\) 1.49120e11i 0.281670i 0.990033 + 0.140835i \(0.0449788\pi\)
−0.990033 + 0.140835i \(0.955021\pi\)
\(854\) 0 0
\(855\) 5.14156e10 + 2.97104e11i 0.0962124 + 0.555960i
\(856\) 0 0
\(857\) 5.02032e11 0.930697 0.465348 0.885128i \(-0.345929\pi\)
0.465348 + 0.885128i \(0.345929\pi\)
\(858\) 0 0
\(859\) 6.42420e11 1.17990 0.589952 0.807438i \(-0.299147\pi\)
0.589952 + 0.807438i \(0.299147\pi\)
\(860\) 0 0
\(861\) −3.50078e11 1.19987e11i −0.637019 0.218335i
\(862\) 0 0
\(863\) −4.15471e11 −0.749028 −0.374514 0.927221i \(-0.622190\pi\)
−0.374514 + 0.927221i \(0.622190\pi\)
\(864\) 0 0
\(865\) 6.57424e10 + 5.99137e10i 0.117431 + 0.107019i
\(866\) 0 0
\(867\) −5.32686e11 1.82575e11i −0.942747 0.323121i
\(868\) 0 0
\(869\) 1.00299e11i 0.175881i
\(870\) 0 0
\(871\) 1.76051e11 0.305891
\(872\) 0 0
\(873\) 4.90001e11 6.30848e11i 0.843606 1.08609i
\(874\) 0 0
\(875\) 1.91411e11 + 1.44409e11i 0.326540 + 0.246355i
\(876\) 0 0
\(877\) 9.26709e11i 1.56655i −0.621673 0.783277i \(-0.713547\pi\)
0.621673 0.783277i \(-0.286453\pi\)
\(878\) 0 0
\(879\) 1.16115e11 + 3.97977e10i 0.194506 + 0.0666657i
\(880\) 0 0
\(881\) 1.15034e11i 0.190952i 0.995432 + 0.0954758i \(0.0304373\pi\)
−0.995432 + 0.0954758i \(0.969563\pi\)
\(882\) 0 0
\(883\) 2.46808e11i 0.405990i 0.979180 + 0.202995i \(0.0650676\pi\)
−0.979180 + 0.202995i \(0.934932\pi\)
\(884\) 0 0
\(885\) 5.02752e11 2.75671e11i 0.819560 0.449384i
\(886\) 0 0
\(887\) 4.76996e11 0.770585 0.385292 0.922795i \(-0.374101\pi\)
0.385292 + 0.922795i \(0.374101\pi\)
\(888\) 0 0
\(889\) 1.12160e11 0.179568
\(890\) 0 0
\(891\) −3.60944e11 + 9.21685e10i −0.572702 + 0.146242i
\(892\) 0 0
\(893\) 2.65232e11 0.417081
\(894\) 0 0
\(895\) 1.14352e10 1.25476e10i 0.0178218 0.0195556i
\(896\) 0 0
\(897\) 5.55766e9 1.62152e10i 0.00858465 0.0250468i
\(898\) 0 0
\(899\) 8.37658e11i 1.28241i
\(900\) 0 0
\(901\) 6.25037e10 0.0948433
\(902\) 0 0
\(903\) 1.65930e11 + 5.68716e10i 0.249560 + 0.0855352i
\(904\) 0 0
\(905\) −5.10711e11 4.65431e11i −0.761344 0.693843i
\(906\) 0 0
\(907\) 6.78246e11i 1.00221i −0.865387 0.501104i \(-0.832927\pi\)
0.865387 0.501104i \(-0.167073\pi\)
\(908\) 0 0
\(909\) 4.06679e11 5.23576e11i 0.595657 0.766874i
\(910\) 0 0
\(911\) 4.37255e11i 0.634835i −0.948286 0.317418i \(-0.897184\pi\)
0.948286 0.317418i \(-0.102816\pi\)
\(912\) 0 0
\(913\) 6.21952e11i 0.895105i
\(914\) 0 0
\(915\) −2.06464e11 3.76536e11i −0.294550 0.537183i
\(916\) 0 0
\(917\) −4.99595e10 −0.0706546
\(918\) 0 0
\(919\) −4.60392e11 −0.645455 −0.322728 0.946492i \(-0.604600\pi\)
−0.322728 + 0.946492i \(0.604600\pi\)
\(920\) 0 0
\(921\) 4.62243e11 1.34865e12i 0.642439 1.87440i
\(922\) 0 0
\(923\) 3.06192e11 0.421877
\(924\) 0 0
\(925\) −2.77237e11 + 2.57755e10i −0.378690 + 0.0352079i
\(926\) 0 0
\(927\) −2.82129e11 + 3.63225e11i −0.382058 + 0.491878i
\(928\) 0 0
\(929\) 1.25173e11i 0.168054i 0.996463 + 0.0840270i \(0.0267782\pi\)
−0.996463 + 0.0840270i \(0.973222\pi\)
\(930\) 0 0
\(931\) −3.52963e11 −0.469819
\(932\) 0 0
\(933\) 3.11665e11 9.09324e11i 0.411303 1.20003i
\(934\) 0 0
\(935\) −1.77850e10 + 1.95153e10i −0.0232706 + 0.0255345i
\(936\) 0 0
\(937\) 3.77571e11i 0.489824i 0.969545 + 0.244912i \(0.0787590\pi\)
−0.969545 + 0.244912i \(0.921241\pi\)
\(938\) 0 0
\(939\) 5.28950e10 1.54328e11i 0.0680381 0.198510i
\(940\) 0 0
\(941\) 6.06020e10i 0.0772910i −0.999253 0.0386455i \(-0.987696\pi\)
0.999253 0.0386455i \(-0.0123043\pi\)
\(942\) 0 0
\(943\) 5.41698e10i 0.0685031i
\(944\) 0 0
\(945\) 3.22106e11 + 5.15970e10i 0.403897 + 0.0646990i
\(946\) 0 0
\(947\) 1.28296e12 1.59520 0.797598 0.603189i \(-0.206104\pi\)
0.797598 + 0.603189i \(0.206104\pi\)
\(948\) 0 0
\(949\) 7.86668e11 0.969899
\(950\) 0 0
\(951\) 4.53102e11 + 1.55298e11i 0.553954 + 0.189864i
\(952\) 0 0
\(953\) 9.26120e11 1.12278 0.561391 0.827551i \(-0.310266\pi\)
0.561391 + 0.827551i \(0.310266\pi\)
\(954\) 0 0
\(955\) −9.82056e11 + 1.07760e12i −1.18065 + 1.29551i
\(956\) 0 0
\(957\) −6.50947e11 2.23108e11i −0.776065 0.265992i
\(958\) 0 0
\(959\) 1.67721e11i 0.198296i
\(960\) 0 0
\(961\) −1.24764e11 −0.146283
\(962\) 0 0
\(963\) −1.59273e11 1.23713e11i −0.185198 0.143850i
\(964\) 0 0
\(965\) −8.20137e11 + 8.99925e11i −0.945752 + 1.03776i
\(966\) 0 0
\(967\) 5.95759e11i 0.681341i 0.940183 + 0.340671i \(0.110654\pi\)
−0.940183 + 0.340671i \(0.889346\pi\)
\(968\) 0 0
\(969\) 2.75042e10 + 9.42692e9i 0.0311964 + 0.0106924i
\(970\) 0 0
\(971\) 1.75041e12i 1.96908i −0.175162 0.984540i \(-0.556045\pi\)
0.175162 0.984540i \(-0.443955\pi\)
\(972\) 0 0
\(973\) 2.43566e11i 0.271748i
\(974\) 0 0
\(975\) 5.58874e11 + 1.35280e11i 0.618436 + 0.149697i
\(976\) 0 0
\(977\) −4.97635e11 −0.546176 −0.273088 0.961989i \(-0.588045\pi\)
−0.273088 + 0.961989i \(0.588045\pi\)
\(978\) 0 0
\(979\) −6.53522e11 −0.711425
\(980\) 0 0
\(981\) 5.83240e11 + 4.53023e11i 0.629755 + 0.489152i
\(982\) 0 0
\(983\) 2.41169e10 0.0258289 0.0129145 0.999917i \(-0.495889\pi\)
0.0129145 + 0.999917i \(0.495889\pi\)
\(984\) 0 0
\(985\) 1.80628e11 + 1.64613e11i 0.191884 + 0.174872i
\(986\) 0 0
\(987\) 9.30383e10 2.71451e11i 0.0980377 0.286038i
\(988\) 0 0
\(989\) 2.56754e10i 0.0268369i
\(990\) 0 0
\(991\) −3.00351e11 −0.311411 −0.155705 0.987804i \(-0.549765\pi\)
−0.155705 + 0.987804i \(0.549765\pi\)
\(992\) 0 0
\(993\) 1.01011e12 + 3.46210e11i 1.03890 + 0.356076i
\(994\) 0 0
\(995\) 4.88348e11 + 4.45051e11i 0.498238 + 0.454064i
\(996\) 0 0
\(997\) 1.33535e12i 1.35149i 0.737134 + 0.675746i \(0.236178\pi\)
−0.737134 + 0.675746i \(0.763822\pi\)
\(998\) 0 0
\(999\) −3.16812e11 + 2.07660e11i −0.318083 + 0.208492i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 120.9.c.a.89.44 yes 48
3.2 odd 2 inner 120.9.c.a.89.6 yes 48
4.3 odd 2 240.9.c.f.209.5 48
5.4 even 2 inner 120.9.c.a.89.5 48
12.11 even 2 240.9.c.f.209.43 48
15.14 odd 2 inner 120.9.c.a.89.43 yes 48
20.19 odd 2 240.9.c.f.209.44 48
60.59 even 2 240.9.c.f.209.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.9.c.a.89.5 48 5.4 even 2 inner
120.9.c.a.89.6 yes 48 3.2 odd 2 inner
120.9.c.a.89.43 yes 48 15.14 odd 2 inner
120.9.c.a.89.44 yes 48 1.1 even 1 trivial
240.9.c.f.209.5 48 4.3 odd 2
240.9.c.f.209.6 48 60.59 even 2
240.9.c.f.209.43 48 12.11 even 2
240.9.c.f.209.44 48 20.19 odd 2