Properties

Label 120.9.c.a.89.39
Level $120$
Weight $9$
Character 120.89
Analytic conductor $48.885$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [120,9,Mod(89,120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("120.89"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 120.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.8854332073\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 89.39
Character \(\chi\) \(=\) 120.89
Dual form 120.9.c.a.89.40

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(63.1416 - 50.7359i) q^{3} +(94.4932 + 617.816i) q^{5} +2120.56i q^{7} +(1412.73 - 6407.10i) q^{9} +18869.7i q^{11} -1613.52i q^{13} +(37311.9 + 34215.7i) q^{15} -128361. q^{17} +123008. q^{19} +(107589. + 133896. i) q^{21} -463819. q^{23} +(-372767. + 116759. i) q^{25} +(-235868. - 476231. i) q^{27} -867620. i q^{29} -1.29205e6 q^{31} +(957369. + 1.19146e6i) q^{33} +(-1.31012e6 + 200379. i) q^{35} -160257. i q^{37} +(-81863.3 - 101880. i) q^{39} +4.10559e6i q^{41} -1.57070e6i q^{43} +(4.09190e6 + 267382. i) q^{45} +5.70949e6 q^{47} +1.26802e6 q^{49} +(-8.10494e6 + 6.51253e6i) q^{51} -8.30385e6 q^{53} +(-1.16580e7 + 1.78305e6i) q^{55} +(7.76690e6 - 6.24090e6i) q^{57} +1.28620e7i q^{59} +2.79353e6 q^{61} +(1.35867e7 + 2.99579e6i) q^{63} +(996857. - 152467. i) q^{65} -2.02082e7i q^{67} +(-2.92863e7 + 2.35323e7i) q^{69} +2.19500e7i q^{71} +3.05707e7i q^{73} +(-1.76133e7 + 2.62850e7i) q^{75} -4.00143e7 q^{77} -6.31989e7 q^{79} +(-3.90551e7 - 1.81030e7i) q^{81} +3.53309e6 q^{83} +(-1.21293e7 - 7.93036e7i) q^{85} +(-4.40195e7 - 5.47829e7i) q^{87} +9.26111e7i q^{89} +3.42157e6 q^{91} +(-8.15825e7 + 6.55536e7i) q^{93} +(1.16234e7 + 7.59960e7i) q^{95} +1.20124e8i q^{97} +(1.20900e8 + 2.66578e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2528 q^{9} + 132352 q^{15} + 116176 q^{21} + 56976 q^{25} + 1395648 q^{31} + 6888832 q^{39} - 4287056 q^{45} - 30813552 q^{49} - 22815168 q^{51} - 6062784 q^{55} + 14031936 q^{61} + 2522608 q^{69}+ \cdots - 21719360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 63.1416 50.7359i 0.779526 0.626369i
\(4\) 0 0
\(5\) 94.4932 + 617.816i 0.151189 + 0.988505i
\(6\) 0 0
\(7\) 2120.56i 0.883200i 0.897212 + 0.441600i \(0.145589\pi\)
−0.897212 + 0.441600i \(0.854411\pi\)
\(8\) 0 0
\(9\) 1412.73 6407.10i 0.215323 0.976543i
\(10\) 0 0
\(11\) 18869.7i 1.28882i 0.764679 + 0.644412i \(0.222898\pi\)
−0.764679 + 0.644412i \(0.777102\pi\)
\(12\) 0 0
\(13\) 1613.52i 0.0564938i −0.999601 0.0282469i \(-0.991008\pi\)
0.999601 0.0282469i \(-0.00899246\pi\)
\(14\) 0 0
\(15\) 37311.9 + 34215.7i 0.737025 + 0.675865i
\(16\) 0 0
\(17\) −128361. −1.53687 −0.768437 0.639925i \(-0.778965\pi\)
−0.768437 + 0.639925i \(0.778965\pi\)
\(18\) 0 0
\(19\) 123008. 0.943882 0.471941 0.881630i \(-0.343554\pi\)
0.471941 + 0.881630i \(0.343554\pi\)
\(20\) 0 0
\(21\) 107589. + 133896.i 0.553209 + 0.688478i
\(22\) 0 0
\(23\) −463819. −1.65744 −0.828719 0.559664i \(-0.810930\pi\)
−0.828719 + 0.559664i \(0.810930\pi\)
\(24\) 0 0
\(25\) −372767. + 116759.i −0.954284 + 0.298902i
\(26\) 0 0
\(27\) −235868. 476231.i −0.443827 0.896113i
\(28\) 0 0
\(29\) 867620.i 1.22670i −0.789812 0.613349i \(-0.789822\pi\)
0.789812 0.613349i \(-0.210178\pi\)
\(30\) 0 0
\(31\) −1.29205e6 −1.39905 −0.699527 0.714607i \(-0.746606\pi\)
−0.699527 + 0.714607i \(0.746606\pi\)
\(32\) 0 0
\(33\) 957369. + 1.19146e6i 0.807279 + 1.00467i
\(34\) 0 0
\(35\) −1.31012e6 + 200379.i −0.873047 + 0.133530i
\(36\) 0 0
\(37\) 160257.i 0.0855088i −0.999086 0.0427544i \(-0.986387\pi\)
0.999086 0.0427544i \(-0.0136133\pi\)
\(38\) 0 0
\(39\) −81863.3 101880.i −0.0353860 0.0440384i
\(40\) 0 0
\(41\) 4.10559e6i 1.45292i 0.687211 + 0.726458i \(0.258835\pi\)
−0.687211 + 0.726458i \(0.741165\pi\)
\(42\) 0 0
\(43\) 1.57070e6i 0.459430i −0.973258 0.229715i \(-0.926221\pi\)
0.973258 0.229715i \(-0.0737795\pi\)
\(44\) 0 0
\(45\) 4.09190e6 + 267382.i 0.997872 + 0.0652051i
\(46\) 0 0
\(47\) 5.70949e6 1.17005 0.585027 0.811014i \(-0.301084\pi\)
0.585027 + 0.811014i \(0.301084\pi\)
\(48\) 0 0
\(49\) 1.26802e6 0.219958
\(50\) 0 0
\(51\) −8.10494e6 + 6.51253e6i −1.19803 + 0.962651i
\(52\) 0 0
\(53\) −8.30385e6 −1.05239 −0.526194 0.850365i \(-0.676381\pi\)
−0.526194 + 0.850365i \(0.676381\pi\)
\(54\) 0 0
\(55\) −1.16580e7 + 1.78305e6i −1.27401 + 0.194856i
\(56\) 0 0
\(57\) 7.76690e6 6.24090e6i 0.735781 0.591219i
\(58\) 0 0
\(59\) 1.28620e7i 1.06145i 0.847543 + 0.530727i \(0.178081\pi\)
−0.847543 + 0.530727i \(0.821919\pi\)
\(60\) 0 0
\(61\) 2.79353e6 0.201760 0.100880 0.994899i \(-0.467834\pi\)
0.100880 + 0.994899i \(0.467834\pi\)
\(62\) 0 0
\(63\) 1.35867e7 + 2.99579e6i 0.862482 + 0.190173i
\(64\) 0 0
\(65\) 996857. 152467.i 0.0558443 0.00854124i
\(66\) 0 0
\(67\) 2.02082e7i 1.00283i −0.865206 0.501417i \(-0.832812\pi\)
0.865206 0.501417i \(-0.167188\pi\)
\(68\) 0 0
\(69\) −2.92863e7 + 2.35323e7i −1.29202 + 1.03817i
\(70\) 0 0
\(71\) 2.19500e7i 0.863774i 0.901928 + 0.431887i \(0.142152\pi\)
−0.901928 + 0.431887i \(0.857848\pi\)
\(72\) 0 0
\(73\) 3.05707e7i 1.07650i 0.842785 + 0.538250i \(0.180915\pi\)
−0.842785 + 0.538250i \(0.819085\pi\)
\(74\) 0 0
\(75\) −1.76133e7 + 2.62850e7i −0.556666 + 0.830736i
\(76\) 0 0
\(77\) −4.00143e7 −1.13829
\(78\) 0 0
\(79\) −6.31989e7 −1.62256 −0.811281 0.584657i \(-0.801229\pi\)
−0.811281 + 0.584657i \(0.801229\pi\)
\(80\) 0 0
\(81\) −3.90551e7 1.81030e7i −0.907272 0.420544i
\(82\) 0 0
\(83\) 3.53309e6 0.0744461 0.0372231 0.999307i \(-0.488149\pi\)
0.0372231 + 0.999307i \(0.488149\pi\)
\(84\) 0 0
\(85\) −1.21293e7 7.93036e7i −0.232359 1.51921i
\(86\) 0 0
\(87\) −4.40195e7 5.47829e7i −0.768366 0.956243i
\(88\) 0 0
\(89\) 9.26111e7i 1.47606i 0.674770 + 0.738028i \(0.264243\pi\)
−0.674770 + 0.738028i \(0.735757\pi\)
\(90\) 0 0
\(91\) 3.42157e6 0.0498953
\(92\) 0 0
\(93\) −8.15825e7 + 6.55536e7i −1.09060 + 0.876324i
\(94\) 0 0
\(95\) 1.16234e7 + 7.59960e7i 0.142705 + 0.933032i
\(96\) 0 0
\(97\) 1.20124e8i 1.35688i 0.734655 + 0.678441i \(0.237344\pi\)
−0.734655 + 0.678441i \(0.762656\pi\)
\(98\) 0 0
\(99\) 1.20900e8 + 2.66578e7i 1.25859 + 0.277513i
\(100\) 0 0
\(101\) 4.63058e7i 0.444990i 0.974934 + 0.222495i \(0.0714200\pi\)
−0.974934 + 0.222495i \(0.928580\pi\)
\(102\) 0 0
\(103\) 2.76358e7i 0.245540i −0.992435 0.122770i \(-0.960822\pi\)
0.992435 0.122770i \(-0.0391778\pi\)
\(104\) 0 0
\(105\) −7.25565e7 + 7.91222e7i −0.596924 + 0.650940i
\(106\) 0 0
\(107\) 1.46266e8 1.11586 0.557929 0.829889i \(-0.311596\pi\)
0.557929 + 0.829889i \(0.311596\pi\)
\(108\) 0 0
\(109\) −5.99322e7 −0.424575 −0.212287 0.977207i \(-0.568091\pi\)
−0.212287 + 0.977207i \(0.568091\pi\)
\(110\) 0 0
\(111\) −8.13080e6 1.01189e7i −0.0535601 0.0666564i
\(112\) 0 0
\(113\) 1.82371e8 1.11851 0.559257 0.828994i \(-0.311086\pi\)
0.559257 + 0.828994i \(0.311086\pi\)
\(114\) 0 0
\(115\) −4.38278e7 2.86555e8i −0.250587 1.63839i
\(116\) 0 0
\(117\) −1.03380e7 2.27947e6i −0.0551686 0.0121644i
\(118\) 0 0
\(119\) 2.72198e8i 1.35737i
\(120\) 0 0
\(121\) −1.41705e8 −0.661065
\(122\) 0 0
\(123\) 2.08301e8 + 2.59234e8i 0.910062 + 1.13259i
\(124\) 0 0
\(125\) −1.07359e8 2.19268e8i −0.439744 0.898123i
\(126\) 0 0
\(127\) 2.33236e8i 0.896564i −0.893892 0.448282i \(-0.852036\pi\)
0.893892 0.448282i \(-0.147964\pi\)
\(128\) 0 0
\(129\) −7.96910e7 9.91766e7i −0.287773 0.358138i
\(130\) 0 0
\(131\) 3.10558e8i 1.05453i 0.849702 + 0.527264i \(0.176782\pi\)
−0.849702 + 0.527264i \(0.823218\pi\)
\(132\) 0 0
\(133\) 2.60845e8i 0.833636i
\(134\) 0 0
\(135\) 2.71935e8 1.90723e8i 0.818710 0.574207i
\(136\) 0 0
\(137\) −5.94131e8 −1.68655 −0.843277 0.537479i \(-0.819377\pi\)
−0.843277 + 0.537479i \(0.819377\pi\)
\(138\) 0 0
\(139\) 6.69752e8 1.79413 0.897067 0.441894i \(-0.145693\pi\)
0.897067 + 0.441894i \(0.145693\pi\)
\(140\) 0 0
\(141\) 3.60507e8 2.89676e8i 0.912089 0.732886i
\(142\) 0 0
\(143\) 3.04465e7 0.0728105
\(144\) 0 0
\(145\) 5.36029e8 8.19842e7i 1.21260 0.185463i
\(146\) 0 0
\(147\) 8.00646e7 6.43339e7i 0.171463 0.137775i
\(148\) 0 0
\(149\) 1.67119e7i 0.0339062i −0.999856 0.0169531i \(-0.994603\pi\)
0.999856 0.0169531i \(-0.00539661\pi\)
\(150\) 0 0
\(151\) 1.13964e8 0.219210 0.109605 0.993975i \(-0.465041\pi\)
0.109605 + 0.993975i \(0.465041\pi\)
\(152\) 0 0
\(153\) −1.81340e8 + 8.22423e8i −0.330924 + 1.50082i
\(154\) 0 0
\(155\) −1.22090e8 7.98252e8i −0.211522 1.38297i
\(156\) 0 0
\(157\) 1.40513e8i 0.231269i −0.993292 0.115634i \(-0.963110\pi\)
0.993292 0.115634i \(-0.0368901\pi\)
\(158\) 0 0
\(159\) −5.24319e8 + 4.21303e8i −0.820364 + 0.659183i
\(160\) 0 0
\(161\) 9.83558e8i 1.46385i
\(162\) 0 0
\(163\) 7.91463e7i 0.112119i −0.998427 0.0560596i \(-0.982146\pi\)
0.998427 0.0560596i \(-0.0178537\pi\)
\(164\) 0 0
\(165\) −6.45638e8 + 7.04063e8i −0.871071 + 0.949895i
\(166\) 0 0
\(167\) 6.28239e8 0.807716 0.403858 0.914822i \(-0.367669\pi\)
0.403858 + 0.914822i \(0.367669\pi\)
\(168\) 0 0
\(169\) 8.13127e8 0.996808
\(170\) 0 0
\(171\) 1.73777e8 7.88122e8i 0.203239 0.921741i
\(172\) 0 0
\(173\) −6.95824e8 −0.776810 −0.388405 0.921489i \(-0.626974\pi\)
−0.388405 + 0.921489i \(0.626974\pi\)
\(174\) 0 0
\(175\) −2.47594e8 7.90476e8i −0.263991 0.842823i
\(176\) 0 0
\(177\) 6.52566e8 + 8.12129e8i 0.664862 + 0.827431i
\(178\) 0 0
\(179\) 7.76912e8i 0.756763i −0.925650 0.378381i \(-0.876481\pi\)
0.925650 0.378381i \(-0.123519\pi\)
\(180\) 0 0
\(181\) 2.94877e8 0.274743 0.137371 0.990520i \(-0.456135\pi\)
0.137371 + 0.990520i \(0.456135\pi\)
\(182\) 0 0
\(183\) 1.76388e8 1.41732e8i 0.157277 0.126376i
\(184\) 0 0
\(185\) 9.90094e7 1.51432e7i 0.0845259 0.0129280i
\(186\) 0 0
\(187\) 2.42213e9i 1.98076i
\(188\) 0 0
\(189\) 1.00988e9 5.00172e8i 0.791447 0.391988i
\(190\) 0 0
\(191\) 9.31088e8i 0.699612i 0.936822 + 0.349806i \(0.113752\pi\)
−0.936822 + 0.349806i \(0.886248\pi\)
\(192\) 0 0
\(193\) 4.86009e8i 0.350280i 0.984544 + 0.175140i \(0.0560378\pi\)
−0.984544 + 0.175140i \(0.943962\pi\)
\(194\) 0 0
\(195\) 5.52076e7 6.02034e7i 0.0381822 0.0416373i
\(196\) 0 0
\(197\) 8.14587e8 0.540844 0.270422 0.962742i \(-0.412837\pi\)
0.270422 + 0.962742i \(0.412837\pi\)
\(198\) 0 0
\(199\) −9.60620e7 −0.0612547 −0.0306274 0.999531i \(-0.509751\pi\)
−0.0306274 + 0.999531i \(0.509751\pi\)
\(200\) 0 0
\(201\) −1.02528e9 1.27598e9i −0.628144 0.781735i
\(202\) 0 0
\(203\) 1.83984e9 1.08342
\(204\) 0 0
\(205\) −2.53650e9 + 3.87951e8i −1.43621 + 0.219665i
\(206\) 0 0
\(207\) −6.55253e8 + 2.97174e9i −0.356885 + 1.61856i
\(208\) 0 0
\(209\) 2.32111e9i 1.21650i
\(210\) 0 0
\(211\) 1.64760e9 0.831233 0.415617 0.909540i \(-0.363566\pi\)
0.415617 + 0.909540i \(0.363566\pi\)
\(212\) 0 0
\(213\) 1.11365e9 + 1.38596e9i 0.541042 + 0.673335i
\(214\) 0 0
\(215\) 9.70403e8 1.48421e8i 0.454149 0.0694609i
\(216\) 0 0
\(217\) 2.73988e9i 1.23564i
\(218\) 0 0
\(219\) 1.55103e9 + 1.93029e9i 0.674287 + 0.839161i
\(220\) 0 0
\(221\) 2.07113e8i 0.0868238i
\(222\) 0 0
\(223\) 4.65964e9i 1.88423i −0.335297 0.942113i \(-0.608837\pi\)
0.335297 0.942113i \(-0.391163\pi\)
\(224\) 0 0
\(225\) 2.21464e8 + 2.55330e9i 0.0864119 + 0.996259i
\(226\) 0 0
\(227\) −1.38807e8 −0.0522766 −0.0261383 0.999658i \(-0.508321\pi\)
−0.0261383 + 0.999658i \(0.508321\pi\)
\(228\) 0 0
\(229\) 5.36401e7 0.0195051 0.00975254 0.999952i \(-0.496896\pi\)
0.00975254 + 0.999952i \(0.496896\pi\)
\(230\) 0 0
\(231\) −2.52657e9 + 2.03016e9i −0.887326 + 0.712989i
\(232\) 0 0
\(233\) −2.88612e9 −0.979244 −0.489622 0.871935i \(-0.662865\pi\)
−0.489622 + 0.871935i \(0.662865\pi\)
\(234\) 0 0
\(235\) 5.39509e8 + 3.52741e9i 0.176900 + 1.15660i
\(236\) 0 0
\(237\) −3.99048e9 + 3.20645e9i −1.26483 + 1.01632i
\(238\) 0 0
\(239\) 8.01549e8i 0.245662i 0.992428 + 0.122831i \(0.0391974\pi\)
−0.992428 + 0.122831i \(0.960803\pi\)
\(240\) 0 0
\(241\) −3.63914e9 −1.07878 −0.539388 0.842057i \(-0.681344\pi\)
−0.539388 + 0.842057i \(0.681344\pi\)
\(242\) 0 0
\(243\) −3.38448e9 + 8.38439e8i −0.970659 + 0.240462i
\(244\) 0 0
\(245\) 1.19819e8 + 7.83400e8i 0.0332553 + 0.217430i
\(246\) 0 0
\(247\) 1.98475e8i 0.0533234i
\(248\) 0 0
\(249\) 2.23085e8 1.79254e8i 0.0580327 0.0466308i
\(250\) 0 0
\(251\) 4.20935e9i 1.06052i 0.847834 + 0.530262i \(0.177906\pi\)
−0.847834 + 0.530262i \(0.822094\pi\)
\(252\) 0 0
\(253\) 8.75211e9i 2.13615i
\(254\) 0 0
\(255\) −4.78940e9 4.39197e9i −1.13272 1.03872i
\(256\) 0 0
\(257\) −1.29375e9 −0.296563 −0.148281 0.988945i \(-0.547374\pi\)
−0.148281 + 0.988945i \(0.547374\pi\)
\(258\) 0 0
\(259\) 3.39835e8 0.0755213
\(260\) 0 0
\(261\) −5.55893e9 1.22572e9i −1.19792 0.264136i
\(262\) 0 0
\(263\) −1.94582e9 −0.406706 −0.203353 0.979106i \(-0.565184\pi\)
−0.203353 + 0.979106i \(0.565184\pi\)
\(264\) 0 0
\(265\) −7.84657e8 5.13025e9i −0.159110 1.04029i
\(266\) 0 0
\(267\) 4.69871e9 + 5.84761e9i 0.924556 + 1.15062i
\(268\) 0 0
\(269\) 1.00661e10i 1.92244i 0.275788 + 0.961218i \(0.411061\pi\)
−0.275788 + 0.961218i \(0.588939\pi\)
\(270\) 0 0
\(271\) −3.90424e9 −0.723868 −0.361934 0.932204i \(-0.617883\pi\)
−0.361934 + 0.932204i \(0.617883\pi\)
\(272\) 0 0
\(273\) 2.16043e8 1.73596e8i 0.0388947 0.0312529i
\(274\) 0 0
\(275\) −2.20320e9 7.03399e9i −0.385232 1.22990i
\(276\) 0 0
\(277\) 5.08015e9i 0.862893i 0.902138 + 0.431447i \(0.141997\pi\)
−0.902138 + 0.431447i \(0.858003\pi\)
\(278\) 0 0
\(279\) −1.82533e9 + 8.27832e9i −0.301248 + 1.36624i
\(280\) 0 0
\(281\) 2.37851e9i 0.381487i −0.981640 0.190744i \(-0.938910\pi\)
0.981640 0.190744i \(-0.0610899\pi\)
\(282\) 0 0
\(283\) 2.07541e9i 0.323562i −0.986827 0.161781i \(-0.948276\pi\)
0.986827 0.161781i \(-0.0517238\pi\)
\(284\) 0 0
\(285\) 4.58965e9 + 4.20879e9i 0.695665 + 0.637937i
\(286\) 0 0
\(287\) −8.70616e9 −1.28321
\(288\) 0 0
\(289\) 9.50087e9 1.36198
\(290\) 0 0
\(291\) 6.09459e9 + 7.58482e9i 0.849909 + 1.05773i
\(292\) 0 0
\(293\) 9.60092e9 1.30269 0.651347 0.758780i \(-0.274204\pi\)
0.651347 + 0.758780i \(0.274204\pi\)
\(294\) 0 0
\(295\) −7.94635e9 + 1.21537e9i −1.04925 + 0.160480i
\(296\) 0 0
\(297\) 8.98632e9 4.45074e9i 1.15493 0.572014i
\(298\) 0 0
\(299\) 7.48381e8i 0.0936349i
\(300\) 0 0
\(301\) 3.33077e9 0.405769
\(302\) 0 0
\(303\) 2.34937e9 + 2.92382e9i 0.278728 + 0.346881i
\(304\) 0 0
\(305\) 2.63970e8 + 1.72589e9i 0.0305039 + 0.199440i
\(306\) 0 0
\(307\) 7.90407e9i 0.889810i −0.895578 0.444905i \(-0.853237\pi\)
0.895578 0.444905i \(-0.146763\pi\)
\(308\) 0 0
\(309\) −1.40213e9 1.74497e9i −0.153799 0.191405i
\(310\) 0 0
\(311\) 1.10579e10i 1.18204i −0.806657 0.591020i \(-0.798726\pi\)
0.806657 0.591020i \(-0.201274\pi\)
\(312\) 0 0
\(313\) 1.11144e10i 1.15800i −0.815327 0.579001i \(-0.803443\pi\)
0.815327 0.579001i \(-0.196557\pi\)
\(314\) 0 0
\(315\) −5.66999e8 + 8.67713e9i −0.0575891 + 0.881320i
\(316\) 0 0
\(317\) 8.57623e9 0.849296 0.424648 0.905359i \(-0.360398\pi\)
0.424648 + 0.905359i \(0.360398\pi\)
\(318\) 0 0
\(319\) 1.63717e10 1.58100
\(320\) 0 0
\(321\) 9.23549e9 7.42095e9i 0.869841 0.698939i
\(322\) 0 0
\(323\) −1.57894e10 −1.45063
\(324\) 0 0
\(325\) 1.88392e8 + 6.01466e8i 0.0168861 + 0.0539111i
\(326\) 0 0
\(327\) −3.78422e9 + 3.04072e9i −0.330967 + 0.265941i
\(328\) 0 0
\(329\) 1.21073e10i 1.03339i
\(330\) 0 0
\(331\) −2.03785e10 −1.69770 −0.848850 0.528633i \(-0.822705\pi\)
−0.848850 + 0.528633i \(0.822705\pi\)
\(332\) 0 0
\(333\) −1.02678e9 2.26401e8i −0.0835030 0.0184120i
\(334\) 0 0
\(335\) 1.24850e10 1.90954e9i 0.991306 0.151618i
\(336\) 0 0
\(337\) 6.68643e9i 0.518412i −0.965822 0.259206i \(-0.916539\pi\)
0.965822 0.259206i \(-0.0834609\pi\)
\(338\) 0 0
\(339\) 1.15152e10 9.25275e9i 0.871911 0.700603i
\(340\) 0 0
\(341\) 2.43806e10i 1.80313i
\(342\) 0 0
\(343\) 1.49135e10i 1.07747i
\(344\) 0 0
\(345\) −1.73060e10 1.58699e10i −1.22157 1.12021i
\(346\) 0 0
\(347\) 1.18843e10 0.819704 0.409852 0.912152i \(-0.365580\pi\)
0.409852 + 0.912152i \(0.365580\pi\)
\(348\) 0 0
\(349\) 2.80203e10 1.88874 0.944368 0.328890i \(-0.106674\pi\)
0.944368 + 0.328890i \(0.106674\pi\)
\(350\) 0 0
\(351\) −7.68407e8 + 3.80577e8i −0.0506248 + 0.0250734i
\(352\) 0 0
\(353\) 1.58911e10 1.02342 0.511710 0.859158i \(-0.329012\pi\)
0.511710 + 0.859158i \(0.329012\pi\)
\(354\) 0 0
\(355\) −1.35610e10 + 2.07412e9i −0.853845 + 0.130593i
\(356\) 0 0
\(357\) −1.38102e10 1.71870e10i −0.850213 1.05810i
\(358\) 0 0
\(359\) 1.24351e10i 0.748635i −0.927301 0.374317i \(-0.877877\pi\)
0.927301 0.374317i \(-0.122123\pi\)
\(360\) 0 0
\(361\) −1.85269e9 −0.109087
\(362\) 0 0
\(363\) −8.94750e9 + 7.18954e9i −0.515318 + 0.414071i
\(364\) 0 0
\(365\) −1.88871e10 + 2.88873e9i −1.06413 + 0.162755i
\(366\) 0 0
\(367\) 2.24145e10i 1.23556i 0.786351 + 0.617781i \(0.211968\pi\)
−0.786351 + 0.617781i \(0.788032\pi\)
\(368\) 0 0
\(369\) 2.63049e10 + 5.80011e9i 1.41883 + 0.312846i
\(370\) 0 0
\(371\) 1.76088e10i 0.929469i
\(372\) 0 0
\(373\) 1.30243e10i 0.672851i 0.941710 + 0.336426i \(0.109218\pi\)
−0.941710 + 0.336426i \(0.890782\pi\)
\(374\) 0 0
\(375\) −1.79036e10 8.39799e9i −0.905349 0.424669i
\(376\) 0 0
\(377\) −1.39992e9 −0.0693007
\(378\) 0 0
\(379\) 1.88060e10 0.911466 0.455733 0.890117i \(-0.349377\pi\)
0.455733 + 0.890117i \(0.349377\pi\)
\(380\) 0 0
\(381\) −1.18335e10 1.47269e10i −0.561580 0.698895i
\(382\) 0 0
\(383\) −5.11148e8 −0.0237548 −0.0118774 0.999929i \(-0.503781\pi\)
−0.0118774 + 0.999929i \(0.503781\pi\)
\(384\) 0 0
\(385\) −3.78108e9 2.47215e10i −0.172097 1.12520i
\(386\) 0 0
\(387\) −1.00636e10 2.21898e9i −0.448653 0.0989259i
\(388\) 0 0
\(389\) 2.64776e10i 1.15633i 0.815921 + 0.578163i \(0.196230\pi\)
−0.815921 + 0.578163i \(0.803770\pi\)
\(390\) 0 0
\(391\) 5.95365e10 2.54728
\(392\) 0 0
\(393\) 1.57565e10 + 1.96092e10i 0.660524 + 0.822032i
\(394\) 0 0
\(395\) −5.97187e9 3.90453e10i −0.245314 1.60391i
\(396\) 0 0
\(397\) 1.10906e10i 0.446472i 0.974764 + 0.223236i \(0.0716621\pi\)
−0.974764 + 0.223236i \(0.928338\pi\)
\(398\) 0 0
\(399\) 1.32342e10 + 1.64702e10i 0.522164 + 0.649841i
\(400\) 0 0
\(401\) 2.27708e10i 0.880643i 0.897840 + 0.440322i \(0.145136\pi\)
−0.897840 + 0.440322i \(0.854864\pi\)
\(402\) 0 0
\(403\) 2.08475e9i 0.0790378i
\(404\) 0 0
\(405\) 7.49390e9 2.58395e10i 0.278540 0.960425i
\(406\) 0 0
\(407\) 3.02400e9 0.110206
\(408\) 0 0
\(409\) −2.75068e10 −0.982986 −0.491493 0.870881i \(-0.663549\pi\)
−0.491493 + 0.870881i \(0.663549\pi\)
\(410\) 0 0
\(411\) −3.75144e10 + 3.01438e10i −1.31471 + 1.05641i
\(412\) 0 0
\(413\) −2.72747e10 −0.937475
\(414\) 0 0
\(415\) 3.33853e8 + 2.18280e9i 0.0112554 + 0.0735904i
\(416\) 0 0
\(417\) 4.22893e10 3.39805e10i 1.39858 1.12379i
\(418\) 0 0
\(419\) 4.36699e10i 1.41686i 0.705782 + 0.708429i \(0.250596\pi\)
−0.705782 + 0.708429i \(0.749404\pi\)
\(420\) 0 0
\(421\) −4.09807e10 −1.30452 −0.652261 0.757995i \(-0.726179\pi\)
−0.652261 + 0.757995i \(0.726179\pi\)
\(422\) 0 0
\(423\) 8.06600e9 3.65813e10i 0.251940 1.14261i
\(424\) 0 0
\(425\) 4.78489e10 1.49873e10i 1.46661 0.459376i
\(426\) 0 0
\(427\) 5.92386e9i 0.178194i
\(428\) 0 0
\(429\) 1.92244e9 1.54473e9i 0.0567577 0.0456062i
\(430\) 0 0
\(431\) 3.40323e10i 0.986239i −0.869962 0.493120i \(-0.835857\pi\)
0.869962 0.493120i \(-0.164143\pi\)
\(432\) 0 0
\(433\) 6.70291e10i 1.90683i 0.301665 + 0.953414i \(0.402458\pi\)
−0.301665 + 0.953414i \(0.597542\pi\)
\(434\) 0 0
\(435\) 2.96862e10 3.23725e10i 0.829082 0.904107i
\(436\) 0 0
\(437\) −5.70533e10 −1.56443
\(438\) 0 0
\(439\) 3.27169e10 0.880874 0.440437 0.897783i \(-0.354823\pi\)
0.440437 + 0.897783i \(0.354823\pi\)
\(440\) 0 0
\(441\) 1.79137e9 8.12430e9i 0.0473621 0.214799i
\(442\) 0 0
\(443\) 6.16171e10 1.59988 0.799938 0.600082i \(-0.204866\pi\)
0.799938 + 0.600082i \(0.204866\pi\)
\(444\) 0 0
\(445\) −5.72165e10 + 8.75112e9i −1.45909 + 0.223164i
\(446\) 0 0
\(447\) −8.47892e8 1.05521e9i −0.0212378 0.0264308i
\(448\) 0 0
\(449\) 3.08295e10i 0.758544i 0.925285 + 0.379272i \(0.123826\pi\)
−0.925285 + 0.379272i \(0.876174\pi\)
\(450\) 0 0
\(451\) −7.74711e10 −1.87255
\(452\) 0 0
\(453\) 7.19589e9 5.78208e9i 0.170880 0.137307i
\(454\) 0 0
\(455\) 3.23315e8 + 2.11390e9i 0.00754362 + 0.0493217i
\(456\) 0 0
\(457\) 5.77594e9i 0.132421i −0.997806 0.0662107i \(-0.978909\pi\)
0.997806 0.0662107i \(-0.0210909\pi\)
\(458\) 0 0
\(459\) 3.02763e10 + 6.11296e10i 0.682106 + 1.37721i
\(460\) 0 0
\(461\) 7.19674e10i 1.59343i 0.604358 + 0.796713i \(0.293430\pi\)
−0.604358 + 0.796713i \(0.706570\pi\)
\(462\) 0 0
\(463\) 6.07888e9i 0.132282i 0.997810 + 0.0661409i \(0.0210687\pi\)
−0.997810 + 0.0661409i \(0.978931\pi\)
\(464\) 0 0
\(465\) −4.82090e10 4.42085e10i −1.03114 0.945572i
\(466\) 0 0
\(467\) −2.68395e10 −0.564297 −0.282148 0.959371i \(-0.591047\pi\)
−0.282148 + 0.959371i \(0.591047\pi\)
\(468\) 0 0
\(469\) 4.28528e10 0.885702
\(470\) 0 0
\(471\) −7.12904e9 8.87221e9i −0.144860 0.180280i
\(472\) 0 0
\(473\) 2.96386e10 0.592124
\(474\) 0 0
\(475\) −4.58532e10 + 1.43622e10i −0.900731 + 0.282129i
\(476\) 0 0
\(477\) −1.17311e10 + 5.32036e10i −0.226603 + 1.02770i
\(478\) 0 0
\(479\) 3.87146e10i 0.735416i 0.929941 + 0.367708i \(0.119857\pi\)
−0.929941 + 0.367708i \(0.880143\pi\)
\(480\) 0 0
\(481\) −2.58578e8 −0.00483071
\(482\) 0 0
\(483\) −4.99017e10 6.21035e10i −0.916910 1.14111i
\(484\) 0 0
\(485\) −7.42144e10 + 1.13509e10i −1.34128 + 0.205146i
\(486\) 0 0
\(487\) 6.53324e10i 1.16148i −0.814088 0.580741i \(-0.802763\pi\)
0.814088 0.580741i \(-0.197237\pi\)
\(488\) 0 0
\(489\) −4.01556e9 4.99743e9i −0.0702281 0.0873999i
\(490\) 0 0
\(491\) 4.58946e10i 0.789652i −0.918756 0.394826i \(-0.870805\pi\)
0.918756 0.394826i \(-0.129195\pi\)
\(492\) 0 0
\(493\) 1.11369e11i 1.88528i
\(494\) 0 0
\(495\) −5.04540e9 + 7.72127e10i −0.0840378 + 1.28608i
\(496\) 0 0
\(497\) −4.65463e10 −0.762885
\(498\) 0 0
\(499\) −3.21201e10 −0.518054 −0.259027 0.965870i \(-0.583402\pi\)
−0.259027 + 0.965870i \(0.583402\pi\)
\(500\) 0 0
\(501\) 3.96680e10 3.18743e10i 0.629636 0.505929i
\(502\) 0 0
\(503\) −1.00259e11 −1.56622 −0.783111 0.621882i \(-0.786368\pi\)
−0.783111 + 0.621882i \(0.786368\pi\)
\(504\) 0 0
\(505\) −2.86084e10 + 4.37558e9i −0.439874 + 0.0672776i
\(506\) 0 0
\(507\) 5.13422e10 4.12548e10i 0.777039 0.624370i
\(508\) 0 0
\(509\) 1.58469e10i 0.236087i −0.993008 0.118044i \(-0.962338\pi\)
0.993008 0.118044i \(-0.0376622\pi\)
\(510\) 0 0
\(511\) −6.48271e10 −0.950765
\(512\) 0 0
\(513\) −2.90135e10 5.85800e10i −0.418920 0.845824i
\(514\) 0 0
\(515\) 1.70738e10 2.61140e9i 0.242718 0.0371231i
\(516\) 0 0
\(517\) 1.07736e11i 1.50799i
\(518\) 0 0
\(519\) −4.39354e10 + 3.53032e10i −0.605544 + 0.486570i
\(520\) 0 0
\(521\) 1.15949e11i 1.57368i 0.617154 + 0.786842i \(0.288285\pi\)
−0.617154 + 0.786842i \(0.711715\pi\)
\(522\) 0 0
\(523\) 1.09614e10i 0.146507i −0.997313 0.0732535i \(-0.976662\pi\)
0.997313 0.0732535i \(-0.0233382\pi\)
\(524\) 0 0
\(525\) −5.57390e10 3.73500e10i −0.733706 0.491647i
\(526\) 0 0
\(527\) 1.65850e11 2.15017
\(528\) 0 0
\(529\) 1.36817e11 1.74710
\(530\) 0 0
\(531\) 8.24082e10 + 1.81706e10i 1.03655 + 0.228555i
\(532\) 0 0
\(533\) 6.62445e9 0.0820806
\(534\) 0 0
\(535\) 1.38212e10 + 9.03655e10i 0.168706 + 1.10303i
\(536\) 0 0
\(537\) −3.94173e10 4.90555e10i −0.474013 0.589917i
\(538\) 0 0
\(539\) 2.39270e10i 0.283487i
\(540\) 0 0
\(541\) −1.38686e10 −0.161898 −0.0809491 0.996718i \(-0.525795\pi\)
−0.0809491 + 0.996718i \(0.525795\pi\)
\(542\) 0 0
\(543\) 1.86190e10 1.49608e10i 0.214169 0.172090i
\(544\) 0 0
\(545\) −5.66319e9 3.70270e10i −0.0641911 0.419694i
\(546\) 0 0
\(547\) 3.53794e10i 0.395186i 0.980284 + 0.197593i \(0.0633124\pi\)
−0.980284 + 0.197593i \(0.936688\pi\)
\(548\) 0 0
\(549\) 3.94652e9 1.78984e10i 0.0434435 0.197027i
\(550\) 0 0
\(551\) 1.06724e11i 1.15786i
\(552\) 0 0
\(553\) 1.34017e11i 1.43305i
\(554\) 0 0
\(555\) 5.48331e9 5.97950e9i 0.0577924 0.0630221i
\(556\) 0 0
\(557\) −2.28319e10 −0.237204 −0.118602 0.992942i \(-0.537841\pi\)
−0.118602 + 0.992942i \(0.537841\pi\)
\(558\) 0 0
\(559\) −2.53435e9 −0.0259549
\(560\) 0 0
\(561\) −1.22889e11 1.52938e11i −1.24069 1.54405i
\(562\) 0 0
\(563\) 1.31341e10 0.130728 0.0653638 0.997862i \(-0.479179\pi\)
0.0653638 + 0.997862i \(0.479179\pi\)
\(564\) 0 0
\(565\) 1.72328e10 + 1.12671e11i 0.169107 + 1.10566i
\(566\) 0 0
\(567\) 3.83887e10 8.28188e10i 0.371425 0.801302i
\(568\) 0 0
\(569\) 8.76252e9i 0.0835949i 0.999126 + 0.0417974i \(0.0133084\pi\)
−0.999126 + 0.0417974i \(0.986692\pi\)
\(570\) 0 0
\(571\) 5.82482e10 0.547946 0.273973 0.961737i \(-0.411662\pi\)
0.273973 + 0.961737i \(0.411662\pi\)
\(572\) 0 0
\(573\) 4.72396e10 + 5.87904e10i 0.438215 + 0.545366i
\(574\) 0 0
\(575\) 1.72897e11 5.41550e10i 1.58167 0.495412i
\(576\) 0 0
\(577\) 4.97998e10i 0.449288i −0.974441 0.224644i \(-0.927878\pi\)
0.974441 0.224644i \(-0.0721219\pi\)
\(578\) 0 0
\(579\) 2.46581e10 + 3.06874e10i 0.219405 + 0.273052i
\(580\) 0 0
\(581\) 7.49213e9i 0.0657508i
\(582\) 0 0
\(583\) 1.56691e11i 1.35634i
\(584\) 0 0
\(585\) 4.31425e8 6.60235e9i 0.00368368 0.0563735i
\(586\) 0 0
\(587\) −9.62104e10 −0.810344 −0.405172 0.914240i \(-0.632788\pi\)
−0.405172 + 0.914240i \(0.632788\pi\)
\(588\) 0 0
\(589\) −1.58933e11 −1.32054
\(590\) 0 0
\(591\) 5.14343e10 4.13288e10i 0.421603 0.338768i
\(592\) 0 0
\(593\) 2.25032e11 1.81981 0.909905 0.414818i \(-0.136155\pi\)
0.909905 + 0.414818i \(0.136155\pi\)
\(594\) 0 0
\(595\) 1.68168e11 2.57209e10i 1.34176 0.205219i
\(596\) 0 0
\(597\) −6.06552e9 + 4.87380e9i −0.0477497 + 0.0383681i
\(598\) 0 0
\(599\) 1.54879e11i 1.20305i −0.798853 0.601526i \(-0.794559\pi\)
0.798853 0.601526i \(-0.205441\pi\)
\(600\) 0 0
\(601\) 1.19944e11 0.919346 0.459673 0.888088i \(-0.347967\pi\)
0.459673 + 0.888088i \(0.347967\pi\)
\(602\) 0 0
\(603\) −1.29476e11 2.85488e10i −0.979310 0.215933i
\(604\) 0 0
\(605\) −1.33902e10 8.75476e10i −0.0999459 0.653466i
\(606\) 0 0
\(607\) 1.26738e11i 0.933584i 0.884367 + 0.466792i \(0.154590\pi\)
−0.884367 + 0.466792i \(0.845410\pi\)
\(608\) 0 0
\(609\) 1.16171e11 9.33461e10i 0.844554 0.678620i
\(610\) 0 0
\(611\) 9.21237e9i 0.0661008i
\(612\) 0 0
\(613\) 2.06214e11i 1.46041i 0.683227 + 0.730207i \(0.260576\pi\)
−0.683227 + 0.730207i \(0.739424\pi\)
\(614\) 0 0
\(615\) −1.40476e11 + 1.53187e11i −0.981975 + 1.07084i
\(616\) 0 0
\(617\) 6.08519e10 0.419888 0.209944 0.977713i \(-0.432672\pi\)
0.209944 + 0.977713i \(0.432672\pi\)
\(618\) 0 0
\(619\) 1.90502e11 1.29759 0.648795 0.760964i \(-0.275273\pi\)
0.648795 + 0.760964i \(0.275273\pi\)
\(620\) 0 0
\(621\) 1.09400e11 + 2.20885e11i 0.735615 + 1.48525i
\(622\) 0 0
\(623\) −1.96388e11 −1.30365
\(624\) 0 0
\(625\) 1.25323e11 8.70476e10i 0.821315 0.570475i
\(626\) 0 0
\(627\) 1.17764e11 + 1.46559e11i 0.761976 + 0.948291i
\(628\) 0 0
\(629\) 2.05708e10i 0.131416i
\(630\) 0 0
\(631\) −8.86060e7 −0.000558915 −0.000279457 1.00000i \(-0.500089\pi\)
−0.000279457 1.00000i \(0.500089\pi\)
\(632\) 0 0
\(633\) 1.04032e11 8.35927e10i 0.647968 0.520659i
\(634\) 0 0
\(635\) 1.44097e11 2.20392e10i 0.886258 0.135551i
\(636\) 0 0
\(637\) 2.04597e9i 0.0124263i
\(638\) 0 0
\(639\) 1.40636e11 + 3.10094e10i 0.843513 + 0.185990i
\(640\) 0 0
\(641\) 3.50234e10i 0.207456i 0.994606 + 0.103728i \(0.0330772\pi\)
−0.994606 + 0.103728i \(0.966923\pi\)
\(642\) 0 0
\(643\) 2.54275e11i 1.48751i −0.668452 0.743755i \(-0.733043\pi\)
0.668452 0.743755i \(-0.266957\pi\)
\(644\) 0 0
\(645\) 5.37426e10 5.86058e10i 0.310513 0.338612i
\(646\) 0 0
\(647\) −1.96848e11 −1.12335 −0.561673 0.827360i \(-0.689842\pi\)
−0.561673 + 0.827360i \(0.689842\pi\)
\(648\) 0 0
\(649\) −2.42702e11 −1.36803
\(650\) 0 0
\(651\) −1.39010e11 1.73001e11i −0.773969 0.963217i
\(652\) 0 0
\(653\) −1.90774e11 −1.04922 −0.524611 0.851342i \(-0.675789\pi\)
−0.524611 + 0.851342i \(0.675789\pi\)
\(654\) 0 0
\(655\) −1.91868e11 + 2.93457e10i −1.04241 + 0.159433i
\(656\) 0 0
\(657\) 1.95870e11 + 4.31883e10i 1.05125 + 0.231795i
\(658\) 0 0
\(659\) 3.23776e11i 1.71673i −0.513038 0.858366i \(-0.671480\pi\)
0.513038 0.858366i \(-0.328520\pi\)
\(660\) 0 0
\(661\) 7.51395e10 0.393607 0.196803 0.980443i \(-0.436944\pi\)
0.196803 + 0.980443i \(0.436944\pi\)
\(662\) 0 0
\(663\) 1.05081e10 + 1.30775e10i 0.0543838 + 0.0676815i
\(664\) 0 0
\(665\) −1.61154e11 + 2.46481e10i −0.824053 + 0.126037i
\(666\) 0 0
\(667\) 4.02419e11i 2.03318i
\(668\) 0 0
\(669\) −2.36411e11 2.94217e11i −1.18022 1.46880i
\(670\) 0 0
\(671\) 5.27130e10i 0.260033i
\(672\) 0 0
\(673\) 2.54980e11i 1.24293i −0.783444 0.621463i \(-0.786539\pi\)
0.783444 0.621463i \(-0.213461\pi\)
\(674\) 0 0
\(675\) 1.43528e11 + 1.49984e11i 0.691387 + 0.722485i
\(676\) 0 0
\(677\) −3.70554e11 −1.76399 −0.881997 0.471254i \(-0.843801\pi\)
−0.881997 + 0.471254i \(0.843801\pi\)
\(678\) 0 0
\(679\) −2.54730e11 −1.19840
\(680\) 0 0
\(681\) −8.76449e9 + 7.04249e9i −0.0407510 + 0.0327444i
\(682\) 0 0
\(683\) −3.26263e10 −0.149929 −0.0749644 0.997186i \(-0.523884\pi\)
−0.0749644 + 0.997186i \(0.523884\pi\)
\(684\) 0 0
\(685\) −5.61414e10 3.67064e11i −0.254989 1.66717i
\(686\) 0 0
\(687\) 3.38692e9 2.72148e9i 0.0152047 0.0122174i
\(688\) 0 0
\(689\) 1.33984e10i 0.0594533i
\(690\) 0 0
\(691\) 1.73441e11 0.760745 0.380373 0.924833i \(-0.375796\pi\)
0.380373 + 0.924833i \(0.375796\pi\)
\(692\) 0 0
\(693\) −5.65296e10 + 2.56375e11i −0.245100 + 1.11159i
\(694\) 0 0
\(695\) 6.32871e10 + 4.13783e11i 0.271254 + 1.77351i
\(696\) 0 0
\(697\) 5.26999e11i 2.23295i
\(698\) 0 0
\(699\) −1.82234e11 + 1.46430e11i −0.763346 + 0.613368i
\(700\) 0 0
\(701\) 3.03079e11i 1.25511i −0.778571 0.627557i \(-0.784055\pi\)
0.778571 0.627557i \(-0.215945\pi\)
\(702\) 0 0
\(703\) 1.97129e10i 0.0807102i
\(704\) 0 0
\(705\) 2.13032e11 + 1.95354e11i 0.862360 + 0.790800i
\(706\) 0 0
\(707\) −9.81943e10 −0.393015
\(708\) 0 0
\(709\) 3.41415e11 1.35113 0.675567 0.737299i \(-0.263899\pi\)
0.675567 + 0.737299i \(0.263899\pi\)
\(710\) 0 0
\(711\) −8.92832e10 + 4.04921e11i −0.349375 + 1.58450i
\(712\) 0 0
\(713\) 5.99280e11 2.31884
\(714\) 0 0
\(715\) 2.87699e9 + 1.88103e10i 0.0110082 + 0.0719735i
\(716\) 0 0
\(717\) 4.06673e10 + 5.06111e10i 0.153875 + 0.191500i
\(718\) 0 0
\(719\) 1.16767e11i 0.436921i −0.975846 0.218460i \(-0.929897\pi\)
0.975846 0.218460i \(-0.0701035\pi\)
\(720\) 0 0
\(721\) 5.86034e10 0.216861
\(722\) 0 0
\(723\) −2.29782e11 + 1.84635e11i −0.840934 + 0.675712i
\(724\) 0 0
\(725\) 1.01302e11 + 3.23420e11i 0.366663 + 1.17062i
\(726\) 0 0
\(727\) 4.11351e10i 0.147257i −0.997286 0.0736283i \(-0.976542\pi\)
0.997286 0.0736283i \(-0.0234579\pi\)
\(728\) 0 0
\(729\) −1.71162e11 + 2.24655e11i −0.606036 + 0.795437i
\(730\) 0 0
\(731\) 2.01617e11i 0.706087i
\(732\) 0 0
\(733\) 3.64955e11i 1.26422i 0.774878 + 0.632110i \(0.217811\pi\)
−0.774878 + 0.632110i \(0.782189\pi\)
\(734\) 0 0
\(735\) 4.73120e10 + 4.33860e10i 0.162115 + 0.148662i
\(736\) 0 0
\(737\) 3.81322e11 1.29248
\(738\) 0 0
\(739\) −3.12470e11 −1.04769 −0.523843 0.851815i \(-0.675502\pi\)
−0.523843 + 0.851815i \(0.675502\pi\)
\(740\) 0 0
\(741\) −1.00698e10 1.25320e10i −0.0334002 0.0415670i
\(742\) 0 0
\(743\) −8.05559e10 −0.264327 −0.132164 0.991228i \(-0.542192\pi\)
−0.132164 + 0.991228i \(0.542192\pi\)
\(744\) 0 0
\(745\) 1.03248e10 1.57916e9i 0.0335165 0.00512626i
\(746\) 0 0
\(747\) 4.99131e9 2.26368e10i 0.0160300 0.0726998i
\(748\) 0 0
\(749\) 3.10167e11i 0.985525i
\(750\) 0 0
\(751\) −3.97233e10 −0.124878 −0.0624390 0.998049i \(-0.519888\pi\)
−0.0624390 + 0.998049i \(0.519888\pi\)
\(752\) 0 0
\(753\) 2.13565e11 + 2.65785e11i 0.664280 + 0.826706i
\(754\) 0 0
\(755\) 1.07689e10 + 7.04089e10i 0.0331422 + 0.216690i
\(756\) 0 0
\(757\) 4.60111e11i 1.40113i −0.713588 0.700566i \(-0.752931\pi\)
0.713588 0.700566i \(-0.247069\pi\)
\(758\) 0 0
\(759\) −4.44046e11 5.52623e11i −1.33802 1.66518i
\(760\) 0 0
\(761\) 2.08945e11i 0.623007i 0.950245 + 0.311503i \(0.100833\pi\)
−0.950245 + 0.311503i \(0.899167\pi\)
\(762\) 0 0
\(763\) 1.27090e11i 0.374984i
\(764\) 0 0
\(765\) −5.25241e11 3.43215e10i −1.53360 0.100212i
\(766\) 0 0
\(767\) 2.07531e10 0.0599655
\(768\) 0 0
\(769\) −3.43585e11 −0.982493 −0.491246 0.871021i \(-0.663459\pi\)
−0.491246 + 0.871021i \(0.663459\pi\)
\(770\) 0 0
\(771\) −8.16892e10 + 6.56394e10i −0.231178 + 0.185758i
\(772\) 0 0
\(773\) 5.64823e11 1.58196 0.790978 0.611845i \(-0.209572\pi\)
0.790978 + 0.611845i \(0.209572\pi\)
\(774\) 0 0
\(775\) 4.81636e11 1.50859e11i 1.33509 0.418180i
\(776\) 0 0
\(777\) 2.14578e10 1.72419e10i 0.0588709 0.0473042i
\(778\) 0 0
\(779\) 5.05019e11i 1.37138i
\(780\) 0 0
\(781\) −4.14188e11 −1.11325
\(782\) 0 0
\(783\) −4.13188e11 + 2.04643e11i −1.09926 + 0.544441i
\(784\) 0 0
\(785\) 8.68110e10 1.32775e10i 0.228610 0.0349653i
\(786\) 0 0
\(787\) 5.31289e11i 1.38494i −0.721445 0.692472i \(-0.756522\pi\)
0.721445 0.692472i \(-0.243478\pi\)
\(788\) 0 0
\(789\) −1.22862e11 + 9.87231e10i −0.317038 + 0.254748i
\(790\) 0 0
\(791\) 3.86729e11i 0.987871i
\(792\) 0 0
\(793\) 4.50742e9i 0.0113982i
\(794\) 0 0
\(795\) −3.09832e11 2.84122e11i −0.775636 0.711273i
\(796\) 0 0
\(797\) −5.49894e11 −1.36284 −0.681421 0.731891i \(-0.738638\pi\)
−0.681421 + 0.731891i \(0.738638\pi\)
\(798\) 0 0
\(799\) −7.32878e11 −1.79823
\(800\) 0 0
\(801\) 5.93368e11 + 1.30835e11i 1.44143 + 0.317829i
\(802\) 0 0
\(803\) −5.76859e11 −1.38742
\(804\) 0 0
\(805\) 6.07657e11 9.29396e10i 1.44702 0.221318i
\(806\) 0 0
\(807\) 5.10713e11 + 6.35590e11i 1.20416 + 1.49859i
\(808\) 0 0
\(809\) 4.15825e11i 0.970771i −0.874300 0.485385i \(-0.838679\pi\)
0.874300 0.485385i \(-0.161321\pi\)
\(810\) 0 0
\(811\) 3.62554e11 0.838086 0.419043 0.907966i \(-0.362366\pi\)
0.419043 + 0.907966i \(0.362366\pi\)
\(812\) 0 0
\(813\) −2.46520e11 + 1.98085e11i −0.564274 + 0.453409i
\(814\) 0 0
\(815\) 4.88978e10 7.47879e9i 0.110830 0.0169512i
\(816\) 0 0
\(817\) 1.93208e11i 0.433648i
\(818\) 0 0
\(819\) 4.83376e9 2.19223e10i 0.0107436 0.0487249i
\(820\) 0 0
\(821\) 3.41748e11i 0.752200i −0.926579 0.376100i \(-0.877265\pi\)
0.926579 0.376100i \(-0.122735\pi\)
\(822\) 0 0
\(823\) 6.08011e10i 0.132529i −0.997802 0.0662647i \(-0.978892\pi\)
0.997802 0.0662647i \(-0.0211082\pi\)
\(824\) 0 0
\(825\) −4.95989e11 3.32356e11i −1.07067 0.717444i
\(826\) 0 0
\(827\) 5.88464e9 0.0125805 0.00629025 0.999980i \(-0.497998\pi\)
0.00629025 + 0.999980i \(0.497998\pi\)
\(828\) 0 0
\(829\) −7.58209e11 −1.60535 −0.802677 0.596414i \(-0.796592\pi\)
−0.802677 + 0.596414i \(0.796592\pi\)
\(830\) 0 0
\(831\) 2.57746e11 + 3.20769e11i 0.540490 + 0.672648i
\(832\) 0 0
\(833\) −1.62764e11 −0.338048
\(834\) 0 0
\(835\) 5.93643e10 + 3.88136e11i 0.122118 + 0.798431i
\(836\) 0 0
\(837\) 3.04754e11 + 6.15317e11i 0.620937 + 1.25371i
\(838\) 0 0
\(839\) 9.22647e11i 1.86203i −0.364975 0.931017i \(-0.618923\pi\)
0.364975 0.931017i \(-0.381077\pi\)
\(840\) 0 0
\(841\) −2.52518e11 −0.504787
\(842\) 0 0
\(843\) −1.20676e11 1.50183e11i −0.238952 0.297379i
\(844\) 0 0
\(845\) 7.68350e10 + 5.02363e11i 0.150707 + 0.985350i
\(846\) 0 0
\(847\) 3.00495e11i 0.583852i
\(848\) 0 0
\(849\) −1.05298e11 1.31045e11i −0.202669 0.252225i
\(850\) 0 0
\(851\) 7.43304e10i 0.141726i
\(852\) 0 0
\(853\) 4.96245e11i 0.937346i 0.883372 + 0.468673i \(0.155268\pi\)
−0.883372 + 0.468673i \(0.844732\pi\)
\(854\) 0 0
\(855\) 5.03335e11 + 3.28900e10i 0.941873 + 0.0615459i
\(856\) 0 0
\(857\) −9.48856e11 −1.75905 −0.879523 0.475857i \(-0.842138\pi\)
−0.879523 + 0.475857i \(0.842138\pi\)
\(858\) 0 0
\(859\) 4.61338e11 0.847318 0.423659 0.905822i \(-0.360746\pi\)
0.423659 + 0.905822i \(0.360746\pi\)
\(860\) 0 0
\(861\) −5.49722e11 + 4.41715e11i −1.00030 + 0.803766i
\(862\) 0 0
\(863\) 1.26432e11 0.227937 0.113969 0.993484i \(-0.463644\pi\)
0.113969 + 0.993484i \(0.463644\pi\)
\(864\) 0 0
\(865\) −6.57506e10 4.29891e11i −0.117445 0.767880i
\(866\) 0 0
\(867\) 5.99900e11 4.82035e11i 1.06170 0.853105i
\(868\) 0 0
\(869\) 1.19254e12i 2.09119i
\(870\) 0 0
\(871\) −3.26063e10 −0.0566538
\(872\) 0 0
\(873\) 7.69645e11 + 1.69703e11i 1.32505 + 0.292168i
\(874\) 0 0
\(875\) 4.64972e11 2.27662e11i 0.793222 0.388382i
\(876\) 0 0
\(877\) 1.15100e11i 0.194570i 0.995257 + 0.0972852i \(0.0310159\pi\)
−0.995257 + 0.0972852i \(0.968984\pi\)
\(878\) 0 0
\(879\) 6.06218e11 4.87111e11i 1.01548 0.815967i
\(880\) 0 0
\(881\) 5.84739e10i 0.0970640i −0.998822 0.0485320i \(-0.984546\pi\)
0.998822 0.0485320i \(-0.0154543\pi\)
\(882\) 0 0
\(883\) 4.54543e11i 0.747708i 0.927488 + 0.373854i \(0.121964\pi\)
−0.927488 + 0.373854i \(0.878036\pi\)
\(884\) 0 0
\(885\) −4.40083e11 + 4.79906e11i −0.717400 + 0.782318i
\(886\) 0 0
\(887\) −3.50655e11 −0.566481 −0.283241 0.959049i \(-0.591410\pi\)
−0.283241 + 0.959049i \(0.591410\pi\)
\(888\) 0 0
\(889\) 4.94592e11 0.791845
\(890\) 0 0
\(891\) 3.41598e11 7.36956e11i 0.542007 1.16931i
\(892\) 0 0
\(893\) 7.02311e11 1.10439
\(894\) 0 0
\(895\) 4.79988e11 7.34129e10i 0.748064 0.114414i
\(896\) 0 0
\(897\) 3.79698e10 + 4.72540e10i 0.0586500 + 0.0729909i
\(898\) 0 0
\(899\) 1.12101e12i 1.71622i
\(900\) 0 0
\(901\) 1.06589e12 1.61739
\(902\) 0 0
\(903\) 2.10310e11 1.68990e11i 0.316308 0.254161i
\(904\) 0 0
\(905\) 2.78638e10 + 1.82179e11i 0.0415381 + 0.271584i
\(906\) 0 0
\(907\) 8.28086e10i 0.122362i −0.998127 0.0611810i \(-0.980513\pi\)
0.998127 0.0611810i \(-0.0194867\pi\)
\(908\) 0 0
\(909\) 2.96686e11 + 6.54178e10i 0.434551 + 0.0958165i
\(910\) 0 0
\(911\) 7.95238e11i 1.15458i 0.816540 + 0.577289i \(0.195890\pi\)
−0.816540 + 0.577289i \(0.804110\pi\)
\(912\) 0 0
\(913\) 6.66682e10i 0.0959479i
\(914\) 0 0
\(915\) 1.04232e11 + 9.55827e10i 0.148702 + 0.136362i
\(916\) 0 0
\(917\) −6.58558e11 −0.931359
\(918\) 0 0
\(919\) 1.62582e11 0.227935 0.113967 0.993484i \(-0.463644\pi\)
0.113967 + 0.993484i \(0.463644\pi\)
\(920\) 0 0
\(921\) −4.01020e11 4.99076e11i −0.557350 0.693630i
\(922\) 0 0
\(923\) 3.54166e10 0.0487978
\(924\) 0 0
\(925\) 1.87114e10 + 5.97386e10i 0.0255588 + 0.0815996i
\(926\) 0 0
\(927\) −1.77065e11 3.90420e10i −0.239781 0.0528705i
\(928\) 0 0
\(929\) 1.13990e12i 1.53040i −0.643794 0.765199i \(-0.722640\pi\)
0.643794 0.765199i \(-0.277360\pi\)
\(930\) 0 0
\(931\) 1.55976e11 0.207615
\(932\) 0 0
\(933\) −5.61034e11 6.98215e11i −0.740393 0.921431i
\(934\) 0 0
\(935\) 1.49643e12 2.28875e11i 1.95799 0.299469i
\(936\) 0 0
\(937\) 1.12341e12i 1.45741i 0.684829 + 0.728704i \(0.259877\pi\)
−0.684829 + 0.728704i \(0.740123\pi\)
\(938\) 0 0
\(939\) −5.63900e11 7.01783e11i −0.725337 0.902693i
\(940\) 0 0
\(941\) 1.49509e12i 1.90682i −0.301682 0.953409i \(-0.597548\pi\)
0.301682 0.953409i \(-0.402452\pi\)
\(942\) 0 0
\(943\) 1.90425e12i 2.40812i
\(944\) 0 0
\(945\) 4.04441e11 + 5.76655e11i 0.507140 + 0.723084i
\(946\) 0 0
\(947\) 8.53479e11 1.06119 0.530595 0.847626i \(-0.321969\pi\)
0.530595 + 0.847626i \(0.321969\pi\)
\(948\) 0 0
\(949\) 4.93264e10 0.0608156
\(950\) 0 0
\(951\) 5.41517e11 4.35123e11i 0.662049 0.531973i
\(952\) 0 0
\(953\) 1.63198e11 0.197853 0.0989264 0.995095i \(-0.468459\pi\)
0.0989264 + 0.995095i \(0.468459\pi\)
\(954\) 0 0
\(955\) −5.75241e11 + 8.79815e10i −0.691570 + 0.105774i
\(956\) 0 0
\(957\) 1.03374e12 8.30633e11i 1.23243 0.990287i
\(958\) 0 0
\(959\) 1.25989e12i 1.48956i
\(960\) 0 0
\(961\) 8.16515e11 0.957350
\(962\) 0 0
\(963\) 2.06635e11 9.37142e11i 0.240270 1.08968i
\(964\) 0 0
\(965\) −3.00264e11 + 4.59246e10i −0.346253 + 0.0529585i
\(966\) 0 0
\(967\) 1.07651e12i 1.23115i 0.788079 + 0.615575i \(0.211076\pi\)
−0.788079 + 0.615575i \(0.788924\pi\)
\(968\) 0 0
\(969\) −9.96970e11 + 8.01091e11i −1.13080 + 0.908629i
\(970\) 0 0
\(971\) 3.39646e11i 0.382075i −0.981583 0.191038i \(-0.938815\pi\)
0.981583 0.191038i \(-0.0611853\pi\)
\(972\) 0 0
\(973\) 1.42025e12i 1.58458i
\(974\) 0 0
\(975\) 4.24114e10 + 2.84193e10i 0.0469314 + 0.0314482i
\(976\) 0 0
\(977\) −7.05270e11 −0.774064 −0.387032 0.922066i \(-0.626500\pi\)
−0.387032 + 0.922066i \(0.626500\pi\)
\(978\) 0 0
\(979\) −1.74754e12 −1.90237
\(980\) 0 0
\(981\) −8.46683e10 + 3.83992e11i −0.0914207 + 0.414616i
\(982\) 0 0
\(983\) −4.75755e11 −0.509529 −0.254765 0.967003i \(-0.581998\pi\)
−0.254765 + 0.967003i \(0.581998\pi\)
\(984\) 0 0
\(985\) 7.69729e10 + 5.03264e11i 0.0817698 + 0.534627i
\(986\) 0 0
\(987\) 6.14277e11 + 7.64477e11i 0.647285 + 0.805556i
\(988\) 0 0
\(989\) 7.28521e11i 0.761478i
\(990\) 0 0
\(991\) 6.02162e11 0.624337 0.312168 0.950027i \(-0.398945\pi\)
0.312168 + 0.950027i \(0.398945\pi\)
\(992\) 0 0
\(993\) −1.28673e12 + 1.03392e12i −1.32340 + 1.06339i
\(994\) 0 0
\(995\) −9.07721e9 5.93486e10i −0.00926105 0.0605506i
\(996\) 0 0
\(997\) 1.02815e12i 1.04058i 0.853990 + 0.520289i \(0.174176\pi\)
−0.853990 + 0.520289i \(0.825824\pi\)
\(998\) 0 0
\(999\) −7.63195e10 + 3.77995e10i −0.0766255 + 0.0379511i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 120.9.c.a.89.39 yes 48
3.2 odd 2 inner 120.9.c.a.89.9 48
4.3 odd 2 240.9.c.f.209.10 48
5.4 even 2 inner 120.9.c.a.89.10 yes 48
12.11 even 2 240.9.c.f.209.40 48
15.14 odd 2 inner 120.9.c.a.89.40 yes 48
20.19 odd 2 240.9.c.f.209.39 48
60.59 even 2 240.9.c.f.209.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.9.c.a.89.9 48 3.2 odd 2 inner
120.9.c.a.89.10 yes 48 5.4 even 2 inner
120.9.c.a.89.39 yes 48 1.1 even 1 trivial
120.9.c.a.89.40 yes 48 15.14 odd 2 inner
240.9.c.f.209.9 48 60.59 even 2
240.9.c.f.209.10 48 4.3 odd 2
240.9.c.f.209.39 48 20.19 odd 2
240.9.c.f.209.40 48 12.11 even 2