Properties

Label 1190.2.a.k.1.3
Level $1190$
Weight $2$
Character 1190.1
Self dual yes
Analytic conductor $9.502$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1190,2,Mod(1,1190)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1190.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1190 = 2 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1190.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-1,3,3,1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.50219784053\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.3229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 9x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.77016\) of defining polynomial
Character \(\chi\) \(=\) 1190.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.77016 q^{3} +1.00000 q^{4} +1.00000 q^{5} -2.77016 q^{6} +1.00000 q^{7} -1.00000 q^{8} +4.67380 q^{9} -1.00000 q^{10} +1.67380 q^{11} +2.77016 q^{12} +4.00000 q^{13} -1.00000 q^{14} +2.77016 q^{15} +1.00000 q^{16} +1.00000 q^{17} -4.67380 q^{18} -1.67380 q^{19} +1.00000 q^{20} +2.77016 q^{21} -1.67380 q^{22} -6.77016 q^{23} -2.77016 q^{24} +1.00000 q^{25} -4.00000 q^{26} +4.63669 q^{27} +1.00000 q^{28} +1.22984 q^{29} -2.77016 q^{30} -5.21412 q^{31} -1.00000 q^{32} +4.63669 q^{33} -1.00000 q^{34} +1.00000 q^{35} +4.67380 q^{36} +5.54032 q^{37} +1.67380 q^{38} +11.0806 q^{39} -1.00000 q^{40} -1.67380 q^{41} -2.77016 q^{42} -8.31049 q^{43} +1.67380 q^{44} +4.67380 q^{45} +6.77016 q^{46} +8.31049 q^{47} +2.77016 q^{48} +1.00000 q^{49} -1.00000 q^{50} +2.77016 q^{51} +4.00000 q^{52} -4.77016 q^{53} -4.63669 q^{54} +1.67380 q^{55} -1.00000 q^{56} -4.63669 q^{57} -1.22984 q^{58} -4.77016 q^{59} +2.77016 q^{60} +10.0000 q^{61} +5.21412 q^{62} +4.67380 q^{63} +1.00000 q^{64} +4.00000 q^{65} -4.63669 q^{66} +10.7544 q^{67} +1.00000 q^{68} -18.7544 q^{69} -1.00000 q^{70} -12.8879 q^{71} -4.67380 q^{72} -9.08065 q^{73} -5.54032 q^{74} +2.77016 q^{75} -1.67380 q^{76} +1.67380 q^{77} -11.0806 q^{78} +12.8879 q^{79} +1.00000 q^{80} -1.17701 q^{81} +1.67380 q^{82} -13.0806 q^{83} +2.77016 q^{84} +1.00000 q^{85} +8.31049 q^{86} +3.40685 q^{87} -1.67380 q^{88} +8.19273 q^{89} -4.67380 q^{90} +4.00000 q^{91} -6.77016 q^{92} -14.4440 q^{93} -8.31049 q^{94} -1.67380 q^{95} -2.77016 q^{96} +6.00000 q^{97} -1.00000 q^{98} +7.82299 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - q^{3} + 3 q^{4} + 3 q^{5} + q^{6} + 3 q^{7} - 3 q^{8} + 10 q^{9} - 3 q^{10} + q^{11} - q^{12} + 12 q^{13} - 3 q^{14} - q^{15} + 3 q^{16} + 3 q^{17} - 10 q^{18} - q^{19} + 3 q^{20}+ \cdots + 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.77016 1.59935 0.799677 0.600431i \(-0.205004\pi\)
0.799677 + 0.600431i \(0.205004\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −2.77016 −1.13091
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) 4.67380 1.55793
\(10\) −1.00000 −0.316228
\(11\) 1.67380 0.504669 0.252334 0.967640i \(-0.418802\pi\)
0.252334 + 0.967640i \(0.418802\pi\)
\(12\) 2.77016 0.799677
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) −1.00000 −0.267261
\(15\) 2.77016 0.715253
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) −4.67380 −1.10162
\(19\) −1.67380 −0.383995 −0.191998 0.981395i \(-0.561497\pi\)
−0.191998 + 0.981395i \(0.561497\pi\)
\(20\) 1.00000 0.223607
\(21\) 2.77016 0.604499
\(22\) −1.67380 −0.356855
\(23\) −6.77016 −1.41168 −0.705838 0.708373i \(-0.749429\pi\)
−0.705838 + 0.708373i \(0.749429\pi\)
\(24\) −2.77016 −0.565457
\(25\) 1.00000 0.200000
\(26\) −4.00000 −0.784465
\(27\) 4.63669 0.892331
\(28\) 1.00000 0.188982
\(29\) 1.22984 0.228375 0.114188 0.993459i \(-0.463574\pi\)
0.114188 + 0.993459i \(0.463574\pi\)
\(30\) −2.77016 −0.505760
\(31\) −5.21412 −0.936484 −0.468242 0.883600i \(-0.655112\pi\)
−0.468242 + 0.883600i \(0.655112\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.63669 0.807144
\(34\) −1.00000 −0.171499
\(35\) 1.00000 0.169031
\(36\) 4.67380 0.778966
\(37\) 5.54032 0.910824 0.455412 0.890281i \(-0.349492\pi\)
0.455412 + 0.890281i \(0.349492\pi\)
\(38\) 1.67380 0.271526
\(39\) 11.0806 1.77432
\(40\) −1.00000 −0.158114
\(41\) −1.67380 −0.261403 −0.130702 0.991422i \(-0.541723\pi\)
−0.130702 + 0.991422i \(0.541723\pi\)
\(42\) −2.77016 −0.427445
\(43\) −8.31049 −1.26734 −0.633669 0.773605i \(-0.718452\pi\)
−0.633669 + 0.773605i \(0.718452\pi\)
\(44\) 1.67380 0.252334
\(45\) 4.67380 0.696729
\(46\) 6.77016 0.998206
\(47\) 8.31049 1.21221 0.606104 0.795385i \(-0.292731\pi\)
0.606104 + 0.795385i \(0.292731\pi\)
\(48\) 2.77016 0.399838
\(49\) 1.00000 0.142857
\(50\) −1.00000 −0.141421
\(51\) 2.77016 0.387900
\(52\) 4.00000 0.554700
\(53\) −4.77016 −0.655232 −0.327616 0.944811i \(-0.606245\pi\)
−0.327616 + 0.944811i \(0.606245\pi\)
\(54\) −4.63669 −0.630973
\(55\) 1.67380 0.225695
\(56\) −1.00000 −0.133631
\(57\) −4.63669 −0.614144
\(58\) −1.22984 −0.161486
\(59\) −4.77016 −0.621022 −0.310511 0.950570i \(-0.600500\pi\)
−0.310511 + 0.950570i \(0.600500\pi\)
\(60\) 2.77016 0.357626
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 5.21412 0.662194
\(63\) 4.67380 0.588843
\(64\) 1.00000 0.125000
\(65\) 4.00000 0.496139
\(66\) −4.63669 −0.570737
\(67\) 10.7544 1.31386 0.656932 0.753950i \(-0.271854\pi\)
0.656932 + 0.753950i \(0.271854\pi\)
\(68\) 1.00000 0.121268
\(69\) −18.7544 −2.25777
\(70\) −1.00000 −0.119523
\(71\) −12.8879 −1.52951 −0.764757 0.644319i \(-0.777141\pi\)
−0.764757 + 0.644319i \(0.777141\pi\)
\(72\) −4.67380 −0.550812
\(73\) −9.08065 −1.06281 −0.531405 0.847118i \(-0.678336\pi\)
−0.531405 + 0.847118i \(0.678336\pi\)
\(74\) −5.54032 −0.644050
\(75\) 2.77016 0.319871
\(76\) −1.67380 −0.191998
\(77\) 1.67380 0.190747
\(78\) −11.0806 −1.25464
\(79\) 12.8879 1.45000 0.725002 0.688747i \(-0.241839\pi\)
0.725002 + 0.688747i \(0.241839\pi\)
\(80\) 1.00000 0.111803
\(81\) −1.17701 −0.130779
\(82\) 1.67380 0.184840
\(83\) −13.0806 −1.43579 −0.717894 0.696153i \(-0.754894\pi\)
−0.717894 + 0.696153i \(0.754894\pi\)
\(84\) 2.77016 0.302249
\(85\) 1.00000 0.108465
\(86\) 8.31049 0.896143
\(87\) 3.40685 0.365253
\(88\) −1.67380 −0.178427
\(89\) 8.19273 0.868428 0.434214 0.900810i \(-0.357026\pi\)
0.434214 + 0.900810i \(0.357026\pi\)
\(90\) −4.67380 −0.492661
\(91\) 4.00000 0.419314
\(92\) −6.77016 −0.705838
\(93\) −14.4440 −1.49777
\(94\) −8.31049 −0.857161
\(95\) −1.67380 −0.171728
\(96\) −2.77016 −0.282728
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) −1.00000 −0.101015
\(99\) 7.82299 0.786240
\(100\) 1.00000 0.100000
\(101\) −9.21412 −0.916839 −0.458420 0.888736i \(-0.651584\pi\)
−0.458420 + 0.888736i \(0.651584\pi\)
\(102\) −2.77016 −0.274287
\(103\) −1.22984 −0.121180 −0.0605898 0.998163i \(-0.519298\pi\)
−0.0605898 + 0.998163i \(0.519298\pi\)
\(104\) −4.00000 −0.392232
\(105\) 2.77016 0.270340
\(106\) 4.77016 0.463319
\(107\) −6.88792 −0.665880 −0.332940 0.942948i \(-0.608041\pi\)
−0.332940 + 0.942948i \(0.608041\pi\)
\(108\) 4.63669 0.446166
\(109\) −5.21412 −0.499422 −0.249711 0.968320i \(-0.580336\pi\)
−0.249711 + 0.968320i \(0.580336\pi\)
\(110\) −1.67380 −0.159590
\(111\) 15.3476 1.45673
\(112\) 1.00000 0.0944911
\(113\) 11.2141 1.05494 0.527468 0.849575i \(-0.323142\pi\)
0.527468 + 0.849575i \(0.323142\pi\)
\(114\) 4.63669 0.434266
\(115\) −6.77016 −0.631321
\(116\) 1.22984 0.114188
\(117\) 18.6952 1.72837
\(118\) 4.77016 0.439129
\(119\) 1.00000 0.0916698
\(120\) −2.77016 −0.252880
\(121\) −8.19840 −0.745309
\(122\) −10.0000 −0.905357
\(123\) −4.63669 −0.418076
\(124\) −5.21412 −0.468242
\(125\) 1.00000 0.0894427
\(126\) −4.67380 −0.416375
\(127\) −10.4282 −0.925357 −0.462678 0.886526i \(-0.653112\pi\)
−0.462678 + 0.886526i \(0.653112\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −23.0214 −2.02692
\(130\) −4.00000 −0.350823
\(131\) 15.7331 1.37460 0.687302 0.726372i \(-0.258795\pi\)
0.687302 + 0.726372i \(0.258795\pi\)
\(132\) 4.63669 0.403572
\(133\) −1.67380 −0.145137
\(134\) −10.7544 −0.929043
\(135\) 4.63669 0.399063
\(136\) −1.00000 −0.0857493
\(137\) 8.42824 0.720073 0.360037 0.932938i \(-0.382764\pi\)
0.360037 + 0.932938i \(0.382764\pi\)
\(138\) 18.7544 1.59648
\(139\) −0.652406 −0.0553364 −0.0276682 0.999617i \(-0.508808\pi\)
−0.0276682 + 0.999617i \(0.508808\pi\)
\(140\) 1.00000 0.0845154
\(141\) 23.0214 1.93875
\(142\) 12.8879 1.08153
\(143\) 6.69519 0.559880
\(144\) 4.67380 0.389483
\(145\) 1.22984 0.102132
\(146\) 9.08065 0.751520
\(147\) 2.77016 0.228479
\(148\) 5.54032 0.455412
\(149\) −2.65241 −0.217294 −0.108647 0.994080i \(-0.534652\pi\)
−0.108647 + 0.994080i \(0.534652\pi\)
\(150\) −2.77016 −0.226183
\(151\) 20.5617 1.67329 0.836644 0.547747i \(-0.184514\pi\)
0.836644 + 0.547747i \(0.184514\pi\)
\(152\) 1.67380 0.135763
\(153\) 4.67380 0.377854
\(154\) −1.67380 −0.134878
\(155\) −5.21412 −0.418808
\(156\) 11.0806 0.887162
\(157\) −8.00000 −0.638470 −0.319235 0.947676i \(-0.603426\pi\)
−0.319235 + 0.947676i \(0.603426\pi\)
\(158\) −12.8879 −1.02531
\(159\) −13.2141 −1.04795
\(160\) −1.00000 −0.0790569
\(161\) −6.77016 −0.533564
\(162\) 1.17701 0.0924748
\(163\) −9.73305 −0.762352 −0.381176 0.924503i \(-0.624481\pi\)
−0.381176 + 0.924503i \(0.624481\pi\)
\(164\) −1.67380 −0.130702
\(165\) 4.63669 0.360966
\(166\) 13.0806 1.01526
\(167\) −4.88792 −0.378238 −0.189119 0.981954i \(-0.560563\pi\)
−0.189119 + 0.981954i \(0.560563\pi\)
\(168\) −2.77016 −0.213723
\(169\) 3.00000 0.230769
\(170\) −1.00000 −0.0766965
\(171\) −7.82299 −0.598239
\(172\) −8.31049 −0.633669
\(173\) 4.13347 0.314262 0.157131 0.987578i \(-0.449775\pi\)
0.157131 + 0.987578i \(0.449775\pi\)
\(174\) −3.40685 −0.258273
\(175\) 1.00000 0.0755929
\(176\) 1.67380 0.126167
\(177\) −13.2141 −0.993234
\(178\) −8.19273 −0.614071
\(179\) −3.34759 −0.250211 −0.125105 0.992143i \(-0.539927\pi\)
−0.125105 + 0.992143i \(0.539927\pi\)
\(180\) 4.67380 0.348364
\(181\) 22.6210 1.68140 0.840702 0.541498i \(-0.182143\pi\)
0.840702 + 0.541498i \(0.182143\pi\)
\(182\) −4.00000 −0.296500
\(183\) 27.7016 2.04776
\(184\) 6.77016 0.499103
\(185\) 5.54032 0.407333
\(186\) 14.4440 1.05908
\(187\) 1.67380 0.122400
\(188\) 8.31049 0.606104
\(189\) 4.63669 0.337269
\(190\) 1.67380 0.121430
\(191\) −2.13347 −0.154373 −0.0771864 0.997017i \(-0.524594\pi\)
−0.0771864 + 0.997017i \(0.524594\pi\)
\(192\) 2.77016 0.199919
\(193\) −22.5460 −1.62290 −0.811448 0.584424i \(-0.801320\pi\)
−0.811448 + 0.584424i \(0.801320\pi\)
\(194\) −6.00000 −0.430775
\(195\) 11.0806 0.793502
\(196\) 1.00000 0.0714286
\(197\) −12.6210 −0.899207 −0.449603 0.893228i \(-0.648435\pi\)
−0.449603 + 0.893228i \(0.648435\pi\)
\(198\) −7.82299 −0.555956
\(199\) 14.7387 1.04480 0.522400 0.852700i \(-0.325037\pi\)
0.522400 + 0.852700i \(0.325037\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 29.7916 2.10133
\(202\) 9.21412 0.648303
\(203\) 1.22984 0.0863177
\(204\) 2.77016 0.193950
\(205\) −1.67380 −0.116903
\(206\) 1.22984 0.0856869
\(207\) −31.6424 −2.19930
\(208\) 4.00000 0.277350
\(209\) −2.80160 −0.193790
\(210\) −2.77016 −0.191159
\(211\) 1.11208 0.0765589 0.0382794 0.999267i \(-0.487812\pi\)
0.0382794 + 0.999267i \(0.487812\pi\)
\(212\) −4.77016 −0.327616
\(213\) −35.7016 −2.44623
\(214\) 6.88792 0.470848
\(215\) −8.31049 −0.566770
\(216\) −4.63669 −0.315487
\(217\) −5.21412 −0.353958
\(218\) 5.21412 0.353145
\(219\) −25.1549 −1.69981
\(220\) 1.67380 0.112847
\(221\) 4.00000 0.269069
\(222\) −15.3476 −1.03006
\(223\) 25.7758 1.72608 0.863039 0.505138i \(-0.168558\pi\)
0.863039 + 0.505138i \(0.168558\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 4.67380 0.311586
\(226\) −11.2141 −0.745952
\(227\) −8.05926 −0.534912 −0.267456 0.963570i \(-0.586183\pi\)
−0.267456 + 0.963570i \(0.586183\pi\)
\(228\) −4.63669 −0.307072
\(229\) 15.0057 0.991603 0.495801 0.868436i \(-0.334874\pi\)
0.495801 + 0.868436i \(0.334874\pi\)
\(230\) 6.77016 0.446411
\(231\) 4.63669 0.305072
\(232\) −1.22984 −0.0807428
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) −18.6952 −1.22214
\(235\) 8.31049 0.542116
\(236\) −4.77016 −0.310511
\(237\) 35.7016 2.31907
\(238\) −1.00000 −0.0648204
\(239\) −2.78588 −0.180204 −0.0901018 0.995933i \(-0.528719\pi\)
−0.0901018 + 0.995933i \(0.528719\pi\)
\(240\) 2.77016 0.178813
\(241\) −6.57743 −0.423690 −0.211845 0.977303i \(-0.567947\pi\)
−0.211845 + 0.977303i \(0.567947\pi\)
\(242\) 8.19840 0.527013
\(243\) −17.1706 −1.10149
\(244\) 10.0000 0.640184
\(245\) 1.00000 0.0638877
\(246\) 4.63669 0.295624
\(247\) −6.69519 −0.426005
\(248\) 5.21412 0.331097
\(249\) −36.2355 −2.29633
\(250\) −1.00000 −0.0632456
\(251\) −12.7544 −0.805053 −0.402527 0.915408i \(-0.631868\pi\)
−0.402527 + 0.915408i \(0.631868\pi\)
\(252\) 4.67380 0.294422
\(253\) −11.3319 −0.712429
\(254\) 10.4282 0.654326
\(255\) 2.77016 0.173474
\(256\) 1.00000 0.0625000
\(257\) −7.46535 −0.465676 −0.232838 0.972516i \(-0.574801\pi\)
−0.232838 + 0.972516i \(0.574801\pi\)
\(258\) 23.0214 1.43325
\(259\) 5.54032 0.344259
\(260\) 4.00000 0.248069
\(261\) 5.74801 0.355793
\(262\) −15.7331 −0.971991
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) −4.63669 −0.285368
\(265\) −4.77016 −0.293029
\(266\) 1.67380 0.102627
\(267\) 22.6952 1.38892
\(268\) 10.7544 0.656932
\(269\) 2.00000 0.121942 0.0609711 0.998140i \(-0.480580\pi\)
0.0609711 + 0.998140i \(0.480580\pi\)
\(270\) −4.63669 −0.282180
\(271\) 22.4282 1.36242 0.681209 0.732089i \(-0.261454\pi\)
0.681209 + 0.732089i \(0.261454\pi\)
\(272\) 1.00000 0.0606339
\(273\) 11.0806 0.670631
\(274\) −8.42824 −0.509169
\(275\) 1.67380 0.100934
\(276\) −18.7544 −1.12888
\(277\) 9.80727 0.589262 0.294631 0.955611i \(-0.404803\pi\)
0.294631 + 0.955611i \(0.404803\pi\)
\(278\) 0.652406 0.0391287
\(279\) −24.3697 −1.45898
\(280\) −1.00000 −0.0597614
\(281\) −32.7387 −1.95303 −0.976514 0.215452i \(-0.930877\pi\)
−0.976514 + 0.215452i \(0.930877\pi\)
\(282\) −23.0214 −1.37090
\(283\) −25.7758 −1.53221 −0.766107 0.642713i \(-0.777809\pi\)
−0.766107 + 0.642713i \(0.777809\pi\)
\(284\) −12.8879 −0.764757
\(285\) −4.63669 −0.274654
\(286\) −6.69519 −0.395895
\(287\) −1.67380 −0.0988011
\(288\) −4.67380 −0.275406
\(289\) 1.00000 0.0588235
\(290\) −1.22984 −0.0722186
\(291\) 16.6210 0.974339
\(292\) −9.08065 −0.531405
\(293\) −11.3476 −0.662934 −0.331467 0.943467i \(-0.607543\pi\)
−0.331467 + 0.943467i \(0.607543\pi\)
\(294\) −2.77016 −0.161559
\(295\) −4.77016 −0.277730
\(296\) −5.54032 −0.322025
\(297\) 7.76088 0.450332
\(298\) 2.65241 0.153650
\(299\) −27.0806 −1.56611
\(300\) 2.77016 0.159935
\(301\) −8.31049 −0.479008
\(302\) −20.5617 −1.18319
\(303\) −25.5246 −1.46635
\(304\) −1.67380 −0.0959988
\(305\) 10.0000 0.572598
\(306\) −4.67380 −0.267183
\(307\) −29.3162 −1.67316 −0.836581 0.547844i \(-0.815449\pi\)
−0.836581 + 0.547844i \(0.815449\pi\)
\(308\) 1.67380 0.0953734
\(309\) −3.40685 −0.193809
\(310\) 5.21412 0.296142
\(311\) 0.577432 0.0327432 0.0163716 0.999866i \(-0.494789\pi\)
0.0163716 + 0.999866i \(0.494789\pi\)
\(312\) −11.0806 −0.627318
\(313\) −4.45968 −0.252076 −0.126038 0.992025i \(-0.540226\pi\)
−0.126038 + 0.992025i \(0.540226\pi\)
\(314\) 8.00000 0.451466
\(315\) 4.67380 0.263339
\(316\) 12.8879 0.725002
\(317\) −12.6524 −0.710630 −0.355315 0.934747i \(-0.615626\pi\)
−0.355315 + 0.934747i \(0.615626\pi\)
\(318\) 13.2141 0.741011
\(319\) 2.05850 0.115254
\(320\) 1.00000 0.0559017
\(321\) −19.0806 −1.06498
\(322\) 6.77016 0.377286
\(323\) −1.67380 −0.0931326
\(324\) −1.17701 −0.0653896
\(325\) 4.00000 0.221880
\(326\) 9.73305 0.539064
\(327\) −14.4440 −0.798753
\(328\) 1.67380 0.0924200
\(329\) 8.31049 0.458172
\(330\) −4.63669 −0.255241
\(331\) 18.6952 1.02758 0.513790 0.857916i \(-0.328241\pi\)
0.513790 + 0.857916i \(0.328241\pi\)
\(332\) −13.0806 −0.717894
\(333\) 25.8943 1.41900
\(334\) 4.88792 0.267455
\(335\) 10.7544 0.587578
\(336\) 2.77016 0.151125
\(337\) 11.4653 0.624557 0.312279 0.949991i \(-0.398908\pi\)
0.312279 + 0.949991i \(0.398908\pi\)
\(338\) −3.00000 −0.163178
\(339\) 31.0649 1.68722
\(340\) 1.00000 0.0542326
\(341\) −8.72738 −0.472614
\(342\) 7.82299 0.423019
\(343\) 1.00000 0.0539949
\(344\) 8.31049 0.448071
\(345\) −18.7544 −1.00971
\(346\) −4.13347 −0.222217
\(347\) −23.9258 −1.28440 −0.642202 0.766536i \(-0.721979\pi\)
−0.642202 + 0.766536i \(0.721979\pi\)
\(348\) 3.40685 0.182626
\(349\) −7.96857 −0.426548 −0.213274 0.976992i \(-0.568413\pi\)
−0.213274 + 0.976992i \(0.568413\pi\)
\(350\) −1.00000 −0.0534522
\(351\) 18.5468 0.989953
\(352\) −1.67380 −0.0892137
\(353\) −2.29477 −0.122138 −0.0610691 0.998134i \(-0.519451\pi\)
−0.0610691 + 0.998134i \(0.519451\pi\)
\(354\) 13.2141 0.702323
\(355\) −12.8879 −0.684020
\(356\) 8.19273 0.434214
\(357\) 2.77016 0.146613
\(358\) 3.34759 0.176926
\(359\) 1.19840 0.0632493 0.0316247 0.999500i \(-0.489932\pi\)
0.0316247 + 0.999500i \(0.489932\pi\)
\(360\) −4.67380 −0.246331
\(361\) −16.1984 −0.852548
\(362\) −22.6210 −1.18893
\(363\) −22.7109 −1.19201
\(364\) 4.00000 0.209657
\(365\) −9.08065 −0.475303
\(366\) −27.7016 −1.44799
\(367\) −31.4661 −1.64252 −0.821259 0.570556i \(-0.806728\pi\)
−0.821259 + 0.570556i \(0.806728\pi\)
\(368\) −6.77016 −0.352919
\(369\) −7.82299 −0.407248
\(370\) −5.54032 −0.288028
\(371\) −4.77016 −0.247654
\(372\) −14.4440 −0.748884
\(373\) 10.0750 0.521662 0.260831 0.965384i \(-0.416003\pi\)
0.260831 + 0.965384i \(0.416003\pi\)
\(374\) −1.67380 −0.0865500
\(375\) 2.77016 0.143051
\(376\) −8.31049 −0.428581
\(377\) 4.91935 0.253360
\(378\) −4.63669 −0.238486
\(379\) 34.5460 1.77451 0.887254 0.461281i \(-0.152610\pi\)
0.887254 + 0.461281i \(0.152610\pi\)
\(380\) −1.67380 −0.0858640
\(381\) −28.8879 −1.47997
\(382\) 2.13347 0.109158
\(383\) −8.32620 −0.425449 −0.212725 0.977112i \(-0.568234\pi\)
−0.212725 + 0.977112i \(0.568234\pi\)
\(384\) −2.77016 −0.141364
\(385\) 1.67380 0.0853046
\(386\) 22.5460 1.14756
\(387\) −38.8415 −1.97443
\(388\) 6.00000 0.304604
\(389\) 7.54032 0.382310 0.191155 0.981560i \(-0.438777\pi\)
0.191155 + 0.981560i \(0.438777\pi\)
\(390\) −11.0806 −0.561090
\(391\) −6.77016 −0.342382
\(392\) −1.00000 −0.0505076
\(393\) 43.5831 2.19848
\(394\) 12.6210 0.635835
\(395\) 12.8879 0.648462
\(396\) 7.82299 0.393120
\(397\) −11.8508 −0.594775 −0.297388 0.954757i \(-0.596115\pi\)
−0.297388 + 0.954757i \(0.596115\pi\)
\(398\) −14.7387 −0.738786
\(399\) −4.63669 −0.232125
\(400\) 1.00000 0.0500000
\(401\) 13.3476 0.666547 0.333274 0.942830i \(-0.391847\pi\)
0.333274 + 0.942830i \(0.391847\pi\)
\(402\) −29.7916 −1.48587
\(403\) −20.8565 −1.03894
\(404\) −9.21412 −0.458420
\(405\) −1.17701 −0.0584862
\(406\) −1.22984 −0.0610358
\(407\) 9.27338 0.459664
\(408\) −2.77016 −0.137143
\(409\) 16.4282 0.812324 0.406162 0.913801i \(-0.366867\pi\)
0.406162 + 0.913801i \(0.366867\pi\)
\(410\) 1.67380 0.0826629
\(411\) 23.3476 1.15165
\(412\) −1.22984 −0.0605898
\(413\) −4.77016 −0.234724
\(414\) 31.6424 1.55514
\(415\) −13.0806 −0.642104
\(416\) −4.00000 −0.196116
\(417\) −1.80727 −0.0885024
\(418\) 2.80160 0.137031
\(419\) 3.11208 0.152035 0.0760176 0.997106i \(-0.475779\pi\)
0.0760176 + 0.997106i \(0.475779\pi\)
\(420\) 2.77016 0.135170
\(421\) −18.2355 −0.888744 −0.444372 0.895842i \(-0.646573\pi\)
−0.444372 + 0.895842i \(0.646573\pi\)
\(422\) −1.11208 −0.0541353
\(423\) 38.8415 1.88854
\(424\) 4.77016 0.231660
\(425\) 1.00000 0.0485071
\(426\) 35.7016 1.72975
\(427\) 10.0000 0.483934
\(428\) −6.88792 −0.332940
\(429\) 18.5468 0.895446
\(430\) 8.31049 0.400767
\(431\) 20.0000 0.963366 0.481683 0.876346i \(-0.340026\pi\)
0.481683 + 0.876346i \(0.340026\pi\)
\(432\) 4.63669 0.223083
\(433\) 21.0806 1.01307 0.506536 0.862219i \(-0.330926\pi\)
0.506536 + 0.862219i \(0.330926\pi\)
\(434\) 5.21412 0.250286
\(435\) 3.40685 0.163346
\(436\) −5.21412 −0.249711
\(437\) 11.3319 0.542077
\(438\) 25.1549 1.20195
\(439\) −39.3597 −1.87854 −0.939268 0.343185i \(-0.888494\pi\)
−0.939268 + 0.343185i \(0.888494\pi\)
\(440\) −1.67380 −0.0797951
\(441\) 4.67380 0.222562
\(442\) −4.00000 −0.190261
\(443\) −13.6153 −0.646882 −0.323441 0.946248i \(-0.604840\pi\)
−0.323441 + 0.946248i \(0.604840\pi\)
\(444\) 15.3476 0.728365
\(445\) 8.19273 0.388373
\(446\) −25.7758 −1.22052
\(447\) −7.34759 −0.347529
\(448\) 1.00000 0.0472456
\(449\) 33.0806 1.56117 0.780586 0.625048i \(-0.214921\pi\)
0.780586 + 0.625048i \(0.214921\pi\)
\(450\) −4.67380 −0.220325
\(451\) −2.80160 −0.131922
\(452\) 11.2141 0.527468
\(453\) 56.9593 2.67618
\(454\) 8.05926 0.378240
\(455\) 4.00000 0.187523
\(456\) 4.63669 0.217133
\(457\) 24.4282 1.14270 0.571352 0.820705i \(-0.306419\pi\)
0.571352 + 0.820705i \(0.306419\pi\)
\(458\) −15.0057 −0.701169
\(459\) 4.63669 0.216422
\(460\) −6.77016 −0.315660
\(461\) 17.5996 0.819694 0.409847 0.912154i \(-0.365582\pi\)
0.409847 + 0.912154i \(0.365582\pi\)
\(462\) −4.63669 −0.215718
\(463\) 14.0428 0.652623 0.326312 0.945262i \(-0.394194\pi\)
0.326312 + 0.945262i \(0.394194\pi\)
\(464\) 1.22984 0.0570938
\(465\) −14.4440 −0.669823
\(466\) 10.0000 0.463241
\(467\) −15.8073 −0.731473 −0.365737 0.930718i \(-0.619183\pi\)
−0.365737 + 0.930718i \(0.619183\pi\)
\(468\) 18.6952 0.864185
\(469\) 10.7544 0.496594
\(470\) −8.31049 −0.383334
\(471\) −22.1613 −1.02114
\(472\) 4.77016 0.219564
\(473\) −13.9101 −0.639586
\(474\) −35.7016 −1.63983
\(475\) −1.67380 −0.0767991
\(476\) 1.00000 0.0458349
\(477\) −22.2948 −1.02081
\(478\) 2.78588 0.127423
\(479\) 30.1613 1.37810 0.689052 0.724712i \(-0.258027\pi\)
0.689052 + 0.724712i \(0.258027\pi\)
\(480\) −2.77016 −0.126440
\(481\) 22.1613 1.01047
\(482\) 6.57743 0.299594
\(483\) −18.7544 −0.853357
\(484\) −8.19840 −0.372655
\(485\) 6.00000 0.272446
\(486\) 17.1706 0.778873
\(487\) −5.24556 −0.237699 −0.118849 0.992912i \(-0.537921\pi\)
−0.118849 + 0.992912i \(0.537921\pi\)
\(488\) −10.0000 −0.452679
\(489\) −26.9621 −1.21927
\(490\) −1.00000 −0.0451754
\(491\) 8.38546 0.378430 0.189215 0.981936i \(-0.439406\pi\)
0.189215 + 0.981936i \(0.439406\pi\)
\(492\) −4.63669 −0.209038
\(493\) 1.22984 0.0553891
\(494\) 6.69519 0.301231
\(495\) 7.82299 0.351617
\(496\) −5.21412 −0.234121
\(497\) −12.8879 −0.578102
\(498\) 36.2355 1.62375
\(499\) 29.1399 1.30448 0.652241 0.758012i \(-0.273829\pi\)
0.652241 + 0.758012i \(0.273829\pi\)
\(500\) 1.00000 0.0447214
\(501\) −13.5403 −0.604937
\(502\) 12.7544 0.569259
\(503\) −42.4282 −1.89178 −0.945891 0.324485i \(-0.894809\pi\)
−0.945891 + 0.324485i \(0.894809\pi\)
\(504\) −4.67380 −0.208187
\(505\) −9.21412 −0.410023
\(506\) 11.3319 0.503763
\(507\) 8.31049 0.369082
\(508\) −10.4282 −0.462678
\(509\) −13.8508 −0.613926 −0.306963 0.951721i \(-0.599313\pi\)
−0.306963 + 0.951721i \(0.599313\pi\)
\(510\) −2.77016 −0.122665
\(511\) −9.08065 −0.401704
\(512\) −1.00000 −0.0441942
\(513\) −7.76088 −0.342651
\(514\) 7.46535 0.329282
\(515\) −1.22984 −0.0541931
\(516\) −23.0214 −1.01346
\(517\) 13.9101 0.611764
\(518\) −5.54032 −0.243428
\(519\) 11.4504 0.502616
\(520\) −4.00000 −0.175412
\(521\) −2.96289 −0.129807 −0.0649033 0.997892i \(-0.520674\pi\)
−0.0649033 + 0.997892i \(0.520674\pi\)
\(522\) −5.74801 −0.251584
\(523\) 15.1549 0.662676 0.331338 0.943512i \(-0.392500\pi\)
0.331338 + 0.943512i \(0.392500\pi\)
\(524\) 15.7331 0.687302
\(525\) 2.77016 0.120900
\(526\) 24.0000 1.04645
\(527\) −5.21412 −0.227131
\(528\) 4.63669 0.201786
\(529\) 22.8351 0.992830
\(530\) 4.77016 0.207203
\(531\) −22.2948 −0.967511
\(532\) −1.67380 −0.0725683
\(533\) −6.69519 −0.290001
\(534\) −22.6952 −0.982117
\(535\) −6.88792 −0.297791
\(536\) −10.7544 −0.464521
\(537\) −9.27338 −0.400176
\(538\) −2.00000 −0.0862261
\(539\) 1.67380 0.0720955
\(540\) 4.63669 0.199531
\(541\) 40.9472 1.76046 0.880228 0.474551i \(-0.157389\pi\)
0.880228 + 0.474551i \(0.157389\pi\)
\(542\) −22.4282 −0.963375
\(543\) 62.6638 2.68916
\(544\) −1.00000 −0.0428746
\(545\) −5.21412 −0.223348
\(546\) −11.0806 −0.474208
\(547\) −42.2355 −1.80586 −0.902930 0.429788i \(-0.858588\pi\)
−0.902930 + 0.429788i \(0.858588\pi\)
\(548\) 8.42824 0.360037
\(549\) 46.7380 1.99473
\(550\) −1.67380 −0.0713709
\(551\) −2.05850 −0.0876950
\(552\) 18.7544 0.798242
\(553\) 12.8879 0.548050
\(554\) −9.80727 −0.416671
\(555\) 15.3476 0.651469
\(556\) −0.652406 −0.0276682
\(557\) 30.6802 1.29996 0.649981 0.759950i \(-0.274777\pi\)
0.649981 + 0.759950i \(0.274777\pi\)
\(558\) 24.3697 1.03165
\(559\) −33.2419 −1.40598
\(560\) 1.00000 0.0422577
\(561\) 4.63669 0.195761
\(562\) 32.7387 1.38100
\(563\) −26.3855 −1.11201 −0.556007 0.831177i \(-0.687667\pi\)
−0.556007 + 0.831177i \(0.687667\pi\)
\(564\) 23.0214 0.969375
\(565\) 11.2141 0.471782
\(566\) 25.7758 1.08344
\(567\) −1.17701 −0.0494299
\(568\) 12.8879 0.540765
\(569\) −18.9786 −0.795625 −0.397812 0.917467i \(-0.630230\pi\)
−0.397812 + 0.917467i \(0.630230\pi\)
\(570\) 4.63669 0.194210
\(571\) −31.8351 −1.33226 −0.666129 0.745837i \(-0.732050\pi\)
−0.666129 + 0.745837i \(0.732050\pi\)
\(572\) 6.69519 0.279940
\(573\) −5.91007 −0.246897
\(574\) 1.67380 0.0698629
\(575\) −6.77016 −0.282335
\(576\) 4.67380 0.194742
\(577\) 22.9472 0.955303 0.477652 0.878549i \(-0.341488\pi\)
0.477652 + 0.878549i \(0.341488\pi\)
\(578\) −1.00000 −0.0415945
\(579\) −62.4561 −2.59559
\(580\) 1.22984 0.0510662
\(581\) −13.0806 −0.542677
\(582\) −16.6210 −0.688961
\(583\) −7.98428 −0.330675
\(584\) 9.08065 0.375760
\(585\) 18.6952 0.772951
\(586\) 11.3476 0.468765
\(587\) 39.1234 1.61480 0.807398 0.590007i \(-0.200875\pi\)
0.807398 + 0.590007i \(0.200875\pi\)
\(588\) 2.77016 0.114240
\(589\) 8.72738 0.359605
\(590\) 4.77016 0.196384
\(591\) −34.9621 −1.43815
\(592\) 5.54032 0.227706
\(593\) 10.3105 0.423401 0.211700 0.977335i \(-0.432100\pi\)
0.211700 + 0.977335i \(0.432100\pi\)
\(594\) −7.76088 −0.318433
\(595\) 1.00000 0.0409960
\(596\) −2.65241 −0.108647
\(597\) 40.8287 1.67101
\(598\) 27.0806 1.10741
\(599\) 16.0435 0.655521 0.327761 0.944761i \(-0.393706\pi\)
0.327761 + 0.944761i \(0.393706\pi\)
\(600\) −2.77016 −0.113091
\(601\) −30.0593 −1.22614 −0.613071 0.790028i \(-0.710066\pi\)
−0.613071 + 0.790028i \(0.710066\pi\)
\(602\) 8.31049 0.338710
\(603\) 50.2641 2.04691
\(604\) 20.5617 0.836644
\(605\) −8.19840 −0.333313
\(606\) 25.5246 1.03687
\(607\) 36.3540 1.47556 0.737782 0.675039i \(-0.235873\pi\)
0.737782 + 0.675039i \(0.235873\pi\)
\(608\) 1.67380 0.0678814
\(609\) 3.40685 0.138053
\(610\) −10.0000 −0.404888
\(611\) 33.2419 1.34483
\(612\) 4.67380 0.188927
\(613\) 19.7758 0.798738 0.399369 0.916790i \(-0.369229\pi\)
0.399369 + 0.916790i \(0.369229\pi\)
\(614\) 29.3162 1.18310
\(615\) −4.63669 −0.186969
\(616\) −1.67380 −0.0674392
\(617\) 39.1670 1.57680 0.788401 0.615161i \(-0.210909\pi\)
0.788401 + 0.615161i \(0.210909\pi\)
\(618\) 3.40685 0.137044
\(619\) −46.3968 −1.86485 −0.932423 0.361370i \(-0.882309\pi\)
−0.932423 + 0.361370i \(0.882309\pi\)
\(620\) −5.21412 −0.209404
\(621\) −31.3911 −1.25968
\(622\) −0.577432 −0.0231529
\(623\) 8.19273 0.328235
\(624\) 11.0806 0.443581
\(625\) 1.00000 0.0400000
\(626\) 4.45968 0.178245
\(627\) −7.76088 −0.309940
\(628\) −8.00000 −0.319235
\(629\) 5.54032 0.220907
\(630\) −4.67380 −0.186209
\(631\) 37.2141 1.48147 0.740735 0.671797i \(-0.234477\pi\)
0.740735 + 0.671797i \(0.234477\pi\)
\(632\) −12.8879 −0.512654
\(633\) 3.08065 0.122445
\(634\) 12.6524 0.502491
\(635\) −10.4282 −0.413832
\(636\) −13.2141 −0.523974
\(637\) 4.00000 0.158486
\(638\) −2.05850 −0.0814968
\(639\) −60.2355 −2.38288
\(640\) −1.00000 −0.0395285
\(641\) −30.2041 −1.19299 −0.596495 0.802617i \(-0.703440\pi\)
−0.596495 + 0.802617i \(0.703440\pi\)
\(642\) 19.0806 0.753053
\(643\) −5.77584 −0.227777 −0.113888 0.993494i \(-0.536331\pi\)
−0.113888 + 0.993494i \(0.536331\pi\)
\(644\) −6.77016 −0.266782
\(645\) −23.0214 −0.906466
\(646\) 1.67380 0.0658547
\(647\) 8.91935 0.350656 0.175328 0.984510i \(-0.443901\pi\)
0.175328 + 0.984510i \(0.443901\pi\)
\(648\) 1.17701 0.0462374
\(649\) −7.98428 −0.313411
\(650\) −4.00000 −0.156893
\(651\) −14.4440 −0.566103
\(652\) −9.73305 −0.381176
\(653\) 31.7016 1.24058 0.620290 0.784372i \(-0.287015\pi\)
0.620290 + 0.784372i \(0.287015\pi\)
\(654\) 14.4440 0.564803
\(655\) 15.7331 0.614741
\(656\) −1.67380 −0.0653508
\(657\) −42.4411 −1.65579
\(658\) −8.31049 −0.323976
\(659\) −22.8137 −0.888696 −0.444348 0.895854i \(-0.646565\pi\)
−0.444348 + 0.895854i \(0.646565\pi\)
\(660\) 4.63669 0.180483
\(661\) 9.21412 0.358388 0.179194 0.983814i \(-0.442651\pi\)
0.179194 + 0.983814i \(0.442651\pi\)
\(662\) −18.6952 −0.726609
\(663\) 11.0806 0.430337
\(664\) 13.0806 0.507628
\(665\) −1.67380 −0.0649071
\(666\) −25.8943 −1.00339
\(667\) −8.32620 −0.322392
\(668\) −4.88792 −0.189119
\(669\) 71.4032 2.76061
\(670\) −10.7544 −0.415480
\(671\) 16.7380 0.646162
\(672\) −2.77016 −0.106861
\(673\) 39.1513 1.50917 0.754585 0.656202i \(-0.227838\pi\)
0.754585 + 0.656202i \(0.227838\pi\)
\(674\) −11.4653 −0.441629
\(675\) 4.63669 0.178466
\(676\) 3.00000 0.115385
\(677\) 25.1556 0.966809 0.483405 0.875397i \(-0.339400\pi\)
0.483405 + 0.875397i \(0.339400\pi\)
\(678\) −31.0649 −1.19304
\(679\) 6.00000 0.230259
\(680\) −1.00000 −0.0383482
\(681\) −22.3254 −0.855513
\(682\) 8.72738 0.334189
\(683\) 27.7758 1.06281 0.531406 0.847117i \(-0.321664\pi\)
0.531406 + 0.847117i \(0.321664\pi\)
\(684\) −7.82299 −0.299119
\(685\) 8.42824 0.322027
\(686\) −1.00000 −0.0381802
\(687\) 41.5681 1.58592
\(688\) −8.31049 −0.316834
\(689\) −19.0806 −0.726915
\(690\) 18.7544 0.713970
\(691\) −42.3968 −1.61285 −0.806425 0.591336i \(-0.798601\pi\)
−0.806425 + 0.591336i \(0.798601\pi\)
\(692\) 4.13347 0.157131
\(693\) 7.82299 0.297171
\(694\) 23.9258 0.908210
\(695\) −0.652406 −0.0247472
\(696\) −3.40685 −0.129136
\(697\) −1.67380 −0.0633996
\(698\) 7.96857 0.301615
\(699\) −27.7016 −1.04777
\(700\) 1.00000 0.0377964
\(701\) −8.19273 −0.309435 −0.154718 0.987959i \(-0.549447\pi\)
−0.154718 + 0.987959i \(0.549447\pi\)
\(702\) −18.5468 −0.700002
\(703\) −9.27338 −0.349752
\(704\) 1.67380 0.0630836
\(705\) 23.0214 0.867036
\(706\) 2.29477 0.0863648
\(707\) −9.21412 −0.346533
\(708\) −13.2141 −0.496617
\(709\) 4.31049 0.161884 0.0809418 0.996719i \(-0.474207\pi\)
0.0809418 + 0.996719i \(0.474207\pi\)
\(710\) 12.8879 0.483675
\(711\) 60.2355 2.25901
\(712\) −8.19273 −0.307036
\(713\) 35.3004 1.32201
\(714\) −2.77016 −0.103671
\(715\) 6.69519 0.250386
\(716\) −3.34759 −0.125105
\(717\) −7.71734 −0.288209
\(718\) −1.19840 −0.0447240
\(719\) −38.3376 −1.42975 −0.714875 0.699253i \(-0.753516\pi\)
−0.714875 + 0.699253i \(0.753516\pi\)
\(720\) 4.67380 0.174182
\(721\) −1.22984 −0.0458016
\(722\) 16.1984 0.602842
\(723\) −18.2206 −0.677630
\(724\) 22.6210 0.840702
\(725\) 1.22984 0.0456750
\(726\) 22.7109 0.842881
\(727\) 26.0863 0.967488 0.483744 0.875210i \(-0.339277\pi\)
0.483744 + 0.875210i \(0.339277\pi\)
\(728\) −4.00000 −0.148250
\(729\) −44.0343 −1.63090
\(730\) 9.08065 0.336090
\(731\) −8.31049 −0.307374
\(732\) 27.7016 1.02388
\(733\) −14.0428 −0.518682 −0.259341 0.965786i \(-0.583505\pi\)
−0.259341 + 0.965786i \(0.583505\pi\)
\(734\) 31.4661 1.16144
\(735\) 2.77016 0.102179
\(736\) 6.77016 0.249551
\(737\) 18.0008 0.663066
\(738\) 7.82299 0.287968
\(739\) 28.3540 1.04302 0.521510 0.853245i \(-0.325369\pi\)
0.521510 + 0.853245i \(0.325369\pi\)
\(740\) 5.54032 0.203666
\(741\) −18.5468 −0.681332
\(742\) 4.77016 0.175118
\(743\) −43.9371 −1.61190 −0.805949 0.591986i \(-0.798344\pi\)
−0.805949 + 0.591986i \(0.798344\pi\)
\(744\) 14.4440 0.529541
\(745\) −2.65241 −0.0971766
\(746\) −10.0750 −0.368871
\(747\) −61.1363 −2.23686
\(748\) 1.67380 0.0612001
\(749\) −6.88792 −0.251679
\(750\) −2.77016 −0.101152
\(751\) 29.2419 1.06705 0.533527 0.845783i \(-0.320866\pi\)
0.533527 + 0.845783i \(0.320866\pi\)
\(752\) 8.31049 0.303052
\(753\) −35.3319 −1.28757
\(754\) −4.91935 −0.179152
\(755\) 20.5617 0.748317
\(756\) 4.63669 0.168635
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) −34.5460 −1.25477
\(759\) −31.3911 −1.13943
\(760\) 1.67380 0.0607150
\(761\) 49.0178 1.77689 0.888447 0.458980i \(-0.151785\pi\)
0.888447 + 0.458980i \(0.151785\pi\)
\(762\) 28.8879 1.04650
\(763\) −5.21412 −0.188764
\(764\) −2.13347 −0.0771864
\(765\) 4.67380 0.168981
\(766\) 8.32620 0.300838
\(767\) −19.0806 −0.688962
\(768\) 2.77016 0.0999596
\(769\) −4.49111 −0.161954 −0.0809768 0.996716i \(-0.525804\pi\)
−0.0809768 + 0.996716i \(0.525804\pi\)
\(770\) −1.67380 −0.0603195
\(771\) −20.6802 −0.744780
\(772\) −22.5460 −0.811448
\(773\) −18.6952 −0.672419 −0.336210 0.941787i \(-0.609145\pi\)
−0.336210 + 0.941787i \(0.609145\pi\)
\(774\) 38.8415 1.39613
\(775\) −5.21412 −0.187297
\(776\) −6.00000 −0.215387
\(777\) 15.3476 0.550592
\(778\) −7.54032 −0.270334
\(779\) 2.80160 0.100378
\(780\) 11.0806 0.396751
\(781\) −21.5718 −0.771898
\(782\) 6.77016 0.242100
\(783\) 5.70238 0.203786
\(784\) 1.00000 0.0357143
\(785\) −8.00000 −0.285532
\(786\) −43.5831 −1.55456
\(787\) −36.9157 −1.31590 −0.657952 0.753060i \(-0.728577\pi\)
−0.657952 + 0.753060i \(0.728577\pi\)
\(788\) −12.6210 −0.449603
\(789\) −66.4839 −2.36689
\(790\) −12.8879 −0.458532
\(791\) 11.2141 0.398728
\(792\) −7.82299 −0.277978
\(793\) 40.0000 1.42044
\(794\) 11.8508 0.420569
\(795\) −13.2141 −0.468657
\(796\) 14.7387 0.522400
\(797\) 37.2419 1.31918 0.659589 0.751627i \(-0.270731\pi\)
0.659589 + 0.751627i \(0.270731\pi\)
\(798\) 4.63669 0.164137
\(799\) 8.31049 0.294004
\(800\) −1.00000 −0.0353553
\(801\) 38.2912 1.35295
\(802\) −13.3476 −0.471320
\(803\) −15.1992 −0.536367
\(804\) 29.7916 1.05067
\(805\) −6.77016 −0.238617
\(806\) 20.8565 0.734638
\(807\) 5.54032 0.195029
\(808\) 9.21412 0.324152
\(809\) 28.6638 1.00776 0.503882 0.863773i \(-0.331905\pi\)
0.503882 + 0.863773i \(0.331905\pi\)
\(810\) 1.17701 0.0413560
\(811\) −39.9686 −1.40349 −0.701743 0.712430i \(-0.747595\pi\)
−0.701743 + 0.712430i \(0.747595\pi\)
\(812\) 1.22984 0.0431589
\(813\) 62.1299 2.17899
\(814\) −9.27338 −0.325032
\(815\) −9.73305 −0.340934
\(816\) 2.77016 0.0969751
\(817\) 13.9101 0.486652
\(818\) −16.4282 −0.574400
\(819\) 18.6952 0.653263
\(820\) −1.67380 −0.0584515
\(821\) −3.58311 −0.125051 −0.0625256 0.998043i \(-0.519916\pi\)
−0.0625256 + 0.998043i \(0.519916\pi\)
\(822\) −23.3476 −0.814341
\(823\) 52.9157 1.84453 0.922263 0.386562i \(-0.126338\pi\)
0.922263 + 0.386562i \(0.126338\pi\)
\(824\) 1.22984 0.0428434
\(825\) 4.63669 0.161429
\(826\) 4.77016 0.165975
\(827\) 49.2847 1.71380 0.856899 0.515484i \(-0.172388\pi\)
0.856899 + 0.515484i \(0.172388\pi\)
\(828\) −31.6424 −1.09965
\(829\) 6.51893 0.226412 0.113206 0.993572i \(-0.463888\pi\)
0.113206 + 0.993572i \(0.463888\pi\)
\(830\) 13.0806 0.454036
\(831\) 27.1677 0.942438
\(832\) 4.00000 0.138675
\(833\) 1.00000 0.0346479
\(834\) 1.80727 0.0625806
\(835\) −4.88792 −0.169153
\(836\) −2.80160 −0.0968952
\(837\) −24.1763 −0.835654
\(838\) −3.11208 −0.107505
\(839\) −9.81938 −0.339002 −0.169501 0.985530i \(-0.554216\pi\)
−0.169501 + 0.985530i \(0.554216\pi\)
\(840\) −2.77016 −0.0955797
\(841\) −27.4875 −0.947845
\(842\) 18.2355 0.628437
\(843\) −90.6916 −3.12358
\(844\) 1.11208 0.0382794
\(845\) 3.00000 0.103203
\(846\) −38.8415 −1.33540
\(847\) −8.19840 −0.281700
\(848\) −4.77016 −0.163808
\(849\) −71.4032 −2.45055
\(850\) −1.00000 −0.0342997
\(851\) −37.5089 −1.28579
\(852\) −35.7016 −1.22312
\(853\) −4.92011 −0.168461 −0.0842307 0.996446i \(-0.526843\pi\)
−0.0842307 + 0.996446i \(0.526843\pi\)
\(854\) −10.0000 −0.342193
\(855\) −7.82299 −0.267541
\(856\) 6.88792 0.235424
\(857\) 7.95722 0.271813 0.135907 0.990722i \(-0.456605\pi\)
0.135907 + 0.990722i \(0.456605\pi\)
\(858\) −18.5468 −0.633176
\(859\) −20.5782 −0.702119 −0.351059 0.936353i \(-0.614178\pi\)
−0.351059 + 0.936353i \(0.614178\pi\)
\(860\) −8.31049 −0.283385
\(861\) −4.63669 −0.158018
\(862\) −20.0000 −0.681203
\(863\) −25.1549 −0.856282 −0.428141 0.903712i \(-0.640831\pi\)
−0.428141 + 0.903712i \(0.640831\pi\)
\(864\) −4.63669 −0.157743
\(865\) 4.13347 0.140542
\(866\) −21.0806 −0.716350
\(867\) 2.77016 0.0940796
\(868\) −5.21412 −0.176979
\(869\) 21.5718 0.731772
\(870\) −3.40685 −0.115503
\(871\) 43.0178 1.45760
\(872\) 5.21412 0.176572
\(873\) 28.0428 0.949104
\(874\) −11.3319 −0.383306
\(875\) 1.00000 0.0338062
\(876\) −25.1549 −0.849904
\(877\) 13.1234 0.443147 0.221573 0.975144i \(-0.428881\pi\)
0.221573 + 0.975144i \(0.428881\pi\)
\(878\) 39.3597 1.32833
\(879\) −31.4347 −1.06027
\(880\) 1.67380 0.0564237
\(881\) −9.27262 −0.312403 −0.156201 0.987725i \(-0.549925\pi\)
−0.156201 + 0.987725i \(0.549925\pi\)
\(882\) −4.67380 −0.157375
\(883\) 3.14352 0.105788 0.0528939 0.998600i \(-0.483155\pi\)
0.0528939 + 0.998600i \(0.483155\pi\)
\(884\) 4.00000 0.134535
\(885\) −13.2141 −0.444188
\(886\) 13.6153 0.457415
\(887\) 22.1927 0.745159 0.372579 0.928000i \(-0.378473\pi\)
0.372579 + 0.928000i \(0.378473\pi\)
\(888\) −15.3476 −0.515032
\(889\) −10.4282 −0.349752
\(890\) −8.19273 −0.274621
\(891\) −1.97008 −0.0660002
\(892\) 25.7758 0.863039
\(893\) −13.9101 −0.465483
\(894\) 7.34759 0.245740
\(895\) −3.34759 −0.111898
\(896\) −1.00000 −0.0334077
\(897\) −75.0178 −2.50477
\(898\) −33.0806 −1.10392
\(899\) −6.41252 −0.213870
\(900\) 4.67380 0.155793
\(901\) −4.77016 −0.158917
\(902\) 2.80160 0.0932830
\(903\) −23.0214 −0.766104
\(904\) −11.2141 −0.372976
\(905\) 22.6210 0.751947
\(906\) −56.9593 −1.89235
\(907\) −2.26695 −0.0752727 −0.0376364 0.999292i \(-0.511983\pi\)
−0.0376364 + 0.999292i \(0.511983\pi\)
\(908\) −8.05926 −0.267456
\(909\) −43.0649 −1.42837
\(910\) −4.00000 −0.132599
\(911\) 46.1299 1.52835 0.764175 0.645009i \(-0.223146\pi\)
0.764175 + 0.645009i \(0.223146\pi\)
\(912\) −4.63669 −0.153536
\(913\) −21.8943 −0.724597
\(914\) −24.4282 −0.808014
\(915\) 27.7016 0.915787
\(916\) 15.0057 0.495801
\(917\) 15.7331 0.519551
\(918\) −4.63669 −0.153034
\(919\) −37.4339 −1.23483 −0.617415 0.786637i \(-0.711820\pi\)
−0.617415 + 0.786637i \(0.711820\pi\)
\(920\) 6.77016 0.223206
\(921\) −81.2105 −2.67598
\(922\) −17.5996 −0.579611
\(923\) −51.5517 −1.69684
\(924\) 4.63669 0.152536
\(925\) 5.54032 0.182165
\(926\) −14.0428 −0.461474
\(927\) −5.74801 −0.188790
\(928\) −1.22984 −0.0403714
\(929\) 23.3904 0.767413 0.383707 0.923455i \(-0.374647\pi\)
0.383707 + 0.923455i \(0.374647\pi\)
\(930\) 14.4440 0.473636
\(931\) −1.67380 −0.0548565
\(932\) −10.0000 −0.327561
\(933\) 1.59958 0.0523679
\(934\) 15.8073 0.517230
\(935\) 1.67380 0.0547390
\(936\) −18.6952 −0.611071
\(937\) 1.15562 0.0377525 0.0188763 0.999822i \(-0.493991\pi\)
0.0188763 + 0.999822i \(0.493991\pi\)
\(938\) −10.7544 −0.351145
\(939\) −12.3540 −0.403158
\(940\) 8.31049 0.271058
\(941\) 32.6952 1.06583 0.532916 0.846168i \(-0.321096\pi\)
0.532916 + 0.846168i \(0.321096\pi\)
\(942\) 22.1613 0.722054
\(943\) 11.3319 0.369017
\(944\) −4.77016 −0.155256
\(945\) 4.63669 0.150831
\(946\) 13.9101 0.452255
\(947\) 5.11208 0.166120 0.0830602 0.996545i \(-0.473531\pi\)
0.0830602 + 0.996545i \(0.473531\pi\)
\(948\) 35.7016 1.15953
\(949\) −36.3226 −1.17908
\(950\) 1.67380 0.0543051
\(951\) −35.0492 −1.13655
\(952\) −1.00000 −0.0324102
\(953\) 6.88792 0.223122 0.111561 0.993758i \(-0.464415\pi\)
0.111561 + 0.993758i \(0.464415\pi\)
\(954\) 22.2948 0.721820
\(955\) −2.13347 −0.0690376
\(956\) −2.78588 −0.0901018
\(957\) 5.70238 0.184332
\(958\) −30.1613 −0.974467
\(959\) 8.42824 0.272162
\(960\) 2.77016 0.0894066
\(961\) −3.81294 −0.122998
\(962\) −22.1613 −0.714509
\(963\) −32.1927 −1.03740
\(964\) −6.57743 −0.211845
\(965\) −22.5460 −0.725781
\(966\) 18.7544 0.603414
\(967\) 59.7016 1.91987 0.959937 0.280215i \(-0.0904057\pi\)
0.959937 + 0.280215i \(0.0904057\pi\)
\(968\) 8.19840 0.263507
\(969\) −4.63669 −0.148952
\(970\) −6.00000 −0.192648
\(971\) −6.97861 −0.223954 −0.111977 0.993711i \(-0.535718\pi\)
−0.111977 + 0.993711i \(0.535718\pi\)
\(972\) −17.1706 −0.550747
\(973\) −0.652406 −0.0209152
\(974\) 5.24556 0.168078
\(975\) 11.0806 0.354865
\(976\) 10.0000 0.320092
\(977\) −52.8137 −1.68966 −0.844830 0.535035i \(-0.820298\pi\)
−0.844830 + 0.535035i \(0.820298\pi\)
\(978\) 26.9621 0.862154
\(979\) 13.7130 0.438268
\(980\) 1.00000 0.0319438
\(981\) −24.3697 −0.778066
\(982\) −8.38546 −0.267591
\(983\) 3.76449 0.120069 0.0600343 0.998196i \(-0.480879\pi\)
0.0600343 + 0.998196i \(0.480879\pi\)
\(984\) 4.63669 0.147812
\(985\) −12.6210 −0.402138
\(986\) −1.22984 −0.0391660
\(987\) 23.0214 0.732779
\(988\) −6.69519 −0.213002
\(989\) 56.2633 1.78907
\(990\) −7.82299 −0.248631
\(991\) 1.30481 0.0414487 0.0207244 0.999785i \(-0.493403\pi\)
0.0207244 + 0.999785i \(0.493403\pi\)
\(992\) 5.21412 0.165549
\(993\) 51.7887 1.64346
\(994\) 12.8879 0.408780
\(995\) 14.7387 0.467249
\(996\) −36.2355 −1.14817
\(997\) −58.8565 −1.86400 −0.932002 0.362454i \(-0.881939\pi\)
−0.932002 + 0.362454i \(0.881939\pi\)
\(998\) −29.1399 −0.922408
\(999\) 25.6888 0.812756
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1190.2.a.k.1.3 3
4.3 odd 2 9520.2.a.y.1.1 3
5.4 even 2 5950.2.a.bl.1.1 3
7.6 odd 2 8330.2.a.bv.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1190.2.a.k.1.3 3 1.1 even 1 trivial
5950.2.a.bl.1.1 3 5.4 even 2
8330.2.a.bv.1.1 3 7.6 odd 2
9520.2.a.y.1.1 3 4.3 odd 2