Properties

Label 1190.2.a.j.1.3
Level $1190$
Weight $2$
Character 1190.1
Self dual yes
Analytic conductor $9.502$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1190,2,Mod(1,1190)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1190.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1190 = 2 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1190.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-1,3,3,1,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.50219784053\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2597.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 9x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.95759\) of defining polynomial
Character \(\chi\) \(=\) 1190.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.95759 q^{3} +1.00000 q^{4} +1.00000 q^{5} -2.95759 q^{6} -1.00000 q^{7} -1.00000 q^{8} +5.74732 q^{9} -1.00000 q^{10} -2.74732 q^{11} +2.95759 q^{12} +1.00000 q^{14} +2.95759 q^{15} +1.00000 q^{16} -1.00000 q^{17} -5.74732 q^{18} +6.74732 q^{19} +1.00000 q^{20} -2.95759 q^{21} +2.74732 q^{22} +2.95759 q^{23} -2.95759 q^{24} +1.00000 q^{25} +8.12544 q^{27} -1.00000 q^{28} +2.95759 q^{29} -2.95759 q^{30} +5.16785 q^{31} -1.00000 q^{32} -8.12544 q^{33} +1.00000 q^{34} -1.00000 q^{35} +5.74732 q^{36} +9.91517 q^{37} -6.74732 q^{38} -1.00000 q^{40} +1.25268 q^{41} +2.95759 q^{42} -1.04241 q^{43} -2.74732 q^{44} +5.74732 q^{45} -2.95759 q^{46} +2.95759 q^{47} +2.95759 q^{48} +1.00000 q^{49} -1.00000 q^{50} -2.95759 q^{51} -0.957587 q^{53} -8.12544 q^{54} -2.74732 q^{55} +1.00000 q^{56} +19.9558 q^{57} -2.95759 q^{58} +4.95759 q^{59} +2.95759 q^{60} -9.83035 q^{61} -5.16785 q^{62} -5.74732 q^{63} +1.00000 q^{64} +8.12544 q^{66} -11.0830 q^{67} -1.00000 q^{68} +8.74732 q^{69} +1.00000 q^{70} -0.420532 q^{71} -5.74732 q^{72} +6.00000 q^{73} -9.91517 q^{74} +2.95759 q^{75} +6.74732 q^{76} +2.74732 q^{77} -11.4098 q^{79} +1.00000 q^{80} +6.78973 q^{81} -1.25268 q^{82} -17.8303 q^{83} -2.95759 q^{84} -1.00000 q^{85} +1.04241 q^{86} +8.74732 q^{87} +2.74732 q^{88} -13.4098 q^{89} -5.74732 q^{90} +2.95759 q^{92} +15.2844 q^{93} -2.95759 q^{94} +6.74732 q^{95} -2.95759 q^{96} -9.83035 q^{97} -1.00000 q^{98} -15.7897 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - q^{3} + 3 q^{4} + 3 q^{5} + q^{6} - 3 q^{7} - 3 q^{8} + 10 q^{9} - 3 q^{10} - q^{11} - q^{12} + 3 q^{14} - q^{15} + 3 q^{16} - 3 q^{17} - 10 q^{18} + 13 q^{19} + 3 q^{20} + q^{21}+ \cdots - 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.95759 1.70756 0.853782 0.520631i \(-0.174303\pi\)
0.853782 + 0.520631i \(0.174303\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −2.95759 −1.20743
\(7\) −1.00000 −0.377964
\(8\) −1.00000 −0.353553
\(9\) 5.74732 1.91577
\(10\) −1.00000 −0.316228
\(11\) −2.74732 −0.828348 −0.414174 0.910198i \(-0.635930\pi\)
−0.414174 + 0.910198i \(0.635930\pi\)
\(12\) 2.95759 0.853782
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 1.00000 0.267261
\(15\) 2.95759 0.763646
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −5.74732 −1.35466
\(19\) 6.74732 1.54794 0.773971 0.633221i \(-0.218268\pi\)
0.773971 + 0.633221i \(0.218268\pi\)
\(20\) 1.00000 0.223607
\(21\) −2.95759 −0.645398
\(22\) 2.74732 0.585731
\(23\) 2.95759 0.616700 0.308350 0.951273i \(-0.400223\pi\)
0.308350 + 0.951273i \(0.400223\pi\)
\(24\) −2.95759 −0.603715
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 8.12544 1.56374
\(28\) −1.00000 −0.188982
\(29\) 2.95759 0.549210 0.274605 0.961557i \(-0.411453\pi\)
0.274605 + 0.961557i \(0.411453\pi\)
\(30\) −2.95759 −0.539979
\(31\) 5.16785 0.928174 0.464087 0.885790i \(-0.346383\pi\)
0.464087 + 0.885790i \(0.346383\pi\)
\(32\) −1.00000 −0.176777
\(33\) −8.12544 −1.41446
\(34\) 1.00000 0.171499
\(35\) −1.00000 −0.169031
\(36\) 5.74732 0.957887
\(37\) 9.91517 1.63004 0.815022 0.579430i \(-0.196725\pi\)
0.815022 + 0.579430i \(0.196725\pi\)
\(38\) −6.74732 −1.09456
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 1.25268 0.195636 0.0978178 0.995204i \(-0.468814\pi\)
0.0978178 + 0.995204i \(0.468814\pi\)
\(42\) 2.95759 0.456366
\(43\) −1.04241 −0.158966 −0.0794832 0.996836i \(-0.525327\pi\)
−0.0794832 + 0.996836i \(0.525327\pi\)
\(44\) −2.74732 −0.414174
\(45\) 5.74732 0.856760
\(46\) −2.95759 −0.436072
\(47\) 2.95759 0.431408 0.215704 0.976459i \(-0.430795\pi\)
0.215704 + 0.976459i \(0.430795\pi\)
\(48\) 2.95759 0.426891
\(49\) 1.00000 0.142857
\(50\) −1.00000 −0.141421
\(51\) −2.95759 −0.414145
\(52\) 0 0
\(53\) −0.957587 −0.131535 −0.0657673 0.997835i \(-0.520950\pi\)
−0.0657673 + 0.997835i \(0.520950\pi\)
\(54\) −8.12544 −1.10573
\(55\) −2.74732 −0.370449
\(56\) 1.00000 0.133631
\(57\) 19.9558 2.64321
\(58\) −2.95759 −0.388350
\(59\) 4.95759 0.645423 0.322711 0.946497i \(-0.395406\pi\)
0.322711 + 0.946497i \(0.395406\pi\)
\(60\) 2.95759 0.381823
\(61\) −9.83035 −1.25865 −0.629324 0.777143i \(-0.716668\pi\)
−0.629324 + 0.777143i \(0.716668\pi\)
\(62\) −5.16785 −0.656318
\(63\) −5.74732 −0.724094
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 8.12544 1.00017
\(67\) −11.0830 −1.35401 −0.677004 0.735980i \(-0.736722\pi\)
−0.677004 + 0.735980i \(0.736722\pi\)
\(68\) −1.00000 −0.121268
\(69\) 8.74732 1.05305
\(70\) 1.00000 0.119523
\(71\) −0.420532 −0.0499080 −0.0249540 0.999689i \(-0.507944\pi\)
−0.0249540 + 0.999689i \(0.507944\pi\)
\(72\) −5.74732 −0.677328
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) −9.91517 −1.15262
\(75\) 2.95759 0.341513
\(76\) 6.74732 0.773971
\(77\) 2.74732 0.313086
\(78\) 0 0
\(79\) −11.4098 −1.28370 −0.641852 0.766828i \(-0.721834\pi\)
−0.641852 + 0.766828i \(0.721834\pi\)
\(80\) 1.00000 0.111803
\(81\) 6.78973 0.754415
\(82\) −1.25268 −0.138335
\(83\) −17.8303 −1.95713 −0.978567 0.205926i \(-0.933979\pi\)
−0.978567 + 0.205926i \(0.933979\pi\)
\(84\) −2.95759 −0.322699
\(85\) −1.00000 −0.108465
\(86\) 1.04241 0.112406
\(87\) 8.74732 0.937811
\(88\) 2.74732 0.292865
\(89\) −13.4098 −1.42144 −0.710719 0.703476i \(-0.751630\pi\)
−0.710719 + 0.703476i \(0.751630\pi\)
\(90\) −5.74732 −0.605821
\(91\) 0 0
\(92\) 2.95759 0.308350
\(93\) 15.2844 1.58492
\(94\) −2.95759 −0.305052
\(95\) 6.74732 0.692261
\(96\) −2.95759 −0.301857
\(97\) −9.83035 −0.998121 −0.499060 0.866567i \(-0.666321\pi\)
−0.499060 + 0.866567i \(0.666321\pi\)
\(98\) −1.00000 −0.101015
\(99\) −15.7897 −1.58693
\(100\) 1.00000 0.100000
\(101\) 6.83215 0.679824 0.339912 0.940457i \(-0.389603\pi\)
0.339912 + 0.940457i \(0.389603\pi\)
\(102\) 2.95759 0.292845
\(103\) −10.7879 −1.06297 −0.531483 0.847069i \(-0.678365\pi\)
−0.531483 + 0.847069i \(0.678365\pi\)
\(104\) 0 0
\(105\) −2.95759 −0.288631
\(106\) 0.957587 0.0930091
\(107\) −17.4098 −1.68307 −0.841535 0.540202i \(-0.818348\pi\)
−0.841535 + 0.540202i \(0.818348\pi\)
\(108\) 8.12544 0.781871
\(109\) 3.67321 0.351830 0.175915 0.984405i \(-0.443712\pi\)
0.175915 + 0.984405i \(0.443712\pi\)
\(110\) 2.74732 0.261947
\(111\) 29.3250 2.78340
\(112\) −1.00000 −0.0944911
\(113\) −12.6625 −1.19119 −0.595594 0.803286i \(-0.703083\pi\)
−0.595594 + 0.803286i \(0.703083\pi\)
\(114\) −19.9558 −1.86903
\(115\) 2.95759 0.275796
\(116\) 2.95759 0.274605
\(117\) 0 0
\(118\) −4.95759 −0.456383
\(119\) 1.00000 0.0916698
\(120\) −2.95759 −0.269990
\(121\) −3.45223 −0.313839
\(122\) 9.83035 0.889998
\(123\) 3.70491 0.334060
\(124\) 5.16785 0.464087
\(125\) 1.00000 0.0894427
\(126\) 5.74732 0.512012
\(127\) 10.3357 0.917146 0.458573 0.888657i \(-0.348361\pi\)
0.458573 + 0.888657i \(0.348361\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −3.08303 −0.271445
\(130\) 0 0
\(131\) −9.49464 −0.829551 −0.414775 0.909924i \(-0.636140\pi\)
−0.414775 + 0.909924i \(0.636140\pi\)
\(132\) −8.12544 −0.707229
\(133\) −6.74732 −0.585067
\(134\) 11.0830 0.957428
\(135\) 8.12544 0.699327
\(136\) 1.00000 0.0857493
\(137\) 16.3357 1.39565 0.697827 0.716267i \(-0.254151\pi\)
0.697827 + 0.716267i \(0.254151\pi\)
\(138\) −8.74732 −0.744621
\(139\) 5.49464 0.466049 0.233025 0.972471i \(-0.425138\pi\)
0.233025 + 0.972471i \(0.425138\pi\)
\(140\) −1.00000 −0.0845154
\(141\) 8.74732 0.736657
\(142\) 0.420532 0.0352903
\(143\) 0 0
\(144\) 5.74732 0.478943
\(145\) 2.95759 0.245614
\(146\) −6.00000 −0.496564
\(147\) 2.95759 0.243938
\(148\) 9.91517 0.815022
\(149\) −4.33571 −0.355195 −0.177597 0.984103i \(-0.556832\pi\)
−0.177597 + 0.984103i \(0.556832\pi\)
\(150\) −2.95759 −0.241486
\(151\) 5.16785 0.420554 0.210277 0.977642i \(-0.432563\pi\)
0.210277 + 0.977642i \(0.432563\pi\)
\(152\) −6.74732 −0.547280
\(153\) −5.74732 −0.464643
\(154\) −2.74732 −0.221385
\(155\) 5.16785 0.415092
\(156\) 0 0
\(157\) 12.0000 0.957704 0.478852 0.877896i \(-0.341053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) 11.4098 0.907716
\(159\) −2.83215 −0.224604
\(160\) −1.00000 −0.0790569
\(161\) −2.95759 −0.233091
\(162\) −6.78973 −0.533452
\(163\) 19.4946 1.52694 0.763469 0.645844i \(-0.223495\pi\)
0.763469 + 0.645844i \(0.223495\pi\)
\(164\) 1.25268 0.0978178
\(165\) −8.12544 −0.632565
\(166\) 17.8303 1.38390
\(167\) −12.4205 −0.961130 −0.480565 0.876959i \(-0.659568\pi\)
−0.480565 + 0.876959i \(0.659568\pi\)
\(168\) 2.95759 0.228183
\(169\) −13.0000 −1.00000
\(170\) 1.00000 0.0766965
\(171\) 38.7790 2.96551
\(172\) −1.04241 −0.0794832
\(173\) −22.9982 −1.74852 −0.874260 0.485457i \(-0.838653\pi\)
−0.874260 + 0.485457i \(0.838653\pi\)
\(174\) −8.74732 −0.663133
\(175\) −1.00000 −0.0755929
\(176\) −2.74732 −0.207087
\(177\) 14.6625 1.10210
\(178\) 13.4098 1.00511
\(179\) −2.50536 −0.187259 −0.0936296 0.995607i \(-0.529847\pi\)
−0.0936296 + 0.995607i \(0.529847\pi\)
\(180\) 5.74732 0.428380
\(181\) 8.08483 0.600940 0.300470 0.953791i \(-0.402856\pi\)
0.300470 + 0.953791i \(0.402856\pi\)
\(182\) 0 0
\(183\) −29.0741 −2.14922
\(184\) −2.95759 −0.218036
\(185\) 9.91517 0.728978
\(186\) −15.2844 −1.12070
\(187\) 2.74732 0.200904
\(188\) 2.95759 0.215704
\(189\) −8.12544 −0.591039
\(190\) −6.74732 −0.489502
\(191\) 16.1571 1.16909 0.584545 0.811362i \(-0.301273\pi\)
0.584545 + 0.811362i \(0.301273\pi\)
\(192\) 2.95759 0.213445
\(193\) 19.9469 1.43581 0.717904 0.696143i \(-0.245102\pi\)
0.717904 + 0.696143i \(0.245102\pi\)
\(194\) 9.83035 0.705778
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −2.08483 −0.148538 −0.0742689 0.997238i \(-0.523662\pi\)
−0.0742689 + 0.997238i \(0.523662\pi\)
\(198\) 15.7897 1.12213
\(199\) −4.45223 −0.315610 −0.157805 0.987470i \(-0.550442\pi\)
−0.157805 + 0.987470i \(0.550442\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −32.7790 −2.31205
\(202\) −6.83215 −0.480708
\(203\) −2.95759 −0.207582
\(204\) −2.95759 −0.207073
\(205\) 1.25268 0.0874909
\(206\) 10.7879 0.751631
\(207\) 16.9982 1.18146
\(208\) 0 0
\(209\) −18.5371 −1.28223
\(210\) 2.95759 0.204093
\(211\) 17.4098 1.19854 0.599271 0.800547i \(-0.295457\pi\)
0.599271 + 0.800547i \(0.295457\pi\)
\(212\) −0.957587 −0.0657673
\(213\) −1.24376 −0.0852211
\(214\) 17.4098 1.19011
\(215\) −1.04241 −0.0710920
\(216\) −8.12544 −0.552866
\(217\) −5.16785 −0.350817
\(218\) −3.67321 −0.248781
\(219\) 17.7455 1.19913
\(220\) −2.74732 −0.185224
\(221\) 0 0
\(222\) −29.3250 −1.96816
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 1.00000 0.0668153
\(225\) 5.74732 0.383155
\(226\) 12.6625 0.842297
\(227\) −17.5884 −1.16738 −0.583691 0.811976i \(-0.698392\pi\)
−0.583691 + 0.811976i \(0.698392\pi\)
\(228\) 19.9558 1.32160
\(229\) 18.7879 1.24154 0.620771 0.783992i \(-0.286820\pi\)
0.620771 + 0.783992i \(0.286820\pi\)
\(230\) −2.95759 −0.195018
\(231\) 8.12544 0.534615
\(232\) −2.95759 −0.194175
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 2.95759 0.192932
\(236\) 4.95759 0.322711
\(237\) −33.7455 −2.19201
\(238\) −1.00000 −0.0648204
\(239\) 17.6518 1.14180 0.570899 0.821020i \(-0.306595\pi\)
0.570899 + 0.821020i \(0.306595\pi\)
\(240\) 2.95759 0.190911
\(241\) 7.46295 0.480731 0.240365 0.970683i \(-0.422733\pi\)
0.240365 + 0.970683i \(0.422733\pi\)
\(242\) 3.45223 0.221918
\(243\) −4.29509 −0.275530
\(244\) −9.83035 −0.629324
\(245\) 1.00000 0.0638877
\(246\) −3.70491 −0.236216
\(247\) 0 0
\(248\) −5.16785 −0.328159
\(249\) −52.7348 −3.34193
\(250\) −1.00000 −0.0632456
\(251\) 18.5777 1.17261 0.586306 0.810090i \(-0.300582\pi\)
0.586306 + 0.810090i \(0.300582\pi\)
\(252\) −5.74732 −0.362047
\(253\) −8.12544 −0.510842
\(254\) −10.3357 −0.648520
\(255\) −2.95759 −0.185211
\(256\) 1.00000 0.0625000
\(257\) −22.8728 −1.42676 −0.713382 0.700776i \(-0.752837\pi\)
−0.713382 + 0.700776i \(0.752837\pi\)
\(258\) 3.08303 0.191941
\(259\) −9.91517 −0.616099
\(260\) 0 0
\(261\) 16.9982 1.05216
\(262\) 9.49464 0.586581
\(263\) −19.8303 −1.22279 −0.611396 0.791325i \(-0.709392\pi\)
−0.611396 + 0.791325i \(0.709392\pi\)
\(264\) 8.12544 0.500086
\(265\) −0.957587 −0.0588241
\(266\) 6.74732 0.413705
\(267\) −39.6607 −2.42720
\(268\) −11.0830 −0.677004
\(269\) 17.6607 1.07679 0.538396 0.842692i \(-0.319031\pi\)
0.538396 + 0.842692i \(0.319031\pi\)
\(270\) −8.12544 −0.494499
\(271\) −18.1661 −1.10351 −0.551755 0.834007i \(-0.686041\pi\)
−0.551755 + 0.834007i \(0.686041\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) −16.3357 −0.986876
\(275\) −2.74732 −0.165670
\(276\) 8.74732 0.526527
\(277\) −12.2509 −0.736084 −0.368042 0.929809i \(-0.619972\pi\)
−0.368042 + 0.929809i \(0.619972\pi\)
\(278\) −5.49464 −0.329547
\(279\) 29.7013 1.77817
\(280\) 1.00000 0.0597614
\(281\) 3.29329 0.196461 0.0982307 0.995164i \(-0.468682\pi\)
0.0982307 + 0.995164i \(0.468682\pi\)
\(282\) −8.74732 −0.520895
\(283\) −19.6607 −1.16871 −0.584354 0.811499i \(-0.698652\pi\)
−0.584354 + 0.811499i \(0.698652\pi\)
\(284\) −0.420532 −0.0249540
\(285\) 19.9558 1.18208
\(286\) 0 0
\(287\) −1.25268 −0.0739433
\(288\) −5.74732 −0.338664
\(289\) 1.00000 0.0588235
\(290\) −2.95759 −0.173675
\(291\) −29.0741 −1.70435
\(292\) 6.00000 0.351123
\(293\) −20.4839 −1.19668 −0.598342 0.801241i \(-0.704174\pi\)
−0.598342 + 0.801241i \(0.704174\pi\)
\(294\) −2.95759 −0.172490
\(295\) 4.95759 0.288642
\(296\) −9.91517 −0.576308
\(297\) −22.3232 −1.29532
\(298\) 4.33571 0.251161
\(299\) 0 0
\(300\) 2.95759 0.170756
\(301\) 1.04241 0.0600837
\(302\) −5.16785 −0.297377
\(303\) 20.2067 1.16084
\(304\) 6.74732 0.386985
\(305\) −9.83035 −0.562884
\(306\) 5.74732 0.328552
\(307\) 0.0848260 0.00484128 0.00242064 0.999997i \(-0.499229\pi\)
0.00242064 + 0.999997i \(0.499229\pi\)
\(308\) 2.74732 0.156543
\(309\) −31.9063 −1.81508
\(310\) −5.16785 −0.293514
\(311\) 3.54777 0.201176 0.100588 0.994928i \(-0.467928\pi\)
0.100588 + 0.994928i \(0.467928\pi\)
\(312\) 0 0
\(313\) −14.9045 −0.842450 −0.421225 0.906956i \(-0.638400\pi\)
−0.421225 + 0.906956i \(0.638400\pi\)
\(314\) −12.0000 −0.677199
\(315\) −5.74732 −0.323825
\(316\) −11.4098 −0.641852
\(317\) 9.49464 0.533272 0.266636 0.963797i \(-0.414088\pi\)
0.266636 + 0.963797i \(0.414088\pi\)
\(318\) 2.83215 0.158819
\(319\) −8.12544 −0.454937
\(320\) 1.00000 0.0559017
\(321\) −51.4910 −2.87395
\(322\) 2.95759 0.164820
\(323\) −6.74732 −0.375431
\(324\) 6.78973 0.377207
\(325\) 0 0
\(326\) −19.4946 −1.07971
\(327\) 10.8638 0.600772
\(328\) −1.25268 −0.0691676
\(329\) −2.95759 −0.163057
\(330\) 8.12544 0.447291
\(331\) −22.9893 −1.26361 −0.631803 0.775129i \(-0.717685\pi\)
−0.631803 + 0.775129i \(0.717685\pi\)
\(332\) −17.8303 −0.978567
\(333\) 56.9857 3.12280
\(334\) 12.4205 0.679621
\(335\) −11.0830 −0.605530
\(336\) −2.95759 −0.161350
\(337\) 13.8620 0.755114 0.377557 0.925986i \(-0.376764\pi\)
0.377557 + 0.925986i \(0.376764\pi\)
\(338\) 13.0000 0.707107
\(339\) −37.4504 −2.03403
\(340\) −1.00000 −0.0542326
\(341\) −14.1978 −0.768851
\(342\) −38.7790 −2.09693
\(343\) −1.00000 −0.0539949
\(344\) 1.04241 0.0562031
\(345\) 8.74732 0.470940
\(346\) 22.9982 1.23639
\(347\) −23.7455 −1.27473 −0.637363 0.770564i \(-0.719975\pi\)
−0.637363 + 0.770564i \(0.719975\pi\)
\(348\) 8.74732 0.468906
\(349\) 35.2402 1.88636 0.943181 0.332278i \(-0.107817\pi\)
0.943181 + 0.332278i \(0.107817\pi\)
\(350\) 1.00000 0.0534522
\(351\) 0 0
\(352\) 2.74732 0.146433
\(353\) −10.3268 −0.549639 −0.274820 0.961496i \(-0.588618\pi\)
−0.274820 + 0.961496i \(0.588618\pi\)
\(354\) −14.6625 −0.779303
\(355\) −0.420532 −0.0223195
\(356\) −13.4098 −0.710719
\(357\) 2.95759 0.156532
\(358\) 2.50536 0.132412
\(359\) 0.621881 0.0328216 0.0164108 0.999865i \(-0.494776\pi\)
0.0164108 + 0.999865i \(0.494776\pi\)
\(360\) −5.74732 −0.302910
\(361\) 26.5263 1.39612
\(362\) −8.08483 −0.424929
\(363\) −10.2103 −0.535900
\(364\) 0 0
\(365\) 6.00000 0.314054
\(366\) 29.0741 1.51973
\(367\) 5.01072 0.261557 0.130779 0.991412i \(-0.458252\pi\)
0.130779 + 0.991412i \(0.458252\pi\)
\(368\) 2.95759 0.154175
\(369\) 7.19955 0.374794
\(370\) −9.91517 −0.515465
\(371\) 0.957587 0.0497154
\(372\) 15.2844 0.792458
\(373\) −23.7138 −1.22786 −0.613928 0.789362i \(-0.710411\pi\)
−0.613928 + 0.789362i \(0.710411\pi\)
\(374\) −2.74732 −0.142061
\(375\) 2.95759 0.152729
\(376\) −2.95759 −0.152526
\(377\) 0 0
\(378\) 8.12544 0.417928
\(379\) −1.96830 −0.101105 −0.0505525 0.998721i \(-0.516098\pi\)
−0.0505525 + 0.998721i \(0.516098\pi\)
\(380\) 6.74732 0.346130
\(381\) 30.5688 1.56608
\(382\) −16.1571 −0.826671
\(383\) 6.24196 0.318949 0.159475 0.987202i \(-0.449020\pi\)
0.159475 + 0.987202i \(0.449020\pi\)
\(384\) −2.95759 −0.150929
\(385\) 2.74732 0.140016
\(386\) −19.9469 −1.01527
\(387\) −5.99108 −0.304544
\(388\) −9.83035 −0.499060
\(389\) 16.7562 0.849575 0.424788 0.905293i \(-0.360349\pi\)
0.424788 + 0.905293i \(0.360349\pi\)
\(390\) 0 0
\(391\) −2.95759 −0.149572
\(392\) −1.00000 −0.0505076
\(393\) −28.0812 −1.41651
\(394\) 2.08483 0.105032
\(395\) −11.4098 −0.574090
\(396\) −15.7897 −0.793464
\(397\) 25.8620 1.29798 0.648989 0.760797i \(-0.275192\pi\)
0.648989 + 0.760797i \(0.275192\pi\)
\(398\) 4.45223 0.223170
\(399\) −19.9558 −0.999039
\(400\) 1.00000 0.0500000
\(401\) −19.4946 −0.973516 −0.486758 0.873537i \(-0.661821\pi\)
−0.486758 + 0.873537i \(0.661821\pi\)
\(402\) 32.7790 1.63487
\(403\) 0 0
\(404\) 6.83215 0.339912
\(405\) 6.78973 0.337385
\(406\) 2.95759 0.146783
\(407\) −27.2402 −1.35024
\(408\) 2.95759 0.146422
\(409\) 20.1661 0.997147 0.498574 0.866847i \(-0.333857\pi\)
0.498574 + 0.866847i \(0.333857\pi\)
\(410\) −1.25268 −0.0618654
\(411\) 48.3143 2.38317
\(412\) −10.7879 −0.531483
\(413\) −4.95759 −0.243947
\(414\) −16.9982 −0.835416
\(415\) −17.8303 −0.875257
\(416\) 0 0
\(417\) 16.2509 0.795809
\(418\) 18.5371 0.906677
\(419\) 18.5688 0.907143 0.453571 0.891220i \(-0.350150\pi\)
0.453571 + 0.891220i \(0.350150\pi\)
\(420\) −2.95759 −0.144315
\(421\) 7.91517 0.385762 0.192881 0.981222i \(-0.438217\pi\)
0.192881 + 0.981222i \(0.438217\pi\)
\(422\) −17.4098 −0.847497
\(423\) 16.9982 0.826481
\(424\) 0.957587 0.0465045
\(425\) −1.00000 −0.0485071
\(426\) 1.24376 0.0602604
\(427\) 9.83035 0.475724
\(428\) −17.4098 −0.841535
\(429\) 0 0
\(430\) 1.04241 0.0502696
\(431\) 15.6607 0.754349 0.377175 0.926142i \(-0.376896\pi\)
0.377175 + 0.926142i \(0.376896\pi\)
\(432\) 8.12544 0.390935
\(433\) 33.8303 1.62578 0.812891 0.582415i \(-0.197892\pi\)
0.812891 + 0.582415i \(0.197892\pi\)
\(434\) 5.16785 0.248065
\(435\) 8.74732 0.419402
\(436\) 3.67321 0.175915
\(437\) 19.9558 0.954615
\(438\) −17.7455 −0.847914
\(439\) 34.0281 1.62407 0.812036 0.583607i \(-0.198359\pi\)
0.812036 + 0.583607i \(0.198359\pi\)
\(440\) 2.74732 0.130973
\(441\) 5.74732 0.273682
\(442\) 0 0
\(443\) −0.0316961 −0.00150593 −0.000752964 1.00000i \(-0.500240\pi\)
−0.000752964 1.00000i \(0.500240\pi\)
\(444\) 29.3250 1.39170
\(445\) −13.4098 −0.635686
\(446\) 4.00000 0.189405
\(447\) −12.8232 −0.606518
\(448\) −1.00000 −0.0472456
\(449\) 39.8089 1.87870 0.939349 0.342962i \(-0.111430\pi\)
0.939349 + 0.342962i \(0.111430\pi\)
\(450\) −5.74732 −0.270931
\(451\) −3.44151 −0.162054
\(452\) −12.6625 −0.595594
\(453\) 15.2844 0.718123
\(454\) 17.5884 0.825464
\(455\) 0 0
\(456\) −19.9558 −0.934515
\(457\) 3.32499 0.155536 0.0777682 0.996971i \(-0.475221\pi\)
0.0777682 + 0.996971i \(0.475221\pi\)
\(458\) −18.7879 −0.877903
\(459\) −8.12544 −0.379263
\(460\) 2.95759 0.137898
\(461\) −3.67321 −0.171079 −0.0855393 0.996335i \(-0.527261\pi\)
−0.0855393 + 0.996335i \(0.527261\pi\)
\(462\) −8.12544 −0.378030
\(463\) −2.33571 −0.108549 −0.0542747 0.998526i \(-0.517285\pi\)
−0.0542747 + 0.998526i \(0.517285\pi\)
\(464\) 2.95759 0.137303
\(465\) 15.2844 0.708796
\(466\) 6.00000 0.277945
\(467\) −20.3991 −0.943958 −0.471979 0.881610i \(-0.656460\pi\)
−0.471979 + 0.881610i \(0.656460\pi\)
\(468\) 0 0
\(469\) 11.0830 0.511767
\(470\) −2.95759 −0.136423
\(471\) 35.4910 1.63534
\(472\) −4.95759 −0.228191
\(473\) 2.86384 0.131680
\(474\) 33.7455 1.54998
\(475\) 6.74732 0.309588
\(476\) 1.00000 0.0458349
\(477\) −5.50356 −0.251991
\(478\) −17.6518 −0.807374
\(479\) −16.0000 −0.731059 −0.365529 0.930800i \(-0.619112\pi\)
−0.365529 + 0.930800i \(0.619112\pi\)
\(480\) −2.95759 −0.134995
\(481\) 0 0
\(482\) −7.46295 −0.339928
\(483\) −8.74732 −0.398017
\(484\) −3.45223 −0.156919
\(485\) −9.83035 −0.446373
\(486\) 4.29509 0.194829
\(487\) 0.0937441 0.00424795 0.00212397 0.999998i \(-0.499324\pi\)
0.00212397 + 0.999998i \(0.499324\pi\)
\(488\) 9.83035 0.444999
\(489\) 57.6571 2.60734
\(490\) −1.00000 −0.0451754
\(491\) −27.6607 −1.24831 −0.624155 0.781301i \(-0.714557\pi\)
−0.624155 + 0.781301i \(0.714557\pi\)
\(492\) 3.70491 0.167030
\(493\) −2.95759 −0.133203
\(494\) 0 0
\(495\) −15.7897 −0.709696
\(496\) 5.16785 0.232043
\(497\) 0.420532 0.0188635
\(498\) 52.7348 2.36310
\(499\) −41.3973 −1.85320 −0.926599 0.376051i \(-0.877282\pi\)
−0.926599 + 0.376051i \(0.877282\pi\)
\(500\) 1.00000 0.0447214
\(501\) −36.7348 −1.64119
\(502\) −18.5777 −0.829162
\(503\) −29.3250 −1.30754 −0.653768 0.756695i \(-0.726813\pi\)
−0.653768 + 0.756695i \(0.726813\pi\)
\(504\) 5.74732 0.256006
\(505\) 6.83215 0.304027
\(506\) 8.12544 0.361220
\(507\) −38.4486 −1.70756
\(508\) 10.3357 0.458573
\(509\) 7.79865 0.345669 0.172835 0.984951i \(-0.444707\pi\)
0.172835 + 0.984951i \(0.444707\pi\)
\(510\) 2.95759 0.130964
\(511\) −6.00000 −0.265424
\(512\) −1.00000 −0.0441942
\(513\) 54.8250 2.42058
\(514\) 22.8728 1.00887
\(515\) −10.7879 −0.475373
\(516\) −3.08303 −0.135723
\(517\) −8.12544 −0.357356
\(518\) 9.91517 0.435648
\(519\) −68.0192 −2.98571
\(520\) 0 0
\(521\) −33.0388 −1.44746 −0.723728 0.690085i \(-0.757573\pi\)
−0.723728 + 0.690085i \(0.757573\pi\)
\(522\) −16.9982 −0.743991
\(523\) 4.08483 0.178617 0.0893085 0.996004i \(-0.471534\pi\)
0.0893085 + 0.996004i \(0.471534\pi\)
\(524\) −9.49464 −0.414775
\(525\) −2.95759 −0.129080
\(526\) 19.8303 0.864644
\(527\) −5.16785 −0.225115
\(528\) −8.12544 −0.353614
\(529\) −14.2527 −0.619682
\(530\) 0.957587 0.0415949
\(531\) 28.4928 1.23648
\(532\) −6.74732 −0.292533
\(533\) 0 0
\(534\) 39.6607 1.71629
\(535\) −17.4098 −0.752692
\(536\) 11.0830 0.478714
\(537\) −7.40982 −0.319757
\(538\) −17.6607 −0.761407
\(539\) −2.74732 −0.118335
\(540\) 8.12544 0.349663
\(541\) −22.0089 −0.946237 −0.473119 0.880999i \(-0.656872\pi\)
−0.473119 + 0.880999i \(0.656872\pi\)
\(542\) 18.1661 0.780299
\(543\) 23.9116 1.02614
\(544\) 1.00000 0.0428746
\(545\) 3.67321 0.157343
\(546\) 0 0
\(547\) −34.7348 −1.48515 −0.742577 0.669761i \(-0.766396\pi\)
−0.742577 + 0.669761i \(0.766396\pi\)
\(548\) 16.3357 0.697827
\(549\) −56.4982 −2.41128
\(550\) 2.74732 0.117146
\(551\) 19.9558 0.850145
\(552\) −8.74732 −0.372311
\(553\) 11.4098 0.485195
\(554\) 12.2509 0.520490
\(555\) 29.3250 1.24478
\(556\) 5.49464 0.233025
\(557\) 32.6625 1.38395 0.691977 0.721919i \(-0.256740\pi\)
0.691977 + 0.721919i \(0.256740\pi\)
\(558\) −29.7013 −1.25736
\(559\) 0 0
\(560\) −1.00000 −0.0422577
\(561\) 8.12544 0.343056
\(562\) −3.29329 −0.138919
\(563\) 13.6607 0.575730 0.287865 0.957671i \(-0.407055\pi\)
0.287865 + 0.957671i \(0.407055\pi\)
\(564\) 8.74732 0.368329
\(565\) −12.6625 −0.532715
\(566\) 19.6607 0.826401
\(567\) −6.78973 −0.285142
\(568\) 0.420532 0.0176451
\(569\) 32.2420 1.35165 0.675827 0.737061i \(-0.263787\pi\)
0.675827 + 0.737061i \(0.263787\pi\)
\(570\) −19.9558 −0.835856
\(571\) 34.4080 1.43993 0.719965 0.694010i \(-0.244158\pi\)
0.719965 + 0.694010i \(0.244158\pi\)
\(572\) 0 0
\(573\) 47.7861 1.99629
\(574\) 1.25268 0.0522858
\(575\) 2.95759 0.123340
\(576\) 5.74732 0.239472
\(577\) 17.5036 0.728683 0.364341 0.931265i \(-0.381294\pi\)
0.364341 + 0.931265i \(0.381294\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 58.9946 2.45173
\(580\) 2.95759 0.122807
\(581\) 17.8303 0.739727
\(582\) 29.0741 1.20516
\(583\) 2.63080 0.108957
\(584\) −6.00000 −0.248282
\(585\) 0 0
\(586\) 20.4839 0.846183
\(587\) 7.66429 0.316339 0.158170 0.987412i \(-0.449441\pi\)
0.158170 + 0.987412i \(0.449441\pi\)
\(588\) 2.95759 0.121969
\(589\) 34.8692 1.43676
\(590\) −4.95759 −0.204101
\(591\) −6.16605 −0.253638
\(592\) 9.91517 0.407511
\(593\) 31.9469 1.31190 0.655950 0.754804i \(-0.272268\pi\)
0.655950 + 0.754804i \(0.272268\pi\)
\(594\) 22.3232 0.915932
\(595\) 1.00000 0.0409960
\(596\) −4.33571 −0.177597
\(597\) −13.1679 −0.538924
\(598\) 0 0
\(599\) −28.1129 −1.14866 −0.574331 0.818623i \(-0.694738\pi\)
−0.574331 + 0.818623i \(0.694738\pi\)
\(600\) −2.95759 −0.120743
\(601\) −5.90626 −0.240921 −0.120461 0.992718i \(-0.538437\pi\)
−0.120461 + 0.992718i \(0.538437\pi\)
\(602\) −1.04241 −0.0424856
\(603\) −63.6977 −2.59397
\(604\) 5.16785 0.210277
\(605\) −3.45223 −0.140353
\(606\) −20.2067 −0.820840
\(607\) 19.2402 0.780934 0.390467 0.920617i \(-0.372314\pi\)
0.390467 + 0.920617i \(0.372314\pi\)
\(608\) −6.74732 −0.273640
\(609\) −8.74732 −0.354459
\(610\) 9.83035 0.398019
\(611\) 0 0
\(612\) −5.74732 −0.232322
\(613\) −44.4803 −1.79654 −0.898272 0.439440i \(-0.855177\pi\)
−0.898272 + 0.439440i \(0.855177\pi\)
\(614\) −0.0848260 −0.00342330
\(615\) 3.70491 0.149396
\(616\) −2.74732 −0.110693
\(617\) 41.6290 1.67592 0.837960 0.545731i \(-0.183748\pi\)
0.837960 + 0.545731i \(0.183748\pi\)
\(618\) 31.9063 1.28346
\(619\) −41.7455 −1.67789 −0.838947 0.544213i \(-0.816828\pi\)
−0.838947 + 0.544213i \(0.816828\pi\)
\(620\) 5.16785 0.207546
\(621\) 24.0317 0.964359
\(622\) −3.54777 −0.142253
\(623\) 13.4098 0.537253
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 14.9045 0.595702
\(627\) −54.8250 −2.18950
\(628\) 12.0000 0.478852
\(629\) −9.91517 −0.395344
\(630\) 5.74732 0.228979
\(631\) 1.99108 0.0792637 0.0396319 0.999214i \(-0.487381\pi\)
0.0396319 + 0.999214i \(0.487381\pi\)
\(632\) 11.4098 0.453858
\(633\) 51.4910 2.04659
\(634\) −9.49464 −0.377080
\(635\) 10.3357 0.410160
\(636\) −2.83215 −0.112302
\(637\) 0 0
\(638\) 8.12544 0.321689
\(639\) −2.41693 −0.0956125
\(640\) −1.00000 −0.0395285
\(641\) 14.3143 0.565380 0.282690 0.959211i \(-0.408773\pi\)
0.282690 + 0.959211i \(0.408773\pi\)
\(642\) 51.4910 2.03219
\(643\) 37.9786 1.49773 0.748864 0.662723i \(-0.230600\pi\)
0.748864 + 0.662723i \(0.230600\pi\)
\(644\) −2.95759 −0.116545
\(645\) −3.08303 −0.121394
\(646\) 6.74732 0.265470
\(647\) 18.9893 0.746546 0.373273 0.927722i \(-0.378236\pi\)
0.373273 + 0.927722i \(0.378236\pi\)
\(648\) −6.78973 −0.266726
\(649\) −13.6201 −0.534635
\(650\) 0 0
\(651\) −15.2844 −0.599042
\(652\) 19.4946 0.763469
\(653\) −12.7348 −0.498351 −0.249176 0.968458i \(-0.580160\pi\)
−0.249176 + 0.968458i \(0.580160\pi\)
\(654\) −10.8638 −0.424810
\(655\) −9.49464 −0.370986
\(656\) 1.25268 0.0489089
\(657\) 34.4839 1.34535
\(658\) 2.95759 0.115299
\(659\) −36.4839 −1.42121 −0.710606 0.703590i \(-0.751579\pi\)
−0.710606 + 0.703590i \(0.751579\pi\)
\(660\) −8.12544 −0.316282
\(661\) 40.8285 1.58805 0.794023 0.607887i \(-0.207983\pi\)
0.794023 + 0.607887i \(0.207983\pi\)
\(662\) 22.9893 0.893504
\(663\) 0 0
\(664\) 17.8303 0.691952
\(665\) −6.74732 −0.261650
\(666\) −56.9857 −2.20815
\(667\) 8.74732 0.338698
\(668\) −12.4205 −0.480565
\(669\) −11.8303 −0.457388
\(670\) 11.0830 0.428175
\(671\) 27.0071 1.04260
\(672\) 2.95759 0.114091
\(673\) 22.1571 0.854095 0.427047 0.904229i \(-0.359554\pi\)
0.427047 + 0.904229i \(0.359554\pi\)
\(674\) −13.8620 −0.533946
\(675\) 8.12544 0.312748
\(676\) −13.0000 −0.500000
\(677\) 28.7879 1.10641 0.553205 0.833045i \(-0.313405\pi\)
0.553205 + 0.833045i \(0.313405\pi\)
\(678\) 37.4504 1.43828
\(679\) 9.83035 0.377254
\(680\) 1.00000 0.0383482
\(681\) −52.0192 −1.99338
\(682\) 14.1978 0.543660
\(683\) −42.6714 −1.63278 −0.816388 0.577504i \(-0.804027\pi\)
−0.816388 + 0.577504i \(0.804027\pi\)
\(684\) 38.7790 1.48275
\(685\) 16.3357 0.624155
\(686\) 1.00000 0.0381802
\(687\) 55.5670 2.12001
\(688\) −1.04241 −0.0397416
\(689\) 0 0
\(690\) −8.74732 −0.333005
\(691\) −36.9045 −1.40391 −0.701956 0.712220i \(-0.747690\pi\)
−0.701956 + 0.712220i \(0.747690\pi\)
\(692\) −22.9982 −0.874260
\(693\) 15.7897 0.599802
\(694\) 23.7455 0.901368
\(695\) 5.49464 0.208424
\(696\) −8.74732 −0.331566
\(697\) −1.25268 −0.0474486
\(698\) −35.2402 −1.33386
\(699\) −17.7455 −0.671197
\(700\) −1.00000 −0.0377964
\(701\) −1.40982 −0.0532480 −0.0266240 0.999646i \(-0.508476\pi\)
−0.0266240 + 0.999646i \(0.508476\pi\)
\(702\) 0 0
\(703\) 66.9009 2.52321
\(704\) −2.74732 −0.103544
\(705\) 8.74732 0.329443
\(706\) 10.3268 0.388654
\(707\) −6.83215 −0.256949
\(708\) 14.6625 0.551050
\(709\) −24.5335 −0.921373 −0.460687 0.887563i \(-0.652397\pi\)
−0.460687 + 0.887563i \(0.652397\pi\)
\(710\) 0.420532 0.0157823
\(711\) −65.5759 −2.45929
\(712\) 13.4098 0.502554
\(713\) 15.2844 0.572404
\(714\) −2.95759 −0.110685
\(715\) 0 0
\(716\) −2.50536 −0.0936296
\(717\) 52.2067 1.94969
\(718\) −0.621881 −0.0232084
\(719\) 26.4928 0.988016 0.494008 0.869457i \(-0.335531\pi\)
0.494008 + 0.869457i \(0.335531\pi\)
\(720\) 5.74732 0.214190
\(721\) 10.7879 0.401764
\(722\) −26.5263 −0.987208
\(723\) 22.0723 0.820878
\(724\) 8.08483 0.300470
\(725\) 2.95759 0.109842
\(726\) 10.2103 0.378939
\(727\) −21.8835 −0.811613 −0.405807 0.913959i \(-0.633009\pi\)
−0.405807 + 0.913959i \(0.633009\pi\)
\(728\) 0 0
\(729\) −33.0723 −1.22490
\(730\) −6.00000 −0.222070
\(731\) 1.04241 0.0385550
\(732\) −29.0741 −1.07461
\(733\) −8.48392 −0.313361 −0.156680 0.987649i \(-0.550079\pi\)
−0.156680 + 0.987649i \(0.550079\pi\)
\(734\) −5.01072 −0.184949
\(735\) 2.95759 0.109092
\(736\) −2.95759 −0.109018
\(737\) 30.4486 1.12159
\(738\) −7.19955 −0.265019
\(739\) 3.57947 0.131673 0.0658364 0.997830i \(-0.479028\pi\)
0.0658364 + 0.997830i \(0.479028\pi\)
\(740\) 9.91517 0.364489
\(741\) 0 0
\(742\) −0.957587 −0.0351541
\(743\) −4.84106 −0.177601 −0.0888007 0.996049i \(-0.528303\pi\)
−0.0888007 + 0.996049i \(0.528303\pi\)
\(744\) −15.2844 −0.560352
\(745\) −4.33571 −0.158848
\(746\) 23.7138 0.868225
\(747\) −102.477 −3.74943
\(748\) 2.74732 0.100452
\(749\) 17.4098 0.636141
\(750\) −2.95759 −0.107996
\(751\) 2.14822 0.0783896 0.0391948 0.999232i \(-0.487521\pi\)
0.0391948 + 0.999232i \(0.487521\pi\)
\(752\) 2.95759 0.107852
\(753\) 54.9451 2.00231
\(754\) 0 0
\(755\) 5.16785 0.188077
\(756\) −8.12544 −0.295519
\(757\) −35.9786 −1.30766 −0.653832 0.756640i \(-0.726840\pi\)
−0.653832 + 0.756640i \(0.726840\pi\)
\(758\) 1.96830 0.0714920
\(759\) −24.0317 −0.872295
\(760\) −6.74732 −0.244751
\(761\) 1.32859 0.0481612 0.0240806 0.999710i \(-0.492334\pi\)
0.0240806 + 0.999710i \(0.492334\pi\)
\(762\) −30.5688 −1.10739
\(763\) −3.67321 −0.132979
\(764\) 16.1571 0.584545
\(765\) −5.74732 −0.207795
\(766\) −6.24196 −0.225531
\(767\) 0 0
\(768\) 2.95759 0.106723
\(769\) −22.9857 −0.828885 −0.414443 0.910075i \(-0.636023\pi\)
−0.414443 + 0.910075i \(0.636023\pi\)
\(770\) −2.74732 −0.0990066
\(771\) −67.6482 −2.43629
\(772\) 19.9469 0.717904
\(773\) 47.3214 1.70203 0.851016 0.525140i \(-0.175987\pi\)
0.851016 + 0.525140i \(0.175987\pi\)
\(774\) 5.99108 0.215345
\(775\) 5.16785 0.185635
\(776\) 9.83035 0.352889
\(777\) −29.3250 −1.05203
\(778\) −16.7562 −0.600740
\(779\) 8.45223 0.302833
\(780\) 0 0
\(781\) 1.15534 0.0413412
\(782\) 2.95759 0.105763
\(783\) 24.0317 0.858823
\(784\) 1.00000 0.0357143
\(785\) 12.0000 0.428298
\(786\) 28.0812 1.00162
\(787\) 43.0830 1.53574 0.767872 0.640603i \(-0.221316\pi\)
0.767872 + 0.640603i \(0.221316\pi\)
\(788\) −2.08483 −0.0742689
\(789\) −58.6500 −2.08799
\(790\) 11.4098 0.405943
\(791\) 12.6625 0.450226
\(792\) 15.7897 0.561064
\(793\) 0 0
\(794\) −25.8620 −0.917810
\(795\) −2.83215 −0.100446
\(796\) −4.45223 −0.157805
\(797\) 3.83035 0.135678 0.0678389 0.997696i \(-0.478390\pi\)
0.0678389 + 0.997696i \(0.478390\pi\)
\(798\) 19.9558 0.706427
\(799\) −2.95759 −0.104632
\(800\) −1.00000 −0.0353553
\(801\) −77.0705 −2.72315
\(802\) 19.4946 0.688380
\(803\) −16.4839 −0.581705
\(804\) −32.7790 −1.15603
\(805\) −2.95759 −0.104241
\(806\) 0 0
\(807\) 52.2330 1.83869
\(808\) −6.83215 −0.240354
\(809\) 10.4205 0.366366 0.183183 0.983079i \(-0.441360\pi\)
0.183183 + 0.983079i \(0.441360\pi\)
\(810\) −6.78973 −0.238567
\(811\) 9.26160 0.325219 0.162609 0.986691i \(-0.448009\pi\)
0.162609 + 0.986691i \(0.448009\pi\)
\(812\) −2.95759 −0.103791
\(813\) −53.7277 −1.88431
\(814\) 27.2402 0.954767
\(815\) 19.4946 0.682868
\(816\) −2.95759 −0.103536
\(817\) −7.03349 −0.246071
\(818\) −20.1661 −0.705090
\(819\) 0 0
\(820\) 1.25268 0.0437455
\(821\) −50.9009 −1.77645 −0.888226 0.459407i \(-0.848062\pi\)
−0.888226 + 0.459407i \(0.848062\pi\)
\(822\) −48.3143 −1.68515
\(823\) −27.5670 −0.960924 −0.480462 0.877016i \(-0.659531\pi\)
−0.480462 + 0.877016i \(0.659531\pi\)
\(824\) 10.7879 0.375816
\(825\) −8.12544 −0.282892
\(826\) 4.95759 0.172497
\(827\) 39.3250 1.36746 0.683732 0.729733i \(-0.260356\pi\)
0.683732 + 0.729733i \(0.260356\pi\)
\(828\) 16.9982 0.590728
\(829\) 46.1357 1.60236 0.801180 0.598424i \(-0.204206\pi\)
0.801180 + 0.598424i \(0.204206\pi\)
\(830\) 17.8303 0.618900
\(831\) −36.2330 −1.25691
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) −16.2509 −0.562722
\(835\) −12.4205 −0.429830
\(836\) −18.5371 −0.641117
\(837\) 41.9911 1.45142
\(838\) −18.5688 −0.641447
\(839\) −21.3567 −0.737315 −0.368657 0.929565i \(-0.620182\pi\)
−0.368657 + 0.929565i \(0.620182\pi\)
\(840\) 2.95759 0.102046
\(841\) −20.2527 −0.698368
\(842\) −7.91517 −0.272775
\(843\) 9.74020 0.335470
\(844\) 17.4098 0.599271
\(845\) −13.0000 −0.447214
\(846\) −16.9982 −0.584410
\(847\) 3.45223 0.118620
\(848\) −0.957587 −0.0328837
\(849\) −58.1482 −1.99564
\(850\) 1.00000 0.0342997
\(851\) 29.3250 1.00525
\(852\) −1.24376 −0.0426106
\(853\) −1.86204 −0.0637552 −0.0318776 0.999492i \(-0.510149\pi\)
−0.0318776 + 0.999492i \(0.510149\pi\)
\(854\) −9.83035 −0.336388
\(855\) 38.7790 1.32621
\(856\) 17.4098 0.595055
\(857\) −43.3250 −1.47995 −0.739977 0.672632i \(-0.765164\pi\)
−0.739977 + 0.672632i \(0.765164\pi\)
\(858\) 0 0
\(859\) 16.7384 0.571107 0.285553 0.958363i \(-0.407823\pi\)
0.285553 + 0.958363i \(0.407823\pi\)
\(860\) −1.04241 −0.0355460
\(861\) −3.70491 −0.126263
\(862\) −15.6607 −0.533405
\(863\) −42.5866 −1.44966 −0.724832 0.688926i \(-0.758083\pi\)
−0.724832 + 0.688926i \(0.758083\pi\)
\(864\) −8.12544 −0.276433
\(865\) −22.9982 −0.781962
\(866\) −33.8303 −1.14960
\(867\) 2.95759 0.100445
\(868\) −5.16785 −0.175408
\(869\) 31.3464 1.06335
\(870\) −8.74732 −0.296562
\(871\) 0 0
\(872\) −3.67321 −0.124391
\(873\) −56.4982 −1.91217
\(874\) −19.9558 −0.675015
\(875\) −1.00000 −0.0338062
\(876\) 17.7455 0.599566
\(877\) 13.3250 0.449953 0.224976 0.974364i \(-0.427769\pi\)
0.224976 + 0.974364i \(0.427769\pi\)
\(878\) −34.0281 −1.14839
\(879\) −60.5830 −2.04341
\(880\) −2.74732 −0.0926122
\(881\) −39.5263 −1.33168 −0.665838 0.746096i \(-0.731926\pi\)
−0.665838 + 0.746096i \(0.731926\pi\)
\(882\) −5.74732 −0.193522
\(883\) −50.6500 −1.70451 −0.852254 0.523129i \(-0.824765\pi\)
−0.852254 + 0.523129i \(0.824765\pi\)
\(884\) 0 0
\(885\) 14.6625 0.492874
\(886\) 0.0316961 0.00106485
\(887\) 52.0812 1.74872 0.874358 0.485281i \(-0.161283\pi\)
0.874358 + 0.485281i \(0.161283\pi\)
\(888\) −29.3250 −0.984082
\(889\) −10.3357 −0.346648
\(890\) 13.4098 0.449498
\(891\) −18.6536 −0.624918
\(892\) −4.00000 −0.133930
\(893\) 19.9558 0.667795
\(894\) 12.8232 0.428873
\(895\) −2.50536 −0.0837449
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −39.8089 −1.32844
\(899\) 15.2844 0.509762
\(900\) 5.74732 0.191577
\(901\) 0.957587 0.0319018
\(902\) 3.44151 0.114590
\(903\) 3.08303 0.102597
\(904\) 12.6625 0.421148
\(905\) 8.08483 0.268749
\(906\) −15.2844 −0.507789
\(907\) 8.16605 0.271149 0.135575 0.990767i \(-0.456712\pi\)
0.135575 + 0.990767i \(0.456712\pi\)
\(908\) −17.5884 −0.583691
\(909\) 39.2665 1.30239
\(910\) 0 0
\(911\) 35.0705 1.16194 0.580969 0.813926i \(-0.302674\pi\)
0.580969 + 0.813926i \(0.302674\pi\)
\(912\) 19.9558 0.660802
\(913\) 48.9857 1.62119
\(914\) −3.32499 −0.109981
\(915\) −29.0741 −0.961160
\(916\) 18.7879 0.620771
\(917\) 9.49464 0.313541
\(918\) 8.12544 0.268179
\(919\) 14.1344 0.466249 0.233125 0.972447i \(-0.425105\pi\)
0.233125 + 0.972447i \(0.425105\pi\)
\(920\) −2.95759 −0.0975088
\(921\) 0.250880 0.00826679
\(922\) 3.67321 0.120971
\(923\) 0 0
\(924\) 8.12544 0.267307
\(925\) 9.91517 0.326009
\(926\) 2.33571 0.0767561
\(927\) −62.0017 −2.03640
\(928\) −2.95759 −0.0970875
\(929\) 52.4803 1.72182 0.860912 0.508754i \(-0.169894\pi\)
0.860912 + 0.508754i \(0.169894\pi\)
\(930\) −15.2844 −0.501194
\(931\) 6.74732 0.221135
\(932\) −6.00000 −0.196537
\(933\) 10.4928 0.343520
\(934\) 20.3991 0.667479
\(935\) 2.74732 0.0898470
\(936\) 0 0
\(937\) 6.70311 0.218981 0.109491 0.993988i \(-0.465078\pi\)
0.109491 + 0.993988i \(0.465078\pi\)
\(938\) −11.0830 −0.361874
\(939\) −44.0812 −1.43854
\(940\) 2.95759 0.0964659
\(941\) −30.0000 −0.977972 −0.488986 0.872292i \(-0.662633\pi\)
−0.488986 + 0.872292i \(0.662633\pi\)
\(942\) −35.4910 −1.15636
\(943\) 3.70491 0.120648
\(944\) 4.95759 0.161356
\(945\) −8.12544 −0.264321
\(946\) −2.86384 −0.0931116
\(947\) −5.74912 −0.186821 −0.0934106 0.995628i \(-0.529777\pi\)
−0.0934106 + 0.995628i \(0.529777\pi\)
\(948\) −33.7455 −1.09600
\(949\) 0 0
\(950\) −6.74732 −0.218912
\(951\) 28.0812 0.910596
\(952\) −1.00000 −0.0324102
\(953\) −10.0812 −0.326563 −0.163282 0.986580i \(-0.552208\pi\)
−0.163282 + 0.986580i \(0.552208\pi\)
\(954\) 5.50356 0.178184
\(955\) 16.1571 0.522833
\(956\) 17.6518 0.570899
\(957\) −24.0317 −0.776834
\(958\) 16.0000 0.516937
\(959\) −16.3357 −0.527507
\(960\) 2.95759 0.0954557
\(961\) −4.29329 −0.138493
\(962\) 0 0
\(963\) −100.060 −3.22438
\(964\) 7.46295 0.240365
\(965\) 19.9469 0.642112
\(966\) 8.74732 0.281440
\(967\) −40.5652 −1.30449 −0.652244 0.758009i \(-0.726172\pi\)
−0.652244 + 0.758009i \(0.726172\pi\)
\(968\) 3.45223 0.110959
\(969\) −19.9558 −0.641072
\(970\) 9.83035 0.315633
\(971\) −49.5848 −1.59125 −0.795626 0.605788i \(-0.792858\pi\)
−0.795626 + 0.605788i \(0.792858\pi\)
\(972\) −4.29509 −0.137765
\(973\) −5.49464 −0.176150
\(974\) −0.0937441 −0.00300375
\(975\) 0 0
\(976\) −9.83035 −0.314662
\(977\) 54.4839 1.74310 0.871548 0.490311i \(-0.163117\pi\)
0.871548 + 0.490311i \(0.163117\pi\)
\(978\) −57.6571 −1.84367
\(979\) 36.8411 1.17745
\(980\) 1.00000 0.0319438
\(981\) 21.1111 0.674026
\(982\) 27.6607 0.882688
\(983\) −7.09554 −0.226313 −0.113156 0.993577i \(-0.536096\pi\)
−0.113156 + 0.993577i \(0.536096\pi\)
\(984\) −3.70491 −0.118108
\(985\) −2.08483 −0.0664281
\(986\) 2.95759 0.0941888
\(987\) −8.74732 −0.278430
\(988\) 0 0
\(989\) −3.08303 −0.0980346
\(990\) 15.7897 0.501831
\(991\) 27.6607 0.878671 0.439335 0.898323i \(-0.355214\pi\)
0.439335 + 0.898323i \(0.355214\pi\)
\(992\) −5.16785 −0.164080
\(993\) −67.9928 −2.15769
\(994\) −0.420532 −0.0133385
\(995\) −4.45223 −0.141145
\(996\) −52.7348 −1.67097
\(997\) −9.32859 −0.295439 −0.147720 0.989029i \(-0.547193\pi\)
−0.147720 + 0.989029i \(0.547193\pi\)
\(998\) 41.3973 1.31041
\(999\) 80.5652 2.54897
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1190.2.a.j.1.3 3
4.3 odd 2 9520.2.a.z.1.1 3
5.4 even 2 5950.2.a.bm.1.1 3
7.6 odd 2 8330.2.a.bu.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1190.2.a.j.1.3 3 1.1 even 1 trivial
5950.2.a.bm.1.1 3 5.4 even 2
8330.2.a.bu.1.1 3 7.6 odd 2
9520.2.a.z.1.1 3 4.3 odd 2