Properties

Label 120.9.c.a.89.12
Level $120$
Weight $9$
Character 120.89
Analytic conductor $48.885$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [120,9,Mod(89,120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("120.89"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 120.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.8854332073\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 89.12
Character \(\chi\) \(=\) 120.89
Dual form 120.9.c.a.89.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-58.3695 + 56.1605i) q^{3} +(-617.515 + 96.4387i) q^{5} +3509.51i q^{7} +(252.988 - 6556.12i) q^{9} -20700.8i q^{11} -21216.0i q^{13} +(30628.0 - 40309.0i) q^{15} +140324. q^{17} -182928. q^{19} +(-197096. - 204848. i) q^{21} -406324. q^{23} +(372024. - 119105. i) q^{25} +(353429. + 396885. i) q^{27} -85814.2i q^{29} +469925. q^{31} +(1.16257e6 + 1.20830e6i) q^{33} +(-338453. - 2.16717e6i) q^{35} -2.30493e6i q^{37} +(1.19150e6 + 1.23837e6i) q^{39} +1.66350e6i q^{41} +1.85333e6i q^{43} +(476040. + 4.07290e6i) q^{45} +5.76843e6 q^{47} -6.55186e6 q^{49} +(-8.19062e6 + 7.88066e6i) q^{51} -5.45851e6 q^{53} +(1.99636e6 + 1.27831e7i) q^{55} +(1.06774e7 - 1.02733e7i) q^{57} +9.28283e6i q^{59} +7.59067e6 q^{61} +(2.30088e7 + 887863. i) q^{63} +(2.04604e6 + 1.31012e7i) q^{65} +3.94772e7i q^{67} +(2.37169e7 - 2.28194e7i) q^{69} -1.39205e7i q^{71} +1.62493e7i q^{73} +(-1.50259e7 + 2.78452e7i) q^{75} +7.26498e7 q^{77} +9.06004e6 q^{79} +(-4.29187e7 - 3.31724e6i) q^{81} +4.45484e7 q^{83} +(-8.66520e7 + 1.35326e7i) q^{85} +(4.81937e6 + 5.00893e6i) q^{87} -6.34613e6i q^{89} +7.44578e7 q^{91} +(-2.74293e7 + 2.63913e7i) q^{93} +(1.12961e8 - 1.76413e7i) q^{95} +1.45115e8i q^{97} +(-1.35717e8 - 5.23706e6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2528 q^{9} + 132352 q^{15} + 116176 q^{21} + 56976 q^{25} + 1395648 q^{31} + 6888832 q^{39} - 4287056 q^{45} - 30813552 q^{49} - 22815168 q^{51} - 6062784 q^{55} + 14031936 q^{61} + 2522608 q^{69}+ \cdots - 21719360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −58.3695 + 56.1605i −0.720611 + 0.693340i
\(4\) 0 0
\(5\) −617.515 + 96.4387i −0.988024 + 0.154302i
\(6\) 0 0
\(7\) 3509.51i 1.46169i 0.682545 + 0.730843i \(0.260873\pi\)
−0.682545 + 0.730843i \(0.739127\pi\)
\(8\) 0 0
\(9\) 252.988 6556.12i 0.0385593 0.999256i
\(10\) 0 0
\(11\) 20700.8i 1.41389i −0.707266 0.706947i \(-0.750072\pi\)
0.707266 0.706947i \(-0.249928\pi\)
\(12\) 0 0
\(13\) 21216.0i 0.742831i −0.928467 0.371416i \(-0.878872\pi\)
0.928467 0.371416i \(-0.121128\pi\)
\(14\) 0 0
\(15\) 30628.0 40309.0i 0.604997 0.796228i
\(16\) 0 0
\(17\) 140324. 1.68010 0.840051 0.542508i \(-0.182525\pi\)
0.840051 + 0.542508i \(0.182525\pi\)
\(18\) 0 0
\(19\) −182928. −1.40367 −0.701837 0.712338i \(-0.747636\pi\)
−0.701837 + 0.712338i \(0.747636\pi\)
\(20\) 0 0
\(21\) −197096. 204848.i −1.01345 1.05331i
\(22\) 0 0
\(23\) −406324. −1.45198 −0.725991 0.687704i \(-0.758619\pi\)
−0.725991 + 0.687704i \(0.758619\pi\)
\(24\) 0 0
\(25\) 372024. 119105.i 0.952382 0.304908i
\(26\) 0 0
\(27\) 353429. + 396885.i 0.665038 + 0.746809i
\(28\) 0 0
\(29\) 85814.2i 0.121330i −0.998158 0.0606649i \(-0.980678\pi\)
0.998158 0.0606649i \(-0.0193221\pi\)
\(30\) 0 0
\(31\) 469925. 0.508841 0.254420 0.967094i \(-0.418115\pi\)
0.254420 + 0.967094i \(0.418115\pi\)
\(32\) 0 0
\(33\) 1.16257e6 + 1.20830e6i 0.980309 + 1.01887i
\(34\) 0 0
\(35\) −338453. 2.16717e6i −0.225541 1.44418i
\(36\) 0 0
\(37\) 2.30493e6i 1.22985i −0.788586 0.614924i \(-0.789187\pi\)
0.788586 0.614924i \(-0.210813\pi\)
\(38\) 0 0
\(39\) 1.19150e6 + 1.23837e6i 0.515035 + 0.535292i
\(40\) 0 0
\(41\) 1.66350e6i 0.588692i 0.955699 + 0.294346i \(0.0951018\pi\)
−0.955699 + 0.294346i \(0.904898\pi\)
\(42\) 0 0
\(43\) 1.85333e6i 0.542098i 0.962565 + 0.271049i \(0.0873706\pi\)
−0.962565 + 0.271049i \(0.912629\pi\)
\(44\) 0 0
\(45\) 476040. + 4.07290e6i 0.116090 + 0.993239i
\(46\) 0 0
\(47\) 5.76843e6 1.18213 0.591066 0.806623i \(-0.298707\pi\)
0.591066 + 0.806623i \(0.298707\pi\)
\(48\) 0 0
\(49\) −6.55186e6 −1.13653
\(50\) 0 0
\(51\) −8.19062e6 + 7.88066e6i −1.21070 + 1.16488i
\(52\) 0 0
\(53\) −5.45851e6 −0.691784 −0.345892 0.938274i \(-0.612424\pi\)
−0.345892 + 0.938274i \(0.612424\pi\)
\(54\) 0 0
\(55\) 1.99636e6 + 1.27831e7i 0.218167 + 1.39696i
\(56\) 0 0
\(57\) 1.06774e7 1.02733e7i 1.01150 0.973223i
\(58\) 0 0
\(59\) 9.28283e6i 0.766077i 0.923732 + 0.383038i \(0.125122\pi\)
−0.923732 + 0.383038i \(0.874878\pi\)
\(60\) 0 0
\(61\) 7.59067e6 0.548228 0.274114 0.961697i \(-0.411615\pi\)
0.274114 + 0.961697i \(0.411615\pi\)
\(62\) 0 0
\(63\) 2.30088e7 + 887863.i 1.46060 + 0.0563617i
\(64\) 0 0
\(65\) 2.04604e6 + 1.31012e7i 0.114620 + 0.733935i
\(66\) 0 0
\(67\) 3.94772e7i 1.95906i 0.201306 + 0.979528i \(0.435482\pi\)
−0.201306 + 0.979528i \(0.564518\pi\)
\(68\) 0 0
\(69\) 2.37169e7 2.28194e7i 1.04631 1.00672i
\(70\) 0 0
\(71\) 1.39205e7i 0.547800i −0.961758 0.273900i \(-0.911686\pi\)
0.961758 0.273900i \(-0.0883137\pi\)
\(72\) 0 0
\(73\) 1.62493e7i 0.572194i 0.958201 + 0.286097i \(0.0923579\pi\)
−0.958201 + 0.286097i \(0.907642\pi\)
\(74\) 0 0
\(75\) −1.50259e7 + 2.78452e7i −0.474892 + 0.880044i
\(76\) 0 0
\(77\) 7.26498e7 2.06667
\(78\) 0 0
\(79\) 9.06004e6 0.232607 0.116303 0.993214i \(-0.462896\pi\)
0.116303 + 0.993214i \(0.462896\pi\)
\(80\) 0 0
\(81\) −4.29187e7 3.31724e6i −0.997026 0.0770613i
\(82\) 0 0
\(83\) 4.45484e7 0.938685 0.469342 0.883016i \(-0.344491\pi\)
0.469342 + 0.883016i \(0.344491\pi\)
\(84\) 0 0
\(85\) −8.66520e7 + 1.35326e7i −1.65998 + 0.259243i
\(86\) 0 0
\(87\) 4.81937e6 + 5.00893e6i 0.0841228 + 0.0874315i
\(88\) 0 0
\(89\) 6.34613e6i 0.101146i −0.998720 0.0505731i \(-0.983895\pi\)
0.998720 0.0505731i \(-0.0161048\pi\)
\(90\) 0 0
\(91\) 7.44578e7 1.08579
\(92\) 0 0
\(93\) −2.74293e7 + 2.63913e7i −0.366676 + 0.352800i
\(94\) 0 0
\(95\) 1.12961e8 1.76413e7i 1.38686 0.216589i
\(96\) 0 0
\(97\) 1.45115e8i 1.63917i 0.572957 + 0.819585i \(0.305796\pi\)
−0.572957 + 0.819585i \(0.694204\pi\)
\(98\) 0 0
\(99\) −1.35717e8 5.23706e6i −1.41284 0.0545188i
\(100\) 0 0
\(101\) 9.84342e7i 0.945934i −0.881080 0.472967i \(-0.843183\pi\)
0.881080 0.472967i \(-0.156817\pi\)
\(102\) 0 0
\(103\) 1.80770e8i 1.60612i −0.595897 0.803061i \(-0.703203\pi\)
0.595897 0.803061i \(-0.296797\pi\)
\(104\) 0 0
\(105\) 1.41465e8 + 1.07489e8i 1.16384 + 0.884316i
\(106\) 0 0
\(107\) −1.33705e8 −1.02003 −0.510015 0.860165i \(-0.670360\pi\)
−0.510015 + 0.860165i \(0.670360\pi\)
\(108\) 0 0
\(109\) 3.31448e7 0.234806 0.117403 0.993084i \(-0.462543\pi\)
0.117403 + 0.993084i \(0.462543\pi\)
\(110\) 0 0
\(111\) 1.29446e8 + 1.34538e8i 0.852703 + 0.886242i
\(112\) 0 0
\(113\) 1.83998e8 1.12850 0.564248 0.825605i \(-0.309166\pi\)
0.564248 + 0.825605i \(0.309166\pi\)
\(114\) 0 0
\(115\) 2.50911e8 3.91854e7i 1.43459 0.224044i
\(116\) 0 0
\(117\) −1.39095e8 5.36739e6i −0.742279 0.0286431i
\(118\) 0 0
\(119\) 4.92468e8i 2.45578i
\(120\) 0 0
\(121\) −2.14165e8 −0.999097
\(122\) 0 0
\(123\) −9.34232e7 9.70978e7i −0.408164 0.424218i
\(124\) 0 0
\(125\) −2.18244e8 + 1.09426e8i −0.893928 + 0.448211i
\(126\) 0 0
\(127\) 4.21390e8i 1.61983i 0.586546 + 0.809916i \(0.300487\pi\)
−0.586546 + 0.809916i \(0.699513\pi\)
\(128\) 0 0
\(129\) −1.04084e8 1.08178e8i −0.375858 0.390642i
\(130\) 0 0
\(131\) 1.64525e7i 0.0558659i −0.999610 0.0279330i \(-0.991108\pi\)
0.999610 0.0279330i \(-0.00889250\pi\)
\(132\) 0 0
\(133\) 6.41988e8i 2.05173i
\(134\) 0 0
\(135\) −2.56522e8 2.10998e8i −0.772308 0.635249i
\(136\) 0 0
\(137\) −1.92453e8 −0.546315 −0.273157 0.961969i \(-0.588068\pi\)
−0.273157 + 0.961969i \(0.588068\pi\)
\(138\) 0 0
\(139\) 4.98620e8 1.33570 0.667852 0.744294i \(-0.267214\pi\)
0.667852 + 0.744294i \(0.267214\pi\)
\(140\) 0 0
\(141\) −3.36700e8 + 3.23958e8i −0.851857 + 0.819620i
\(142\) 0 0
\(143\) −4.39189e8 −1.05029
\(144\) 0 0
\(145\) 8.27581e6 + 5.29915e7i 0.0187214 + 0.119877i
\(146\) 0 0
\(147\) 3.82429e8 3.67956e8i 0.818995 0.788001i
\(148\) 0 0
\(149\) 9.81881e8i 1.99211i −0.0887242 0.996056i \(-0.528279\pi\)
0.0887242 0.996056i \(-0.471721\pi\)
\(150\) 0 0
\(151\) 1.48501e8 0.285642 0.142821 0.989749i \(-0.454383\pi\)
0.142821 + 0.989749i \(0.454383\pi\)
\(152\) 0 0
\(153\) 3.55002e7 9.19980e8i 0.0647836 1.67885i
\(154\) 0 0
\(155\) −2.90186e8 + 4.53190e7i −0.502747 + 0.0785151i
\(156\) 0 0
\(157\) 2.61216e8i 0.429933i −0.976621 0.214966i \(-0.931036\pi\)
0.976621 0.214966i \(-0.0689642\pi\)
\(158\) 0 0
\(159\) 3.18610e8 3.06553e8i 0.498507 0.479642i
\(160\) 0 0
\(161\) 1.42600e9i 2.12234i
\(162\) 0 0
\(163\) 2.48329e8i 0.351785i −0.984409 0.175892i \(-0.943719\pi\)
0.984409 0.175892i \(-0.0562811\pi\)
\(164\) 0 0
\(165\) −8.34430e8 6.34024e8i −1.12578 0.855401i
\(166\) 0 0
\(167\) −5.23684e8 −0.673293 −0.336646 0.941631i \(-0.609293\pi\)
−0.336646 + 0.941631i \(0.609293\pi\)
\(168\) 0 0
\(169\) 3.65612e8 0.448201
\(170\) 0 0
\(171\) −4.62786e7 + 1.19930e9i −0.0541247 + 1.40263i
\(172\) 0 0
\(173\) −1.08588e9 −1.21227 −0.606133 0.795364i \(-0.707280\pi\)
−0.606133 + 0.795364i \(0.707280\pi\)
\(174\) 0 0
\(175\) 4.17999e8 + 1.30562e9i 0.445680 + 1.39208i
\(176\) 0 0
\(177\) −5.21329e8 5.41834e8i −0.531152 0.552043i
\(178\) 0 0
\(179\) 7.43014e8i 0.723744i 0.932228 + 0.361872i \(0.117862\pi\)
−0.932228 + 0.361872i \(0.882138\pi\)
\(180\) 0 0
\(181\) 9.26876e8 0.863590 0.431795 0.901972i \(-0.357880\pi\)
0.431795 + 0.901972i \(0.357880\pi\)
\(182\) 0 0
\(183\) −4.43064e8 + 4.26296e8i −0.395059 + 0.380108i
\(184\) 0 0
\(185\) 2.22285e8 + 1.42333e9i 0.189768 + 1.21512i
\(186\) 0 0
\(187\) 2.90482e9i 2.37549i
\(188\) 0 0
\(189\) −1.39287e9 + 1.24036e9i −1.09160 + 0.972077i
\(190\) 0 0
\(191\) 5.32671e8i 0.400245i 0.979771 + 0.200122i \(0.0641340\pi\)
−0.979771 + 0.200122i \(0.935866\pi\)
\(192\) 0 0
\(193\) 5.57602e8i 0.401879i 0.979604 + 0.200939i \(0.0643994\pi\)
−0.979604 + 0.200939i \(0.935601\pi\)
\(194\) 0 0
\(195\) −8.55197e8 6.49803e8i −0.591463 0.449411i
\(196\) 0 0
\(197\) 1.77555e9 1.17887 0.589436 0.807815i \(-0.299350\pi\)
0.589436 + 0.807815i \(0.299350\pi\)
\(198\) 0 0
\(199\) 1.86342e9 1.18822 0.594112 0.804382i \(-0.297504\pi\)
0.594112 + 0.804382i \(0.297504\pi\)
\(200\) 0 0
\(201\) −2.21706e9 2.30426e9i −1.35829 1.41172i
\(202\) 0 0
\(203\) 3.01166e8 0.177346
\(204\) 0 0
\(205\) −1.60426e8 1.02724e9i −0.0908363 0.581642i
\(206\) 0 0
\(207\) −1.02795e8 + 2.66391e9i −0.0559875 + 1.45090i
\(208\) 0 0
\(209\) 3.78676e9i 1.98465i
\(210\) 0 0
\(211\) 2.90130e9 1.46374 0.731869 0.681445i \(-0.238648\pi\)
0.731869 + 0.681445i \(0.238648\pi\)
\(212\) 0 0
\(213\) 7.81783e8 + 8.12533e8i 0.379811 + 0.394750i
\(214\) 0 0
\(215\) −1.78732e8 1.14446e9i −0.0836468 0.535606i
\(216\) 0 0
\(217\) 1.64921e9i 0.743766i
\(218\) 0 0
\(219\) −9.12569e8 9.48463e8i −0.396725 0.412329i
\(220\) 0 0
\(221\) 2.97711e9i 1.24803i
\(222\) 0 0
\(223\) 1.33056e9i 0.538041i 0.963134 + 0.269020i \(0.0866999\pi\)
−0.963134 + 0.269020i \(0.913300\pi\)
\(224\) 0 0
\(225\) −6.86747e8 2.46917e9i −0.267958 0.963431i
\(226\) 0 0
\(227\) 1.46689e9 0.552450 0.276225 0.961093i \(-0.410917\pi\)
0.276225 + 0.961093i \(0.410917\pi\)
\(228\) 0 0
\(229\) 1.94772e9 0.708247 0.354124 0.935199i \(-0.384779\pi\)
0.354124 + 0.935199i \(0.384779\pi\)
\(230\) 0 0
\(231\) −4.24053e9 + 4.08005e9i −1.48926 + 1.43291i
\(232\) 0 0
\(233\) 2.15115e9 0.729872 0.364936 0.931033i \(-0.381091\pi\)
0.364936 + 0.931033i \(0.381091\pi\)
\(234\) 0 0
\(235\) −3.56209e9 + 5.56300e8i −1.16797 + 0.182405i
\(236\) 0 0
\(237\) −5.28830e8 + 5.08817e8i −0.167619 + 0.161275i
\(238\) 0 0
\(239\) 5.99211e8i 0.183649i −0.995775 0.0918244i \(-0.970730\pi\)
0.995775 0.0918244i \(-0.0292698\pi\)
\(240\) 0 0
\(241\) 1.64227e9 0.486829 0.243414 0.969922i \(-0.421732\pi\)
0.243414 + 0.969922i \(0.421732\pi\)
\(242\) 0 0
\(243\) 2.69144e9 2.21671e9i 0.771897 0.635747i
\(244\) 0 0
\(245\) 4.04587e9 6.31853e8i 1.12292 0.175369i
\(246\) 0 0
\(247\) 3.88100e9i 1.04269i
\(248\) 0 0
\(249\) −2.60027e9 + 2.50186e9i −0.676426 + 0.650828i
\(250\) 0 0
\(251\) 3.70168e6i 0.000932619i −1.00000 0.000466309i \(-0.999852\pi\)
1.00000 0.000466309i \(-0.000148431\pi\)
\(252\) 0 0
\(253\) 8.41124e9i 2.05295i
\(254\) 0 0
\(255\) 4.29783e9 5.65632e9i 1.01646 1.33774i
\(256\) 0 0
\(257\) −2.04324e9 −0.468368 −0.234184 0.972192i \(-0.575242\pi\)
−0.234184 + 0.972192i \(0.575242\pi\)
\(258\) 0 0
\(259\) 8.08919e9 1.79765
\(260\) 0 0
\(261\) −5.62608e8 2.17099e7i −0.121239 0.00467839i
\(262\) 0 0
\(263\) 5.35938e9 1.12019 0.560095 0.828428i \(-0.310765\pi\)
0.560095 + 0.828428i \(0.310765\pi\)
\(264\) 0 0
\(265\) 3.37071e9 5.26412e8i 0.683499 0.106744i
\(266\) 0 0
\(267\) 3.56402e8 + 3.70420e8i 0.0701287 + 0.0728870i
\(268\) 0 0
\(269\) 5.28824e8i 0.100995i 0.998724 + 0.0504977i \(0.0160808\pi\)
−0.998724 + 0.0504977i \(0.983919\pi\)
\(270\) 0 0
\(271\) −3.00472e9 −0.557093 −0.278546 0.960423i \(-0.589853\pi\)
−0.278546 + 0.960423i \(0.589853\pi\)
\(272\) 0 0
\(273\) −4.34606e9 + 4.18159e9i −0.782430 + 0.752820i
\(274\) 0 0
\(275\) −2.46556e9 7.70121e9i −0.431108 1.34657i
\(276\) 0 0
\(277\) 9.13777e8i 0.155210i 0.996984 + 0.0776052i \(0.0247274\pi\)
−0.996984 + 0.0776052i \(0.975273\pi\)
\(278\) 0 0
\(279\) 1.18885e8 3.08089e9i 0.0196206 0.508462i
\(280\) 0 0
\(281\) 2.60476e9i 0.417775i 0.977940 + 0.208888i \(0.0669843\pi\)
−0.977940 + 0.208888i \(0.933016\pi\)
\(282\) 0 0
\(283\) 1.09050e10i 1.70012i 0.526686 + 0.850060i \(0.323434\pi\)
−0.526686 + 0.850060i \(0.676566\pi\)
\(284\) 0 0
\(285\) −5.60271e9 + 7.37366e9i −0.849218 + 1.11764i
\(286\) 0 0
\(287\) −5.83808e9 −0.860483
\(288\) 0 0
\(289\) 1.27150e10 1.82274
\(290\) 0 0
\(291\) −8.14971e9 8.47026e9i −1.13650 1.18120i
\(292\) 0 0
\(293\) 3.92694e9 0.532824 0.266412 0.963859i \(-0.414162\pi\)
0.266412 + 0.963859i \(0.414162\pi\)
\(294\) 0 0
\(295\) −8.95224e8 5.73228e9i −0.118207 0.756902i
\(296\) 0 0
\(297\) 8.21585e9 7.31626e9i 1.05591 0.940294i
\(298\) 0 0
\(299\) 8.62058e9i 1.07858i
\(300\) 0 0
\(301\) −6.50427e9 −0.792378
\(302\) 0 0
\(303\) 5.52812e9 + 5.74555e9i 0.655854 + 0.681650i
\(304\) 0 0
\(305\) −4.68735e9 + 7.32035e8i −0.541662 + 0.0845926i
\(306\) 0 0
\(307\) 9.28577e9i 1.04536i −0.852530 0.522678i \(-0.824933\pi\)
0.852530 0.522678i \(-0.175067\pi\)
\(308\) 0 0
\(309\) 1.01522e10 + 1.05515e10i 1.11359 + 1.15739i
\(310\) 0 0
\(311\) 7.90380e9i 0.844879i 0.906391 + 0.422439i \(0.138826\pi\)
−0.906391 + 0.422439i \(0.861174\pi\)
\(312\) 0 0
\(313\) 1.76807e10i 1.84214i −0.389398 0.921070i \(-0.627317\pi\)
0.389398 0.921070i \(-0.372683\pi\)
\(314\) 0 0
\(315\) −1.42939e10 + 1.67067e9i −1.45180 + 0.169687i
\(316\) 0 0
\(317\) 5.47282e9 0.541968 0.270984 0.962584i \(-0.412651\pi\)
0.270984 + 0.962584i \(0.412651\pi\)
\(318\) 0 0
\(319\) −1.77643e9 −0.171547
\(320\) 0 0
\(321\) 7.80430e9 7.50896e9i 0.735045 0.707228i
\(322\) 0 0
\(323\) −2.56692e10 −2.35831
\(324\) 0 0
\(325\) −2.52693e9 7.89287e9i −0.226495 0.707459i
\(326\) 0 0
\(327\) −1.93465e9 + 1.86143e9i −0.169204 + 0.162801i
\(328\) 0 0
\(329\) 2.02444e10i 1.72791i
\(330\) 0 0
\(331\) 5.54260e9 0.461744 0.230872 0.972984i \(-0.425842\pi\)
0.230872 + 0.972984i \(0.425842\pi\)
\(332\) 0 0
\(333\) −1.51114e10 5.83120e8i −1.22893 0.0474221i
\(334\) 0 0
\(335\) −3.80713e9 2.43778e10i −0.302286 1.93559i
\(336\) 0 0
\(337\) 1.09681e10i 0.850380i 0.905104 + 0.425190i \(0.139793\pi\)
−0.905104 + 0.425190i \(0.860207\pi\)
\(338\) 0 0
\(339\) −1.07399e10 + 1.03334e10i −0.813206 + 0.782431i
\(340\) 0 0
\(341\) 9.72784e9i 0.719447i
\(342\) 0 0
\(343\) 2.76220e9i 0.199562i
\(344\) 0 0
\(345\) −1.24449e10 + 1.63785e10i −0.878444 + 1.15611i
\(346\) 0 0
\(347\) 1.26798e10 0.874571 0.437285 0.899323i \(-0.355940\pi\)
0.437285 + 0.899323i \(0.355940\pi\)
\(348\) 0 0
\(349\) 1.82021e10 1.22693 0.613465 0.789722i \(-0.289775\pi\)
0.613465 + 0.789722i \(0.289775\pi\)
\(350\) 0 0
\(351\) 8.42032e9 7.49834e9i 0.554754 0.494011i
\(352\) 0 0
\(353\) 6.70323e9 0.431703 0.215852 0.976426i \(-0.430747\pi\)
0.215852 + 0.976426i \(0.430747\pi\)
\(354\) 0 0
\(355\) 1.34248e9 + 8.59612e9i 0.0845266 + 0.541239i
\(356\) 0 0
\(357\) −2.76573e10 2.87451e10i −1.70269 1.76966i
\(358\) 0 0
\(359\) 6.58783e9i 0.396611i −0.980140 0.198305i \(-0.936456\pi\)
0.980140 0.198305i \(-0.0635438\pi\)
\(360\) 0 0
\(361\) 1.64791e10 0.970299
\(362\) 0 0
\(363\) 1.25007e10 1.20276e10i 0.719960 0.692714i
\(364\) 0 0
\(365\) −1.56706e9 1.00342e10i −0.0882906 0.565341i
\(366\) 0 0
\(367\) 2.80712e10i 1.54738i −0.633565 0.773689i \(-0.718409\pi\)
0.633565 0.773689i \(-0.281591\pi\)
\(368\) 0 0
\(369\) 1.09061e10 + 4.20846e8i 0.588254 + 0.0226996i
\(370\) 0 0
\(371\) 1.91567e10i 1.01117i
\(372\) 0 0
\(373\) 2.11306e10i 1.09163i −0.837904 0.545817i \(-0.816219\pi\)
0.837904 0.545817i \(-0.183781\pi\)
\(374\) 0 0
\(375\) 6.59335e9 1.86439e10i 0.333412 0.942781i
\(376\) 0 0
\(377\) −1.82064e9 −0.0901275
\(378\) 0 0
\(379\) 1.44678e9 0.0701206 0.0350603 0.999385i \(-0.488838\pi\)
0.0350603 + 0.999385i \(0.488838\pi\)
\(380\) 0 0
\(381\) −2.36655e10 2.45963e10i −1.12309 1.16727i
\(382\) 0 0
\(383\) 9.44888e8 0.0439122 0.0219561 0.999759i \(-0.493011\pi\)
0.0219561 + 0.999759i \(0.493011\pi\)
\(384\) 0 0
\(385\) −4.48623e10 + 7.00625e9i −2.04192 + 0.318891i
\(386\) 0 0
\(387\) 1.21506e10 + 4.68869e8i 0.541695 + 0.0209030i
\(388\) 0 0
\(389\) 9.47314e9i 0.413709i 0.978372 + 0.206855i \(0.0663227\pi\)
−0.978372 + 0.206855i \(0.933677\pi\)
\(390\) 0 0
\(391\) −5.70169e10 −2.43948
\(392\) 0 0
\(393\) 9.23982e8 + 9.60325e8i 0.0387341 + 0.0402576i
\(394\) 0 0
\(395\) −5.59471e9 + 8.73739e8i −0.229821 + 0.0358916i
\(396\) 0 0
\(397\) 3.43909e10i 1.38446i 0.721675 + 0.692232i \(0.243372\pi\)
−0.721675 + 0.692232i \(0.756628\pi\)
\(398\) 0 0
\(399\) 3.60544e10 + 3.74725e10i 1.42255 + 1.47850i
\(400\) 0 0
\(401\) 3.57004e10i 1.38069i 0.723481 + 0.690344i \(0.242541\pi\)
−0.723481 + 0.690344i \(0.757459\pi\)
\(402\) 0 0
\(403\) 9.96994e9i 0.377983i
\(404\) 0 0
\(405\) 2.68229e10 2.09058e9i 0.996976 0.0777047i
\(406\) 0 0
\(407\) −4.77140e10 −1.73888
\(408\) 0 0
\(409\) 4.36805e10 1.56097 0.780484 0.625176i \(-0.214973\pi\)
0.780484 + 0.625176i \(0.214973\pi\)
\(410\) 0 0
\(411\) 1.12334e10 1.08083e10i 0.393680 0.378782i
\(412\) 0 0
\(413\) −3.25782e10 −1.11976
\(414\) 0 0
\(415\) −2.75093e10 + 4.29619e9i −0.927443 + 0.144841i
\(416\) 0 0
\(417\) −2.91042e10 + 2.80028e10i −0.962523 + 0.926098i
\(418\) 0 0
\(419\) 1.22779e10i 0.398353i 0.979964 + 0.199176i \(0.0638267\pi\)
−0.979964 + 0.199176i \(0.936173\pi\)
\(420\) 0 0
\(421\) −2.98167e10 −0.949142 −0.474571 0.880217i \(-0.657397\pi\)
−0.474571 + 0.880217i \(0.657397\pi\)
\(422\) 0 0
\(423\) 1.45934e9 3.78185e10i 0.0455822 1.18125i
\(424\) 0 0
\(425\) 5.22038e10 1.67132e10i 1.60010 0.512276i
\(426\) 0 0
\(427\) 2.66395e10i 0.801337i
\(428\) 0 0
\(429\) 2.56352e10 2.46651e10i 0.756847 0.728205i
\(430\) 0 0
\(431\) 2.57496e10i 0.746211i 0.927789 + 0.373105i \(0.121707\pi\)
−0.927789 + 0.373105i \(0.878293\pi\)
\(432\) 0 0
\(433\) 1.99914e10i 0.568710i −0.958719 0.284355i \(-0.908221\pi\)
0.958719 0.284355i \(-0.0917794\pi\)
\(434\) 0 0
\(435\) −3.45909e9 2.62831e9i −0.0966061 0.0734041i
\(436\) 0 0
\(437\) 7.43281e10 2.03811
\(438\) 0 0
\(439\) 4.78153e10 1.28739 0.643693 0.765283i \(-0.277401\pi\)
0.643693 + 0.765283i \(0.277401\pi\)
\(440\) 0 0
\(441\) −1.65754e9 + 4.29548e10i −0.0438238 + 1.13568i
\(442\) 0 0
\(443\) 3.71876e10 0.965569 0.482784 0.875739i \(-0.339625\pi\)
0.482784 + 0.875739i \(0.339625\pi\)
\(444\) 0 0
\(445\) 6.12013e8 + 3.91883e9i 0.0156070 + 0.0999348i
\(446\) 0 0
\(447\) 5.51430e10 + 5.73119e10i 1.38121 + 1.43554i
\(448\) 0 0
\(449\) 3.65198e10i 0.898552i 0.893393 + 0.449276i \(0.148318\pi\)
−0.893393 + 0.449276i \(0.851682\pi\)
\(450\) 0 0
\(451\) 3.44359e10 0.832348
\(452\) 0 0
\(453\) −8.66792e9 + 8.33989e9i −0.205836 + 0.198047i
\(454\) 0 0
\(455\) −4.59788e10 + 7.18061e9i −1.07278 + 0.167539i
\(456\) 0 0
\(457\) 2.53334e10i 0.580803i 0.956905 + 0.290401i \(0.0937888\pi\)
−0.956905 + 0.290401i \(0.906211\pi\)
\(458\) 0 0
\(459\) 4.95944e10 + 5.56924e10i 1.11733 + 1.25472i
\(460\) 0 0
\(461\) 3.97638e10i 0.880409i −0.897897 0.440205i \(-0.854906\pi\)
0.897897 0.440205i \(-0.145094\pi\)
\(462\) 0 0
\(463\) 5.96733e9i 0.129854i 0.997890 + 0.0649271i \(0.0206815\pi\)
−0.997890 + 0.0649271i \(0.979319\pi\)
\(464\) 0 0
\(465\) 1.43929e10 1.89422e10i 0.307847 0.405153i
\(466\) 0 0
\(467\) −5.93145e10 −1.24708 −0.623539 0.781792i \(-0.714306\pi\)
−0.623539 + 0.781792i \(0.714306\pi\)
\(468\) 0 0
\(469\) −1.38546e11 −2.86353
\(470\) 0 0
\(471\) 1.46700e10 + 1.52470e10i 0.298090 + 0.309814i
\(472\) 0 0
\(473\) 3.83654e10 0.766470
\(474\) 0 0
\(475\) −6.80537e10 + 2.17876e10i −1.33683 + 0.427991i
\(476\) 0 0
\(477\) −1.38094e9 + 3.57867e10i −0.0266747 + 0.691270i
\(478\) 0 0
\(479\) 3.15355e10i 0.599042i 0.954090 + 0.299521i \(0.0968269\pi\)
−0.954090 + 0.299521i \(0.903173\pi\)
\(480\) 0 0
\(481\) −4.89015e10 −0.913570
\(482\) 0 0
\(483\) 8.00849e10 + 8.32348e10i 1.47151 + 1.52938i
\(484\) 0 0
\(485\) −1.39947e10 8.96104e10i −0.252927 1.61954i
\(486\) 0 0
\(487\) 4.91361e10i 0.873544i −0.899572 0.436772i \(-0.856122\pi\)
0.899572 0.436772i \(-0.143878\pi\)
\(488\) 0 0
\(489\) 1.39463e10 + 1.44948e10i 0.243906 + 0.253500i
\(490\) 0 0
\(491\) 1.06396e11i 1.83062i −0.402748 0.915311i \(-0.631945\pi\)
0.402748 0.915311i \(-0.368055\pi\)
\(492\) 0 0
\(493\) 1.20418e10i 0.203846i
\(494\) 0 0
\(495\) 8.43124e10 9.85442e9i 1.40433 0.164138i
\(496\) 0 0
\(497\) 4.88542e10 0.800712
\(498\) 0 0
\(499\) −1.07193e10 −0.172887 −0.0864435 0.996257i \(-0.527550\pi\)
−0.0864435 + 0.996257i \(0.527550\pi\)
\(500\) 0 0
\(501\) 3.05672e10 2.94104e10i 0.485182 0.466821i
\(502\) 0 0
\(503\) 3.64842e10 0.569945 0.284973 0.958536i \(-0.408015\pi\)
0.284973 + 0.958536i \(0.408015\pi\)
\(504\) 0 0
\(505\) 9.49287e9 + 6.07846e10i 0.145959 + 0.934605i
\(506\) 0 0
\(507\) −2.13406e10 + 2.05330e10i −0.322979 + 0.310756i
\(508\) 0 0
\(509\) 4.39714e10i 0.655088i 0.944836 + 0.327544i \(0.106221\pi\)
−0.944836 + 0.327544i \(0.893779\pi\)
\(510\) 0 0
\(511\) −5.70271e10 −0.836368
\(512\) 0 0
\(513\) −6.46520e10 7.26015e10i −0.933496 1.04828i
\(514\) 0 0
\(515\) 1.74333e10 + 1.11628e11i 0.247828 + 1.58689i
\(516\) 0 0
\(517\) 1.19411e11i 1.67141i
\(518\) 0 0
\(519\) 6.33823e10 6.09836e10i 0.873571 0.840512i
\(520\) 0 0
\(521\) 1.18460e11i 1.60776i −0.594790 0.803881i \(-0.702765\pi\)
0.594790 0.803881i \(-0.297235\pi\)
\(522\) 0 0
\(523\) 1.10658e11i 1.47903i 0.673143 + 0.739513i \(0.264944\pi\)
−0.673143 + 0.739513i \(0.735056\pi\)
\(524\) 0 0
\(525\) −9.77228e10 5.27334e10i −1.28635 0.694143i
\(526\) 0 0
\(527\) 6.59417e10 0.854904
\(528\) 0 0
\(529\) 8.67883e10 1.10825
\(530\) 0 0
\(531\) 6.08593e10 + 2.34844e9i 0.765507 + 0.0295394i
\(532\) 0 0
\(533\) 3.52929e10 0.437299
\(534\) 0 0
\(535\) 8.25650e10 1.28944e10i 1.00781 0.157393i
\(536\) 0 0
\(537\) −4.17281e10 4.33693e10i −0.501801 0.521538i
\(538\) 0 0
\(539\) 1.35629e11i 1.60693i
\(540\) 0 0
\(541\) −1.06194e11 −1.23968 −0.619842 0.784727i \(-0.712803\pi\)
−0.619842 + 0.784727i \(0.712803\pi\)
\(542\) 0 0
\(543\) −5.41013e10 + 5.20539e10i −0.622312 + 0.598761i
\(544\) 0 0
\(545\) −2.04674e10 + 3.19644e9i −0.231994 + 0.0362311i
\(546\) 0 0
\(547\) 5.49364e10i 0.613636i 0.951768 + 0.306818i \(0.0992643\pi\)
−0.951768 + 0.306818i \(0.900736\pi\)
\(548\) 0 0
\(549\) 1.92035e9 4.97654e10i 0.0211393 0.547820i
\(550\) 0 0
\(551\) 1.56978e10i 0.170307i
\(552\) 0 0
\(553\) 3.17963e10i 0.339998i
\(554\) 0 0
\(555\) −9.29097e10 7.05954e10i −0.979240 0.744054i
\(556\) 0 0
\(557\) 1.41683e11 1.47196 0.735981 0.677002i \(-0.236721\pi\)
0.735981 + 0.677002i \(0.236721\pi\)
\(558\) 0 0
\(559\) 3.93202e10 0.402688
\(560\) 0 0
\(561\) 1.63136e11 + 1.69553e11i 1.64702 + 1.71180i
\(562\) 0 0
\(563\) −1.79075e11 −1.78239 −0.891193 0.453624i \(-0.850131\pi\)
−0.891193 + 0.453624i \(0.850131\pi\)
\(564\) 0 0
\(565\) −1.13622e11 + 1.77446e10i −1.11498 + 0.174129i
\(566\) 0 0
\(567\) 1.16419e10 1.50624e11i 0.112640 1.45734i
\(568\) 0 0
\(569\) 3.57832e10i 0.341374i 0.985325 + 0.170687i \(0.0545987\pi\)
−0.985325 + 0.170687i \(0.945401\pi\)
\(570\) 0 0
\(571\) 1.81409e10 0.170653 0.0853264 0.996353i \(-0.472807\pi\)
0.0853264 + 0.996353i \(0.472807\pi\)
\(572\) 0 0
\(573\) −2.99151e10 3.10917e10i −0.277506 0.288421i
\(574\) 0 0
\(575\) −1.51162e11 + 4.83951e10i −1.38284 + 0.442721i
\(576\) 0 0
\(577\) 6.74004e10i 0.608078i −0.952660 0.304039i \(-0.901665\pi\)
0.952660 0.304039i \(-0.0983353\pi\)
\(578\) 0 0
\(579\) −3.13152e10 3.25469e10i −0.278638 0.289598i
\(580\) 0 0
\(581\) 1.56343e11i 1.37206i
\(582\) 0 0
\(583\) 1.12996e11i 0.978110i
\(584\) 0 0
\(585\) 8.64107e10 1.00997e10i 0.737809 0.0862350i
\(586\) 0 0
\(587\) −5.75368e10 −0.484611 −0.242306 0.970200i \(-0.577904\pi\)
−0.242306 + 0.970200i \(0.577904\pi\)
\(588\) 0 0
\(589\) −8.59625e10 −0.714246
\(590\) 0 0
\(591\) −1.03638e11 + 9.97156e10i −0.849508 + 0.817360i
\(592\) 0 0
\(593\) −1.57134e11 −1.27072 −0.635362 0.772214i \(-0.719149\pi\)
−0.635362 + 0.772214i \(0.719149\pi\)
\(594\) 0 0
\(595\) −4.74930e10 3.04106e11i −0.378932 2.42637i
\(596\) 0 0
\(597\) −1.08767e11 + 1.04651e11i −0.856247 + 0.823843i
\(598\) 0 0
\(599\) 1.28179e11i 0.995657i −0.867275 0.497829i \(-0.834131\pi\)
0.867275 0.497829i \(-0.165869\pi\)
\(600\) 0 0
\(601\) −3.62465e10 −0.277823 −0.138912 0.990305i \(-0.544360\pi\)
−0.138912 + 0.990305i \(0.544360\pi\)
\(602\) 0 0
\(603\) 2.58817e11 + 9.98725e9i 1.95760 + 0.0755399i
\(604\) 0 0
\(605\) 1.32250e11 2.06538e10i 0.987131 0.154163i
\(606\) 0 0
\(607\) 9.54787e10i 0.703318i −0.936128 0.351659i \(-0.885618\pi\)
0.936128 0.351659i \(-0.114382\pi\)
\(608\) 0 0
\(609\) −1.75789e10 + 1.69136e10i −0.127797 + 0.122961i
\(610\) 0 0
\(611\) 1.22383e11i 0.878125i
\(612\) 0 0
\(613\) 5.97421e10i 0.423096i −0.977368 0.211548i \(-0.932150\pi\)
0.977368 0.211548i \(-0.0678504\pi\)
\(614\) 0 0
\(615\) 6.70542e10 + 5.09497e10i 0.468733 + 0.356157i
\(616\) 0 0
\(617\) −8.94979e10 −0.617550 −0.308775 0.951135i \(-0.599919\pi\)
−0.308775 + 0.951135i \(0.599919\pi\)
\(618\) 0 0
\(619\) 1.08762e11 0.740825 0.370413 0.928867i \(-0.379216\pi\)
0.370413 + 0.928867i \(0.379216\pi\)
\(620\) 0 0
\(621\) −1.43607e11 1.61264e11i −0.965623 1.08435i
\(622\) 0 0
\(623\) 2.22718e10 0.147844
\(624\) 0 0
\(625\) 1.24216e11 8.86196e10i 0.814062 0.580778i
\(626\) 0 0
\(627\) −2.12667e11 2.21031e11i −1.37603 1.43016i
\(628\) 0 0
\(629\) 3.23437e11i 2.06627i
\(630\) 0 0
\(631\) 1.11998e11 0.706468 0.353234 0.935535i \(-0.385082\pi\)
0.353234 + 0.935535i \(0.385082\pi\)
\(632\) 0 0
\(633\) −1.69348e11 + 1.62939e11i −1.05479 + 1.01487i
\(634\) 0 0
\(635\) −4.06384e10 2.60215e11i −0.249943 1.60043i
\(636\) 0 0
\(637\) 1.39004e11i 0.844249i
\(638\) 0 0
\(639\) −9.12646e10 3.52172e9i −0.547392 0.0211228i
\(640\) 0 0
\(641\) 1.05818e11i 0.626797i 0.949622 + 0.313399i \(0.101468\pi\)
−0.949622 + 0.313399i \(0.898532\pi\)
\(642\) 0 0
\(643\) 2.65610e11i 1.55382i −0.629610 0.776911i \(-0.716785\pi\)
0.629610 0.776911i \(-0.283215\pi\)
\(644\) 0 0
\(645\) 7.47058e10 + 5.67636e10i 0.431634 + 0.327968i
\(646\) 0 0
\(647\) −9.85146e10 −0.562190 −0.281095 0.959680i \(-0.590698\pi\)
−0.281095 + 0.959680i \(0.590698\pi\)
\(648\) 0 0
\(649\) 1.92162e11 1.08315
\(650\) 0 0
\(651\) −9.26204e10 9.62634e10i −0.515683 0.535966i
\(652\) 0 0
\(653\) −5.60145e10 −0.308069 −0.154034 0.988065i \(-0.549227\pi\)
−0.154034 + 0.988065i \(0.549227\pi\)
\(654\) 0 0
\(655\) 1.58666e9 + 1.01597e10i 0.00862022 + 0.0551969i
\(656\) 0 0
\(657\) 1.06532e11 + 4.11087e9i 0.571768 + 0.0220634i
\(658\) 0 0
\(659\) 1.00957e11i 0.535294i 0.963517 + 0.267647i \(0.0862462\pi\)
−0.963517 + 0.267647i \(0.913754\pi\)
\(660\) 0 0
\(661\) 2.51585e11 1.31789 0.658945 0.752191i \(-0.271003\pi\)
0.658945 + 0.752191i \(0.271003\pi\)
\(662\) 0 0
\(663\) 1.67196e11 + 1.73772e11i 0.865311 + 0.899345i
\(664\) 0 0
\(665\) 6.19125e10 + 3.96437e11i 0.316586 + 2.02716i
\(666\) 0 0
\(667\) 3.48684e10i 0.176169i
\(668\) 0 0
\(669\) −7.47250e10 7.76641e10i −0.373045 0.387718i
\(670\) 0 0
\(671\) 1.57133e11i 0.775136i
\(672\) 0 0
\(673\) 1.51950e11i 0.740698i −0.928893 0.370349i \(-0.879238\pi\)
0.928893 0.370349i \(-0.120762\pi\)
\(674\) 0 0
\(675\) 1.78755e11 + 1.05556e11i 0.861078 + 0.508472i
\(676\) 0 0
\(677\) −2.68132e11 −1.27642 −0.638211 0.769862i \(-0.720325\pi\)
−0.638211 + 0.769862i \(0.720325\pi\)
\(678\) 0 0
\(679\) −5.09281e11 −2.39595
\(680\) 0 0
\(681\) −8.56213e10 + 8.23811e10i −0.398101 + 0.383036i
\(682\) 0 0
\(683\) 2.30446e11 1.05897 0.529487 0.848318i \(-0.322384\pi\)
0.529487 + 0.848318i \(0.322384\pi\)
\(684\) 0 0
\(685\) 1.18843e11 1.85599e10i 0.539772 0.0842974i
\(686\) 0 0
\(687\) −1.13687e11 + 1.09385e11i −0.510370 + 0.491056i
\(688\) 0 0
\(689\) 1.15808e11i 0.513879i
\(690\) 0 0
\(691\) 4.52320e10 0.198397 0.0991983 0.995068i \(-0.468372\pi\)
0.0991983 + 0.995068i \(0.468372\pi\)
\(692\) 0 0
\(693\) 1.83795e10 4.76301e11i 0.0796894 2.06513i
\(694\) 0 0
\(695\) −3.07905e11 + 4.80863e10i −1.31971 + 0.206102i
\(696\) 0 0
\(697\) 2.33429e11i 0.989062i
\(698\) 0 0
\(699\) −1.25561e11 + 1.20810e11i −0.525954 + 0.506050i
\(700\) 0 0
\(701\) 1.85644e11i 0.768793i 0.923168 + 0.384397i \(0.125591\pi\)
−0.923168 + 0.384397i \(0.874409\pi\)
\(702\) 0 0
\(703\) 4.21637e11i 1.72631i
\(704\) 0 0
\(705\) 1.76675e11 2.32520e11i 0.715186 0.941247i
\(706\) 0 0
\(707\) 3.45456e11 1.38266
\(708\) 0 0
\(709\) −6.54534e10 −0.259028 −0.129514 0.991578i \(-0.541342\pi\)
−0.129514 + 0.991578i \(0.541342\pi\)
\(710\) 0 0
\(711\) 2.29208e9 5.93987e10i 0.00896915 0.232434i
\(712\) 0 0
\(713\) −1.90942e11 −0.738828
\(714\) 0 0
\(715\) 2.71206e11 4.23548e10i 1.03771 0.162061i
\(716\) 0 0
\(717\) 3.36520e10 + 3.49756e10i 0.127331 + 0.132339i
\(718\) 0 0
\(719\) 3.18152e11i 1.19047i −0.803551 0.595236i \(-0.797059\pi\)
0.803551 0.595236i \(-0.202941\pi\)
\(720\) 0 0
\(721\) 6.34416e11 2.34765
\(722\) 0 0
\(723\) −9.58584e10 + 9.22308e10i −0.350814 + 0.337538i
\(724\) 0 0
\(725\) −1.02209e10 3.19250e10i −0.0369944 0.115552i
\(726\) 0 0
\(727\) 4.08035e11i 1.46070i 0.683075 + 0.730348i \(0.260642\pi\)
−0.683075 + 0.730348i \(0.739358\pi\)
\(728\) 0 0
\(729\) −3.26061e10 + 2.80541e11i −0.115449 + 0.993313i
\(730\) 0 0
\(731\) 2.60066e11i 0.910780i
\(732\) 0 0
\(733\) 2.10940e10i 0.0730705i 0.999332 + 0.0365353i \(0.0116321\pi\)
−0.999332 + 0.0365353i \(0.988368\pi\)
\(734\) 0 0
\(735\) −2.00670e11 + 2.64099e11i −0.687596 + 0.904936i
\(736\) 0 0
\(737\) 8.17210e11 2.76990
\(738\) 0 0
\(739\) −4.66579e11 −1.56440 −0.782199 0.623029i \(-0.785902\pi\)
−0.782199 + 0.623029i \(0.785902\pi\)
\(740\) 0 0
\(741\) −2.17959e11 2.26532e11i −0.722940 0.751375i
\(742\) 0 0
\(743\) 3.85387e11 1.26457 0.632284 0.774737i \(-0.282118\pi\)
0.632284 + 0.774737i \(0.282118\pi\)
\(744\) 0 0
\(745\) 9.46913e10 + 6.06326e11i 0.307387 + 1.96825i
\(746\) 0 0
\(747\) 1.12702e10 2.92065e11i 0.0361951 0.937987i
\(748\) 0 0
\(749\) 4.69240e11i 1.49097i
\(750\) 0 0
\(751\) 2.05812e11 0.647011 0.323505 0.946226i \(-0.395139\pi\)
0.323505 + 0.946226i \(0.395139\pi\)
\(752\) 0 0
\(753\) 2.07888e8 + 2.16065e8i 0.000646622 + 0.000672055i
\(754\) 0 0
\(755\) −9.17015e10 + 1.43212e10i −0.282221 + 0.0440750i
\(756\) 0 0
\(757\) 2.39601e11i 0.729634i −0.931079 0.364817i \(-0.881132\pi\)
0.931079 0.364817i \(-0.118868\pi\)
\(758\) 0 0
\(759\) −4.72380e11 4.90960e11i −1.42339 1.47938i
\(760\) 0 0
\(761\) 4.48955e11i 1.33864i 0.742974 + 0.669321i \(0.233415\pi\)
−0.742974 + 0.669321i \(0.766585\pi\)
\(762\) 0 0
\(763\) 1.16322e11i 0.343213i
\(764\) 0 0
\(765\) 6.67997e10 + 5.71525e11i 0.195042 + 1.66874i
\(766\) 0 0
\(767\) 1.96945e11 0.569066
\(768\) 0 0
\(769\) 2.47916e11 0.708922 0.354461 0.935071i \(-0.384664\pi\)
0.354461 + 0.935071i \(0.384664\pi\)
\(770\) 0 0
\(771\) 1.19263e11 1.14749e11i 0.337511 0.324738i
\(772\) 0 0
\(773\) −1.74374e11 −0.488386 −0.244193 0.969727i \(-0.578523\pi\)
−0.244193 + 0.969727i \(0.578523\pi\)
\(774\) 0 0
\(775\) 1.74824e11 5.59703e10i 0.484611 0.155150i
\(776\) 0 0
\(777\) −4.72162e11 + 4.54293e11i −1.29541 + 1.24639i
\(778\) 0 0
\(779\) 3.04301e11i 0.826331i
\(780\) 0 0
\(781\) −2.88166e11 −0.774531
\(782\) 0 0
\(783\) 3.40584e10 3.03292e10i 0.0906102 0.0806889i
\(784\) 0 0
\(785\) 2.51913e10 + 1.61305e11i 0.0663395 + 0.424784i
\(786\) 0 0
\(787\) 1.09992e10i 0.0286724i 0.999897 + 0.0143362i \(0.00456351\pi\)
−0.999897 + 0.0143362i \(0.995436\pi\)
\(788\) 0 0
\(789\) −3.12824e11 + 3.00986e11i −0.807221 + 0.776673i
\(790\) 0 0
\(791\) 6.45744e11i 1.64951i
\(792\) 0 0
\(793\) 1.61044e11i 0.407241i
\(794\) 0 0
\(795\) −1.67183e11 + 2.20027e11i −0.418527 + 0.550818i
\(796\) 0 0
\(797\) 5.12456e11 1.27006 0.635028 0.772489i \(-0.280988\pi\)
0.635028 + 0.772489i \(0.280988\pi\)
\(798\) 0 0
\(799\) 8.09448e11 1.98610
\(800\) 0 0
\(801\) −4.16060e10 1.60549e9i −0.101071 0.00390013i
\(802\) 0 0
\(803\) 3.36374e11 0.809022
\(804\) 0 0
\(805\) 1.37521e11 + 8.80575e11i 0.327482 + 2.09693i
\(806\) 0 0
\(807\) −2.96990e10 3.08672e10i −0.0700242 0.0727784i
\(808\) 0 0
\(809\) 3.89639e10i 0.0909637i −0.998965 0.0454819i \(-0.985518\pi\)
0.998965 0.0454819i \(-0.0144823\pi\)
\(810\) 0 0
\(811\) −7.29160e11 −1.68554 −0.842771 0.538273i \(-0.819077\pi\)
−0.842771 + 0.538273i \(0.819077\pi\)
\(812\) 0 0
\(813\) 1.75384e11 1.68747e11i 0.401447 0.386255i
\(814\) 0 0
\(815\) 2.39485e10 + 1.53347e11i 0.0542811 + 0.347572i
\(816\) 0 0
\(817\) 3.39026e11i 0.760929i
\(818\) 0 0
\(819\) 1.88369e10 4.88154e11i 0.0418672 1.08498i
\(820\) 0 0
\(821\) 7.07145e11i 1.55645i −0.627985 0.778226i \(-0.716120\pi\)
0.627985 0.778226i \(-0.283880\pi\)
\(822\) 0 0
\(823\) 7.55818e10i 0.164747i −0.996602 0.0823735i \(-0.973750\pi\)
0.996602 0.0823735i \(-0.0262501\pi\)
\(824\) 0 0
\(825\) 5.76418e11 + 3.11048e11i 1.24429 + 0.671446i
\(826\) 0 0
\(827\) 7.05475e10 0.150820 0.0754102 0.997153i \(-0.475973\pi\)
0.0754102 + 0.997153i \(0.475973\pi\)
\(828\) 0 0
\(829\) −2.09032e11 −0.442584 −0.221292 0.975208i \(-0.571027\pi\)
−0.221292 + 0.975208i \(0.571027\pi\)
\(830\) 0 0
\(831\) −5.13182e10 5.33367e10i −0.107614 0.111846i
\(832\) 0 0
\(833\) −9.19382e11 −1.90948
\(834\) 0 0
\(835\) 3.23383e11 5.05035e10i 0.665229 0.103890i
\(836\) 0 0
\(837\) 1.66085e11 + 1.86506e11i 0.338399 + 0.380007i
\(838\) 0 0
\(839\) 4.83411e11i 0.975593i −0.872957 0.487796i \(-0.837801\pi\)
0.872957 0.487796i \(-0.162199\pi\)
\(840\) 0 0
\(841\) 4.92882e11 0.985279
\(842\) 0 0
\(843\) −1.46285e11 1.52038e11i −0.289660 0.301053i
\(844\) 0 0
\(845\) −2.25771e11 + 3.52591e10i −0.442834 + 0.0691584i
\(846\) 0 0
\(847\) 7.51615e11i 1.46037i
\(848\) 0 0
\(849\) −6.12430e11 6.36518e11i −1.17876 1.22512i
\(850\) 0 0
\(851\) 9.36550e11i 1.78572i
\(852\) 0 0
\(853\) 1.04488e12i 1.97365i −0.161782 0.986826i \(-0.551724\pi\)
0.161782 0.986826i \(-0.448276\pi\)
\(854\) 0 0
\(855\) −8.70811e10 7.45048e11i −0.162952 1.39418i
\(856\) 0 0
\(857\) 3.05438e10 0.0566238 0.0283119 0.999599i \(-0.490987\pi\)
0.0283119 + 0.999599i \(0.490987\pi\)
\(858\) 0 0
\(859\) −1.22316e11 −0.224651 −0.112326 0.993671i \(-0.535830\pi\)
−0.112326 + 0.993671i \(0.535830\pi\)
\(860\) 0 0
\(861\) 3.40766e11 3.27870e11i 0.620074 0.596608i
\(862\) 0 0
\(863\) 3.75525e11 0.677010 0.338505 0.940965i \(-0.390079\pi\)
0.338505 + 0.940965i \(0.390079\pi\)
\(864\) 0 0
\(865\) 6.70547e11 1.04721e11i 1.19775 0.187055i
\(866\) 0 0
\(867\) −7.42168e11 + 7.14081e11i −1.31349 + 1.26378i
\(868\) 0 0
\(869\) 1.87550e11i 0.328881i
\(870\) 0 0
\(871\) 8.37548e11 1.45525
\(872\) 0 0
\(873\) 9.51389e11 + 3.67122e10i 1.63795 + 0.0632053i
\(874\) 0 0
\(875\) −3.84033e11 7.65930e11i −0.655144 1.30664i
\(876\) 0 0
\(877\) 6.52303e11i 1.10268i 0.834280 + 0.551342i \(0.185884\pi\)
−0.834280 + 0.551342i \(0.814116\pi\)
\(878\) 0 0
\(879\) −2.29213e11 + 2.20539e11i −0.383958 + 0.369428i
\(880\) 0 0
\(881\) 6.12964e11i 1.01749i −0.860917 0.508746i \(-0.830109\pi\)
0.860917 0.508746i \(-0.169891\pi\)
\(882\) 0 0
\(883\) 1.05327e12i 1.73259i 0.499535 + 0.866294i \(0.333504\pi\)
−0.499535 + 0.866294i \(0.666496\pi\)
\(884\) 0 0
\(885\) 3.74182e11 + 2.84314e11i 0.609972 + 0.463474i
\(886\) 0 0
\(887\) −5.34671e11 −0.863759 −0.431879 0.901931i \(-0.642149\pi\)
−0.431879 + 0.901931i \(0.642149\pi\)
\(888\) 0 0
\(889\) −1.47887e12 −2.36769
\(890\) 0 0
\(891\) −6.86695e10 + 8.88453e11i −0.108957 + 1.40969i
\(892\) 0 0
\(893\) −1.05521e12 −1.65933
\(894\) 0 0
\(895\) −7.16553e10 4.58822e11i −0.111675 0.715076i
\(896\) 0 0
\(897\) −4.84136e11 5.03178e11i −0.747821 0.777235i
\(898\) 0 0
\(899\) 4.03263e10i 0.0617375i
\(900\) 0 0
\(901\) −7.65959e11 −1.16227
\(902\) 0 0
\(903\) 3.79651e11 3.65283e11i 0.570996 0.549387i
\(904\) 0 0
\(905\) −5.72360e11 + 8.93867e10i −0.853247 + 0.133254i
\(906\) 0 0
\(907\) 3.80383e11i 0.562072i −0.959697 0.281036i \(-0.909322\pi\)
0.959697 0.281036i \(-0.0906781\pi\)
\(908\) 0 0
\(909\) −6.45347e11 2.49027e10i −0.945230 0.0364746i
\(910\) 0 0
\(911\) 3.03154e11i 0.440139i −0.975484 0.220069i \(-0.929372\pi\)
0.975484 0.220069i \(-0.0706284\pi\)
\(912\) 0 0
\(913\) 9.22189e11i 1.32720i
\(914\) 0 0
\(915\) 2.32487e11 3.05973e11i 0.331676 0.436514i
\(916\) 0 0
\(917\) 5.77403e10 0.0816585
\(918\) 0 0
\(919\) −3.33331e11 −0.467320 −0.233660 0.972318i \(-0.575070\pi\)
−0.233660 + 0.972318i \(0.575070\pi\)
\(920\) 0 0
\(921\) 5.21494e11 + 5.42006e11i 0.724788 + 0.753295i
\(922\) 0 0
\(923\) −2.95338e11 −0.406923
\(924\) 0 0
\(925\) −2.74528e11 8.57491e11i −0.374991 1.17129i
\(926\) 0 0
\(927\) −1.18515e12 4.57327e10i −1.60493 0.0619310i
\(928\) 0 0
\(929\) 1.24660e12i 1.67365i 0.547472 + 0.836824i \(0.315590\pi\)
−0.547472 + 0.836824i \(0.684410\pi\)
\(930\) 0 0
\(931\) 1.19852e12 1.59532
\(932\) 0 0
\(933\) −4.43882e11 4.61340e11i −0.585788 0.608828i
\(934\) 0 0
\(935\) 2.80137e11 + 1.79377e12i 0.366542 + 2.34704i
\(936\) 0 0
\(937\) 6.54853e11i 0.849543i 0.905301 + 0.424772i \(0.139646\pi\)
−0.905301 + 0.424772i \(0.860354\pi\)
\(938\) 0 0
\(939\) 9.92958e11 + 1.03201e12i 1.27723 + 1.32746i
\(940\) 0 0
\(941\) 9.83748e10i 0.125466i −0.998030 0.0627329i \(-0.980018\pi\)
0.998030 0.0627329i \(-0.0199816\pi\)
\(942\) 0 0
\(943\) 6.75921e11i 0.854770i
\(944\) 0 0
\(945\) 7.40501e11 9.00268e11i 0.928535 1.12887i
\(946\) 0 0
\(947\) 1.04818e12 1.30327 0.651637 0.758531i \(-0.274083\pi\)
0.651637 + 0.758531i \(0.274083\pi\)
\(948\) 0 0
\(949\) 3.44745e11 0.425044
\(950\) 0 0
\(951\) −3.19445e11 + 3.07356e11i −0.390548 + 0.375768i
\(952\) 0 0
\(953\) −7.95476e11 −0.964396 −0.482198 0.876062i \(-0.660161\pi\)
−0.482198 + 0.876062i \(0.660161\pi\)
\(954\) 0 0
\(955\) −5.13701e10 3.28932e11i −0.0617586 0.395451i
\(956\) 0 0
\(957\) 1.03689e11 9.97650e10i 0.123619 0.118941i
\(958\) 0 0
\(959\) 6.75417e11i 0.798541i
\(960\) 0 0
\(961\) −6.32061e11 −0.741081
\(962\) 0 0
\(963\) −3.38258e10 + 8.76588e11i −0.0393317 + 1.01927i
\(964\) 0 0
\(965\) −5.37744e10 3.44327e11i −0.0620106 0.397066i
\(966\) 0 0
\(967\) 1.22123e11i 0.139666i 0.997559 + 0.0698332i \(0.0222467\pi\)
−0.997559 + 0.0698332i \(0.977753\pi\)
\(968\) 0 0
\(969\) 1.49830e12 1.44159e12i 1.69943 1.63511i
\(970\) 0 0
\(971\) 5.74843e11i 0.646654i −0.946287 0.323327i \(-0.895199\pi\)
0.946287 0.323327i \(-0.104801\pi\)
\(972\) 0 0
\(973\) 1.74991e12i 1.95238i
\(974\) 0 0
\(975\) 5.90763e11 + 3.18789e11i 0.653725 + 0.352764i
\(976\) 0 0
\(977\) −8.41722e11 −0.923827 −0.461913 0.886925i \(-0.652837\pi\)
−0.461913 + 0.886925i \(0.652837\pi\)
\(978\) 0 0
\(979\) −1.31370e11 −0.143010
\(980\) 0 0
\(981\) 8.38523e9 2.17301e11i 0.00905397 0.234632i
\(982\) 0 0
\(983\) −5.79056e11 −0.620164 −0.310082 0.950710i \(-0.600356\pi\)
−0.310082 + 0.950710i \(0.600356\pi\)
\(984\) 0 0
\(985\) −1.09643e12 + 1.71231e11i −1.16475 + 0.181902i
\(986\) 0 0
\(987\) −1.13693e12 1.18165e12i −1.19803 1.24515i
\(988\) 0 0
\(989\) 7.53051e11i 0.787117i
\(990\) 0 0
\(991\) 5.05654e11 0.524274 0.262137 0.965031i \(-0.415573\pi\)
0.262137 + 0.965031i \(0.415573\pi\)
\(992\) 0 0
\(993\) −3.23518e11 + 3.11275e11i −0.332738 + 0.320146i
\(994\) 0 0
\(995\) −1.15069e12 + 1.79706e11i −1.17399 + 0.183345i
\(996\) 0 0
\(997\) 8.47251e11i 0.857495i −0.903424 0.428747i \(-0.858955\pi\)
0.903424 0.428747i \(-0.141045\pi\)
\(998\) 0 0
\(999\) 9.14794e11 8.14630e11i 0.918463 0.817896i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 120.9.c.a.89.12 yes 48
3.2 odd 2 inner 120.9.c.a.89.38 yes 48
4.3 odd 2 240.9.c.f.209.37 48
5.4 even 2 inner 120.9.c.a.89.37 yes 48
12.11 even 2 240.9.c.f.209.11 48
15.14 odd 2 inner 120.9.c.a.89.11 48
20.19 odd 2 240.9.c.f.209.12 48
60.59 even 2 240.9.c.f.209.38 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.9.c.a.89.11 48 15.14 odd 2 inner
120.9.c.a.89.12 yes 48 1.1 even 1 trivial
120.9.c.a.89.37 yes 48 5.4 even 2 inner
120.9.c.a.89.38 yes 48 3.2 odd 2 inner
240.9.c.f.209.11 48 12.11 even 2
240.9.c.f.209.12 48 20.19 odd 2
240.9.c.f.209.37 48 4.3 odd 2
240.9.c.f.209.38 48 60.59 even 2