Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [120,4,Mod(43,120)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(120, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 2, 0, 3]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("120.43");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 120 = 2^{3} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 120.v (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.08022920069\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(36\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43.1 | −2.80887 | + | 0.332069i | −2.12132 | − | 2.12132i | 7.77946 | − | 1.86547i | 11.1658 | − | 0.570174i | 6.66293 | + | 5.25408i | −5.65722 | − | 5.65722i | −21.2320 | + | 7.82318i | 9.00000i | −31.1739 | + | 5.30935i | ||
43.2 | −2.77605 | + | 0.541804i | −2.12132 | − | 2.12132i | 7.41290 | − | 3.00815i | −9.61270 | − | 5.70930i | 7.03823 | + | 4.73955i | −7.34859 | − | 7.34859i | −18.9487 | + | 12.3671i | 9.00000i | 29.7786 | + | 10.6411i | ||
43.3 | −2.71261 | − | 0.801077i | 2.12132 | + | 2.12132i | 6.71655 | + | 4.34603i | 11.0300 | + | 1.82735i | −4.05498 | − | 7.45366i | 11.6097 | + | 11.6097i | −14.7379 | − | 17.1696i | 9.00000i | −28.4563 | − | 13.7928i | ||
43.4 | −2.65758 | − | 0.968140i | 2.12132 | + | 2.12132i | 6.12541 | + | 5.14581i | −8.21764 | + | 7.58092i | −3.58383 | − | 7.69130i | −21.7697 | − | 21.7697i | −11.2969 | − | 19.6056i | 9.00000i | 29.1784 | − | 12.1910i | ||
43.5 | −2.62410 | + | 1.05551i | 2.12132 | + | 2.12132i | 5.77179 | − | 5.53954i | 4.33793 | − | 10.3045i | −7.80563 | − | 3.32747i | −15.3854 | − | 15.3854i | −9.29869 | + | 20.6285i | 9.00000i | −0.506636 | + | 31.6187i | ||
43.6 | −2.47537 | + | 1.36841i | 2.12132 | + | 2.12132i | 4.25492 | − | 6.77464i | 3.59302 | + | 10.5873i | −8.15389 | − | 2.34822i | −3.55795 | − | 3.55795i | −1.26202 | + | 22.5922i | 9.00000i | −23.3818 | − | 21.2907i | ||
43.7 | −2.33617 | − | 1.59446i | −2.12132 | − | 2.12132i | 2.91539 | + | 7.44987i | −0.0435396 | − | 11.1803i | 1.57341 | + | 8.33813i | 23.8377 | + | 23.8377i | 5.06766 | − | 22.0526i | 9.00000i | −17.7248 | + | 26.1884i | ||
43.8 | −2.17261 | + | 1.81101i | −2.12132 | − | 2.12132i | 1.44051 | − | 7.86924i | 1.41154 | + | 11.0909i | 8.45054 | + | 0.767086i | −8.12099 | − | 8.12099i | 11.1216 | + | 19.7056i | 9.00000i | −23.1524 | − | 21.5399i | ||
43.9 | −1.97204 | − | 2.02758i | 2.12132 | + | 2.12132i | −0.222122 | + | 7.99692i | −8.64040 | − | 7.09531i | 0.117809 | − | 8.48446i | 4.53056 | + | 4.53056i | 16.6524 | − | 15.3199i | 9.00000i | 2.65294 | + | 31.5113i | ||
43.10 | −1.89618 | − | 2.09869i | −2.12132 | − | 2.12132i | −0.808999 | + | 7.95899i | 11.1181 | + | 1.17809i | −0.429587 | + | 8.47440i | −18.4060 | − | 18.4060i | 18.2375 | − | 13.3938i | 9.00000i | −18.6095 | − | 25.5673i | ||
43.11 | −1.81101 | + | 2.17261i | −2.12132 | − | 2.12132i | −1.44051 | − | 7.86924i | −1.41154 | − | 11.0909i | 8.45054 | − | 0.767086i | 8.12099 | + | 8.12099i | 19.7056 | + | 11.1216i | 9.00000i | 26.6525 | + | 17.0189i | ||
43.12 | −1.60248 | − | 2.33068i | −2.12132 | − | 2.12132i | −2.86414 | + | 7.46972i | −9.22898 | + | 6.31077i | −1.54475 | + | 8.34348i | −4.23024 | − | 4.23024i | 21.9992 | − | 5.29467i | 9.00000i | 29.4976 | + | 11.3969i | ||
43.13 | −1.36841 | + | 2.47537i | 2.12132 | + | 2.12132i | −4.25492 | − | 6.77464i | −3.59302 | − | 10.5873i | −8.15389 | + | 2.34822i | 3.55795 | + | 3.55795i | 22.5922 | − | 1.26202i | 9.00000i | 31.1241 | + | 5.59364i | ||
43.14 | −1.05551 | + | 2.62410i | 2.12132 | + | 2.12132i | −5.77179 | − | 5.53954i | −4.33793 | + | 10.3045i | −7.80563 | + | 3.32747i | 15.3854 | + | 15.3854i | 20.6285 | − | 9.29869i | 9.00000i | −22.4612 | − | 22.2597i | ||
43.15 | −0.866614 | − | 2.69239i | 2.12132 | + | 2.12132i | −6.49796 | + | 4.66653i | 8.74847 | − | 6.96163i | 3.87306 | − | 7.54979i | −1.78469 | − | 1.78469i | 18.1954 | + | 13.4510i | 9.00000i | −26.3250 | − | 17.5213i | ||
43.16 | −0.541804 | + | 2.77605i | −2.12132 | − | 2.12132i | −7.41290 | − | 3.00815i | 9.61270 | + | 5.70930i | 7.03823 | − | 4.73955i | 7.34859 | + | 7.34859i | 12.3671 | − | 18.9487i | 9.00000i | −21.0575 | + | 23.5920i | ||
43.17 | −0.332069 | + | 2.80887i | −2.12132 | − | 2.12132i | −7.77946 | − | 1.86547i | −11.1658 | + | 0.570174i | 6.66293 | − | 5.25408i | 5.65722 | + | 5.65722i | 7.82318 | − | 21.2320i | 9.00000i | 2.10627 | − | 31.5526i | ||
43.18 | −0.0857827 | − | 2.82713i | 2.12132 | + | 2.12132i | −7.98528 | + | 0.485037i | 0.507948 | + | 11.1688i | 5.81527 | − | 6.17921i | −17.5600 | − | 17.5600i | 2.05626 | + | 22.5338i | 9.00000i | 31.5320 | − | 2.39412i | ||
43.19 | −0.0403611 | − | 2.82814i | −2.12132 | − | 2.12132i | −7.99674 | + | 0.228293i | 8.79326 | + | 6.90497i | −5.91377 | + | 6.08501i | 24.3320 | + | 24.3320i | 0.968403 | + | 22.6067i | 9.00000i | 19.1733 | − | 25.1472i | ||
43.20 | −0.00187419 | − | 2.82843i | −2.12132 | − | 2.12132i | −7.99999 | + | 0.0106020i | −1.00793 | − | 11.1348i | −5.99602 | + | 6.00397i | −9.44565 | − | 9.44565i | 0.0449806 | + | 22.6274i | 9.00000i | −31.4921 | + | 2.87171i | ||
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
8.d | odd | 2 | 1 | inner |
40.k | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 120.4.v.a | ✓ | 72 |
4.b | odd | 2 | 1 | 480.4.bh.a | 72 | ||
5.c | odd | 4 | 1 | inner | 120.4.v.a | ✓ | 72 |
8.b | even | 2 | 1 | 480.4.bh.a | 72 | ||
8.d | odd | 2 | 1 | inner | 120.4.v.a | ✓ | 72 |
20.e | even | 4 | 1 | 480.4.bh.a | 72 | ||
40.i | odd | 4 | 1 | 480.4.bh.a | 72 | ||
40.k | even | 4 | 1 | inner | 120.4.v.a | ✓ | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
120.4.v.a | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
120.4.v.a | ✓ | 72 | 5.c | odd | 4 | 1 | inner |
120.4.v.a | ✓ | 72 | 8.d | odd | 2 | 1 | inner |
120.4.v.a | ✓ | 72 | 40.k | even | 4 | 1 | inner |
480.4.bh.a | 72 | 4.b | odd | 2 | 1 | ||
480.4.bh.a | 72 | 8.b | even | 2 | 1 | ||
480.4.bh.a | 72 | 20.e | even | 4 | 1 | ||
480.4.bh.a | 72 | 40.i | odd | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(120, [\chi])\).