Properties

Label 120.4.v.a
Level $120$
Weight $4$
Character orbit 120.v
Analytic conductor $7.080$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(43,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.43");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.v (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.08022920069\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 72 q + 12 q^{6} + 84 q^{8}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 72 q + 12 q^{6} + 84 q^{8} - 72 q^{10} + 24 q^{12} - 20 q^{16} - 104 q^{17} + 380 q^{20} + 44 q^{22} - 88 q^{25} - 368 q^{26} - 1068 q^{28} + 408 q^{30} + 340 q^{32} + 912 q^{35} - 108 q^{36} - 40 q^{38} - 952 q^{40} - 660 q^{42} + 864 q^{43} - 2256 q^{46} + 528 q^{48} - 344 q^{50} - 1488 q^{51} + 2544 q^{52} + 2144 q^{56} + 1004 q^{58} + 420 q^{60} + 2608 q^{62} - 1048 q^{65} + 1368 q^{66} + 3696 q^{67} - 1464 q^{68} + 204 q^{70} - 756 q^{72} + 1480 q^{73} - 4016 q^{76} - 72 q^{78} - 1684 q^{80} - 5832 q^{81} - 6712 q^{82} - 5360 q^{83} - 8416 q^{86} - 404 q^{88} + 108 q^{90} + 3392 q^{91} + 8432 q^{92} + 3828 q^{96} - 328 q^{97} + 7576 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
43.1 −2.80887 + 0.332069i −2.12132 2.12132i 7.77946 1.86547i 11.1658 0.570174i 6.66293 + 5.25408i −5.65722 5.65722i −21.2320 + 7.82318i 9.00000i −31.1739 + 5.30935i
43.2 −2.77605 + 0.541804i −2.12132 2.12132i 7.41290 3.00815i −9.61270 5.70930i 7.03823 + 4.73955i −7.34859 7.34859i −18.9487 + 12.3671i 9.00000i 29.7786 + 10.6411i
43.3 −2.71261 0.801077i 2.12132 + 2.12132i 6.71655 + 4.34603i 11.0300 + 1.82735i −4.05498 7.45366i 11.6097 + 11.6097i −14.7379 17.1696i 9.00000i −28.4563 13.7928i
43.4 −2.65758 0.968140i 2.12132 + 2.12132i 6.12541 + 5.14581i −8.21764 + 7.58092i −3.58383 7.69130i −21.7697 21.7697i −11.2969 19.6056i 9.00000i 29.1784 12.1910i
43.5 −2.62410 + 1.05551i 2.12132 + 2.12132i 5.77179 5.53954i 4.33793 10.3045i −7.80563 3.32747i −15.3854 15.3854i −9.29869 + 20.6285i 9.00000i −0.506636 + 31.6187i
43.6 −2.47537 + 1.36841i 2.12132 + 2.12132i 4.25492 6.77464i 3.59302 + 10.5873i −8.15389 2.34822i −3.55795 3.55795i −1.26202 + 22.5922i 9.00000i −23.3818 21.2907i
43.7 −2.33617 1.59446i −2.12132 2.12132i 2.91539 + 7.44987i −0.0435396 11.1803i 1.57341 + 8.33813i 23.8377 + 23.8377i 5.06766 22.0526i 9.00000i −17.7248 + 26.1884i
43.8 −2.17261 + 1.81101i −2.12132 2.12132i 1.44051 7.86924i 1.41154 + 11.0909i 8.45054 + 0.767086i −8.12099 8.12099i 11.1216 + 19.7056i 9.00000i −23.1524 21.5399i
43.9 −1.97204 2.02758i 2.12132 + 2.12132i −0.222122 + 7.99692i −8.64040 7.09531i 0.117809 8.48446i 4.53056 + 4.53056i 16.6524 15.3199i 9.00000i 2.65294 + 31.5113i
43.10 −1.89618 2.09869i −2.12132 2.12132i −0.808999 + 7.95899i 11.1181 + 1.17809i −0.429587 + 8.47440i −18.4060 18.4060i 18.2375 13.3938i 9.00000i −18.6095 25.5673i
43.11 −1.81101 + 2.17261i −2.12132 2.12132i −1.44051 7.86924i −1.41154 11.0909i 8.45054 0.767086i 8.12099 + 8.12099i 19.7056 + 11.1216i 9.00000i 26.6525 + 17.0189i
43.12 −1.60248 2.33068i −2.12132 2.12132i −2.86414 + 7.46972i −9.22898 + 6.31077i −1.54475 + 8.34348i −4.23024 4.23024i 21.9992 5.29467i 9.00000i 29.4976 + 11.3969i
43.13 −1.36841 + 2.47537i 2.12132 + 2.12132i −4.25492 6.77464i −3.59302 10.5873i −8.15389 + 2.34822i 3.55795 + 3.55795i 22.5922 1.26202i 9.00000i 31.1241 + 5.59364i
43.14 −1.05551 + 2.62410i 2.12132 + 2.12132i −5.77179 5.53954i −4.33793 + 10.3045i −7.80563 + 3.32747i 15.3854 + 15.3854i 20.6285 9.29869i 9.00000i −22.4612 22.2597i
43.15 −0.866614 2.69239i 2.12132 + 2.12132i −6.49796 + 4.66653i 8.74847 6.96163i 3.87306 7.54979i −1.78469 1.78469i 18.1954 + 13.4510i 9.00000i −26.3250 17.5213i
43.16 −0.541804 + 2.77605i −2.12132 2.12132i −7.41290 3.00815i 9.61270 + 5.70930i 7.03823 4.73955i 7.34859 + 7.34859i 12.3671 18.9487i 9.00000i −21.0575 + 23.5920i
43.17 −0.332069 + 2.80887i −2.12132 2.12132i −7.77946 1.86547i −11.1658 + 0.570174i 6.66293 5.25408i 5.65722 + 5.65722i 7.82318 21.2320i 9.00000i 2.10627 31.5526i
43.18 −0.0857827 2.82713i 2.12132 + 2.12132i −7.98528 + 0.485037i 0.507948 + 11.1688i 5.81527 6.17921i −17.5600 17.5600i 2.05626 + 22.5338i 9.00000i 31.5320 2.39412i
43.19 −0.0403611 2.82814i −2.12132 2.12132i −7.99674 + 0.228293i 8.79326 + 6.90497i −5.91377 + 6.08501i 24.3320 + 24.3320i 0.968403 + 22.6067i 9.00000i 19.1733 25.1472i
43.20 −0.00187419 2.82843i −2.12132 2.12132i −7.99999 + 0.0106020i −1.00793 11.1348i −5.99602 + 6.00397i −9.44565 9.44565i 0.0449806 + 22.6274i 9.00000i −31.4921 + 2.87171i
See all 72 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 43.36
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
8.d odd 2 1 inner
40.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 120.4.v.a 72
4.b odd 2 1 480.4.bh.a 72
5.c odd 4 1 inner 120.4.v.a 72
8.b even 2 1 480.4.bh.a 72
8.d odd 2 1 inner 120.4.v.a 72
20.e even 4 1 480.4.bh.a 72
40.i odd 4 1 480.4.bh.a 72
40.k even 4 1 inner 120.4.v.a 72
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.4.v.a 72 1.a even 1 1 trivial
120.4.v.a 72 5.c odd 4 1 inner
120.4.v.a 72 8.d odd 2 1 inner
120.4.v.a 72 40.k even 4 1 inner
480.4.bh.a 72 4.b odd 2 1
480.4.bh.a 72 8.b even 2 1
480.4.bh.a 72 20.e even 4 1
480.4.bh.a 72 40.i odd 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(120, [\chi])\).