Properties

Label 1184.2.y.a.529.25
Level $1184$
Weight $2$
Character 1184.529
Analytic conductor $9.454$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1184,2,Mod(529,1184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1184, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1184.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1184 = 2^{5} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1184.y (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.45428759932\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 296)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.25
Character \(\chi\) \(=\) 1184.529
Dual form 1184.2.y.a.1137.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03067 + 0.595057i) q^{3} +(-1.89805 + 3.28751i) q^{5} +(-0.213384 + 0.369592i) q^{7} +(-0.791813 - 1.37146i) q^{9} +5.01695i q^{11} +(-1.27662 + 2.21117i) q^{13} +(-3.91251 + 2.25889i) q^{15} +(-1.96229 + 1.13293i) q^{17} +(3.20006 - 5.54267i) q^{19} +(-0.439857 + 0.253952i) q^{21} -2.97488i q^{23} +(-4.70515 - 8.14956i) q^{25} -5.45504i q^{27} -8.86178 q^{29} -0.284019i q^{31} +(-2.98537 + 5.17082i) q^{33} +(-0.810025 - 1.40300i) q^{35} +(6.05179 + 0.613070i) q^{37} +(-2.63154 + 1.51932i) q^{39} +(-4.17825 + 7.23695i) q^{41} -7.89769 q^{43} +6.01159 q^{45} -2.01684 q^{47} +(3.40893 + 5.90445i) q^{49} -2.69663 q^{51} +(-5.23310 + 3.02133i) q^{53} +(-16.4933 - 9.52240i) q^{55} +(6.59642 - 3.80844i) q^{57} +(2.68998 + 4.65918i) q^{59} +(2.82477 - 4.89264i) q^{61} +0.675842 q^{63} +(-4.84616 - 8.39380i) q^{65} +(10.9562 + 6.32555i) q^{67} +(1.77022 - 3.06611i) q^{69} +(4.28852 - 7.42793i) q^{71} -4.78445 q^{73} -11.1993i q^{75} +(-1.85423 - 1.07054i) q^{77} +(-4.67103 - 2.69682i) q^{79} +(0.870623 - 1.50796i) q^{81} +(-10.4077 + 6.00888i) q^{83} -8.60140i q^{85} +(-9.13357 - 5.27327i) q^{87} +(-9.89138 + 5.71079i) q^{89} +(-0.544820 - 0.943656i) q^{91} +(0.169008 - 0.292730i) q^{93} +(12.1477 + 21.0405i) q^{95} +2.39634i q^{97} +(6.88056 - 3.97249i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 2 q^{7} + 30 q^{9} + 6 q^{15} - 12 q^{17} - 32 q^{25} + 4 q^{33} + 6 q^{39} - 32 q^{47} - 18 q^{49} - 24 q^{55} - 6 q^{57} - 8 q^{63} + 6 q^{65} - 18 q^{71} - 64 q^{73} - 54 q^{79} - 16 q^{81} + 108 q^{87}+ \cdots - 50 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1184\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(705\) \(741\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.03067 + 0.595057i 0.595057 + 0.343557i 0.767095 0.641534i \(-0.221702\pi\)
−0.172037 + 0.985090i \(0.555035\pi\)
\(4\) 0 0
\(5\) −1.89805 + 3.28751i −0.848832 + 1.47022i 0.0334201 + 0.999441i \(0.489360\pi\)
−0.882252 + 0.470778i \(0.843973\pi\)
\(6\) 0 0
\(7\) −0.213384 + 0.369592i −0.0806516 + 0.139693i −0.903530 0.428525i \(-0.859033\pi\)
0.822878 + 0.568218i \(0.192367\pi\)
\(8\) 0 0
\(9\) −0.791813 1.37146i −0.263938 0.457154i
\(10\) 0 0
\(11\) 5.01695i 1.51267i 0.654186 + 0.756334i \(0.273012\pi\)
−0.654186 + 0.756334i \(0.726988\pi\)
\(12\) 0 0
\(13\) −1.27662 + 2.21117i −0.354070 + 0.613268i −0.986958 0.160975i \(-0.948536\pi\)
0.632888 + 0.774243i \(0.281869\pi\)
\(14\) 0 0
\(15\) −3.91251 + 2.25889i −1.01021 + 0.583243i
\(16\) 0 0
\(17\) −1.96229 + 1.13293i −0.475925 + 0.274776i −0.718717 0.695303i \(-0.755270\pi\)
0.242792 + 0.970078i \(0.421937\pi\)
\(18\) 0 0
\(19\) 3.20006 5.54267i 0.734145 1.27158i −0.220953 0.975285i \(-0.570917\pi\)
0.955097 0.296292i \(-0.0957501\pi\)
\(20\) 0 0
\(21\) −0.439857 + 0.253952i −0.0959847 + 0.0554168i
\(22\) 0 0
\(23\) 2.97488i 0.620304i −0.950687 0.310152i \(-0.899620\pi\)
0.950687 0.310152i \(-0.100380\pi\)
\(24\) 0 0
\(25\) −4.70515 8.14956i −0.941030 1.62991i
\(26\) 0 0
\(27\) 5.45504i 1.04982i
\(28\) 0 0
\(29\) −8.86178 −1.64559 −0.822796 0.568337i \(-0.807587\pi\)
−0.822796 + 0.568337i \(0.807587\pi\)
\(30\) 0 0
\(31\) 0.284019i 0.0510113i −0.999675 0.0255057i \(-0.991880\pi\)
0.999675 0.0255057i \(-0.00811958\pi\)
\(32\) 0 0
\(33\) −2.98537 + 5.17082i −0.519687 + 0.900124i
\(34\) 0 0
\(35\) −0.810025 1.40300i −0.136919 0.237151i
\(36\) 0 0
\(37\) 6.05179 + 0.613070i 0.994908 + 0.100788i
\(38\) 0 0
\(39\) −2.63154 + 1.51932i −0.421384 + 0.243286i
\(40\) 0 0
\(41\) −4.17825 + 7.23695i −0.652534 + 1.13022i 0.329972 + 0.943991i \(0.392961\pi\)
−0.982506 + 0.186231i \(0.940373\pi\)
\(42\) 0 0
\(43\) −7.89769 −1.20439 −0.602193 0.798350i \(-0.705706\pi\)
−0.602193 + 0.798350i \(0.705706\pi\)
\(44\) 0 0
\(45\) 6.01159 0.896155
\(46\) 0 0
\(47\) −2.01684 −0.294186 −0.147093 0.989123i \(-0.546992\pi\)
−0.147093 + 0.989123i \(0.546992\pi\)
\(48\) 0 0
\(49\) 3.40893 + 5.90445i 0.486991 + 0.843493i
\(50\) 0 0
\(51\) −2.69663 −0.377604
\(52\) 0 0
\(53\) −5.23310 + 3.02133i −0.718821 + 0.415012i −0.814319 0.580418i \(-0.802889\pi\)
0.0954974 + 0.995430i \(0.469556\pi\)
\(54\) 0 0
\(55\) −16.4933 9.52240i −2.22395 1.28400i
\(56\) 0 0
\(57\) 6.59642 3.80844i 0.873717 0.504441i
\(58\) 0 0
\(59\) 2.68998 + 4.65918i 0.350205 + 0.606573i 0.986285 0.165050i \(-0.0527785\pi\)
−0.636080 + 0.771623i \(0.719445\pi\)
\(60\) 0 0
\(61\) 2.82477 4.89264i 0.361675 0.626439i −0.626562 0.779372i \(-0.715538\pi\)
0.988237 + 0.152933i \(0.0488718\pi\)
\(62\) 0 0
\(63\) 0.675842 0.0851480
\(64\) 0 0
\(65\) −4.84616 8.39380i −0.601092 1.04112i
\(66\) 0 0
\(67\) 10.9562 + 6.32555i 1.33851 + 0.772790i 0.986587 0.163239i \(-0.0521942\pi\)
0.351924 + 0.936029i \(0.385527\pi\)
\(68\) 0 0
\(69\) 1.77022 3.06611i 0.213110 0.369117i
\(70\) 0 0
\(71\) 4.28852 7.42793i 0.508953 0.881533i −0.490993 0.871163i \(-0.663366\pi\)
0.999946 0.0103692i \(-0.00330067\pi\)
\(72\) 0 0
\(73\) −4.78445 −0.559978 −0.279989 0.960003i \(-0.590331\pi\)
−0.279989 + 0.960003i \(0.590331\pi\)
\(74\) 0 0
\(75\) 11.1993i 1.29319i
\(76\) 0 0
\(77\) −1.85423 1.07054i −0.211309 0.121999i
\(78\) 0 0
\(79\) −4.67103 2.69682i −0.525532 0.303416i 0.213663 0.976907i \(-0.431461\pi\)
−0.739195 + 0.673491i \(0.764794\pi\)
\(80\) 0 0
\(81\) 0.870623 1.50796i 0.0967358 0.167551i
\(82\) 0 0
\(83\) −10.4077 + 6.00888i −1.14239 + 0.659560i −0.947022 0.321170i \(-0.895924\pi\)
−0.195370 + 0.980730i \(0.562591\pi\)
\(84\) 0 0
\(85\) 8.60140i 0.932953i
\(86\) 0 0
\(87\) −9.13357 5.27327i −0.979221 0.565354i
\(88\) 0 0
\(89\) −9.89138 + 5.71079i −1.04848 + 0.605343i −0.922225 0.386654i \(-0.873631\pi\)
−0.126260 + 0.991997i \(0.540297\pi\)
\(90\) 0 0
\(91\) −0.544820 0.943656i −0.0571127 0.0989221i
\(92\) 0 0
\(93\) 0.169008 0.292730i 0.0175253 0.0303547i
\(94\) 0 0
\(95\) 12.1477 + 21.0405i 1.24633 + 2.15871i
\(96\) 0 0
\(97\) 2.39634i 0.243311i 0.992572 + 0.121656i \(0.0388204\pi\)
−0.992572 + 0.121656i \(0.961180\pi\)
\(98\) 0 0
\(99\) 6.88056 3.97249i 0.691522 0.399250i
\(100\) 0 0
\(101\) 5.41079i 0.538394i −0.963085 0.269197i \(-0.913242\pi\)
0.963085 0.269197i \(-0.0867583\pi\)
\(102\) 0 0
\(103\) 4.06263i 0.400303i −0.979765 0.200152i \(-0.935857\pi\)
0.979765 0.200152i \(-0.0641435\pi\)
\(104\) 0 0
\(105\) 1.92805i 0.188158i
\(106\) 0 0
\(107\) 4.35758 + 2.51585i 0.421263 + 0.243217i 0.695618 0.718412i \(-0.255131\pi\)
−0.274354 + 0.961629i \(0.588464\pi\)
\(108\) 0 0
\(109\) 7.71267 + 13.3587i 0.738739 + 1.27953i 0.953063 + 0.302771i \(0.0979119\pi\)
−0.214324 + 0.976763i \(0.568755\pi\)
\(110\) 0 0
\(111\) 5.87258 + 4.23303i 0.557401 + 0.401782i
\(112\) 0 0
\(113\) 3.32630 1.92044i 0.312912 0.180660i −0.335317 0.942105i \(-0.608843\pi\)
0.648229 + 0.761446i \(0.275510\pi\)
\(114\) 0 0
\(115\) 9.77993 + 5.64645i 0.911984 + 0.526534i
\(116\) 0 0
\(117\) 4.04338 0.373810
\(118\) 0 0
\(119\) 0.966996i 0.0886444i
\(120\) 0 0
\(121\) −14.1698 −1.28816
\(122\) 0 0
\(123\) −8.61280 + 4.97260i −0.776590 + 0.448364i
\(124\) 0 0
\(125\) 16.7419 1.49744
\(126\) 0 0
\(127\) 5.14882 + 8.91801i 0.456884 + 0.791346i 0.998794 0.0490904i \(-0.0156323\pi\)
−0.541911 + 0.840436i \(0.682299\pi\)
\(128\) 0 0
\(129\) −8.13991 4.69958i −0.716679 0.413775i
\(130\) 0 0
\(131\) 4.30960 + 7.46445i 0.376532 + 0.652172i 0.990555 0.137116i \(-0.0437833\pi\)
−0.614023 + 0.789288i \(0.710450\pi\)
\(132\) 0 0
\(133\) 1.36569 + 2.36544i 0.118420 + 0.205109i
\(134\) 0 0
\(135\) 17.9335 + 10.3539i 1.54347 + 0.891123i
\(136\) 0 0
\(137\) 11.6222 0.992952 0.496476 0.868051i \(-0.334627\pi\)
0.496476 + 0.868051i \(0.334627\pi\)
\(138\) 0 0
\(139\) −18.7411 + 10.8202i −1.58960 + 0.917754i −0.596223 + 0.802819i \(0.703333\pi\)
−0.993373 + 0.114935i \(0.963334\pi\)
\(140\) 0 0
\(141\) −2.07869 1.20013i −0.175057 0.101069i
\(142\) 0 0
\(143\) −11.0933 6.40474i −0.927671 0.535591i
\(144\) 0 0
\(145\) 16.8201 29.1332i 1.39683 2.41938i
\(146\) 0 0
\(147\) 8.11405i 0.669235i
\(148\) 0 0
\(149\) 19.9351i 1.63315i 0.577241 + 0.816574i \(0.304129\pi\)
−0.577241 + 0.816574i \(0.695871\pi\)
\(150\) 0 0
\(151\) −0.659829 + 1.14286i −0.0536961 + 0.0930044i −0.891624 0.452776i \(-0.850434\pi\)
0.837928 + 0.545781i \(0.183767\pi\)
\(152\) 0 0
\(153\) 3.10754 + 1.79414i 0.251229 + 0.145047i
\(154\) 0 0
\(155\) 0.933715 + 0.539081i 0.0749978 + 0.0433000i
\(156\) 0 0
\(157\) 0.690561 0.398695i 0.0551128 0.0318194i −0.472190 0.881497i \(-0.656537\pi\)
0.527303 + 0.849677i \(0.323203\pi\)
\(158\) 0 0
\(159\) −7.19146 −0.570320
\(160\) 0 0
\(161\) 1.09949 + 0.634791i 0.0866520 + 0.0500285i
\(162\) 0 0
\(163\) −0.587958 1.01837i −0.0460524 0.0797651i 0.842080 0.539352i \(-0.181331\pi\)
−0.888133 + 0.459587i \(0.847997\pi\)
\(164\) 0 0
\(165\) −11.3328 19.6289i −0.882253 1.52811i
\(166\) 0 0
\(167\) 0.795728 + 0.459414i 0.0615753 + 0.0355505i 0.530472 0.847703i \(-0.322015\pi\)
−0.468896 + 0.883253i \(0.655348\pi\)
\(168\) 0 0
\(169\) 3.24049 + 5.61269i 0.249268 + 0.431745i
\(170\) 0 0
\(171\) −10.1354 −0.775074
\(172\) 0 0
\(173\) −15.3956 + 8.88863i −1.17050 + 0.675790i −0.953798 0.300448i \(-0.902864\pi\)
−0.216704 + 0.976237i \(0.569531\pi\)
\(174\) 0 0
\(175\) 4.01602 0.303582
\(176\) 0 0
\(177\) 6.40276i 0.481261i
\(178\) 0 0
\(179\) 8.33094 0.622684 0.311342 0.950298i \(-0.399222\pi\)
0.311342 + 0.950298i \(0.399222\pi\)
\(180\) 0 0
\(181\) −2.29381 1.32433i −0.170498 0.0984370i 0.412323 0.911038i \(-0.364718\pi\)
−0.582821 + 0.812601i \(0.698051\pi\)
\(182\) 0 0
\(183\) 5.82281 3.36180i 0.430434 0.248511i
\(184\) 0 0
\(185\) −13.5020 + 18.7317i −0.992690 + 1.37718i
\(186\) 0 0
\(187\) −5.68385 9.84472i −0.415644 0.719917i
\(188\) 0 0
\(189\) 2.01614 + 1.16402i 0.146653 + 0.0846699i
\(190\) 0 0
\(191\) 4.08292i 0.295430i 0.989030 + 0.147715i \(0.0471918\pi\)
−0.989030 + 0.147715i \(0.952808\pi\)
\(192\) 0 0
\(193\) 24.2788i 1.74762i −0.486264 0.873812i \(-0.661641\pi\)
0.486264 0.873812i \(-0.338359\pi\)
\(194\) 0 0
\(195\) 11.5350i 0.826037i
\(196\) 0 0
\(197\) 8.37198 4.83356i 0.596479 0.344377i −0.171176 0.985240i \(-0.554757\pi\)
0.767655 + 0.640863i \(0.221423\pi\)
\(198\) 0 0
\(199\) 6.22007i 0.440929i 0.975395 + 0.220465i \(0.0707573\pi\)
−0.975395 + 0.220465i \(0.929243\pi\)
\(200\) 0 0
\(201\) 7.52814 + 13.0391i 0.530994 + 0.919708i
\(202\) 0 0
\(203\) 1.89096 3.27524i 0.132720 0.229877i
\(204\) 0 0
\(205\) −15.8610 27.4721i −1.10778 1.91874i
\(206\) 0 0
\(207\) −4.07993 + 2.35555i −0.283574 + 0.163722i
\(208\) 0 0
\(209\) 27.8073 + 16.0546i 1.92347 + 1.11052i
\(210\) 0 0
\(211\) 8.16336i 0.561989i −0.959709 0.280995i \(-0.909336\pi\)
0.959709 0.280995i \(-0.0906643\pi\)
\(212\) 0 0
\(213\) 8.84008 5.10382i 0.605713 0.349708i
\(214\) 0 0
\(215\) 14.9902 25.9637i 1.02232 1.77071i
\(216\) 0 0
\(217\) 0.104971 + 0.0606051i 0.00712591 + 0.00411414i
\(218\) 0 0
\(219\) −4.93119 2.84703i −0.333219 0.192384i
\(220\) 0 0
\(221\) 5.78527i 0.389160i
\(222\) 0 0
\(223\) 7.08841 0.474675 0.237337 0.971427i \(-0.423725\pi\)
0.237337 + 0.971427i \(0.423725\pi\)
\(224\) 0 0
\(225\) −7.45120 + 12.9059i −0.496747 + 0.860391i
\(226\) 0 0
\(227\) 6.23792 10.8044i 0.414025 0.717113i −0.581300 0.813689i \(-0.697456\pi\)
0.995326 + 0.0965761i \(0.0307891\pi\)
\(228\) 0 0
\(229\) −4.55067 2.62733i −0.300716 0.173619i 0.342048 0.939682i \(-0.388879\pi\)
−0.642765 + 0.766064i \(0.722213\pi\)
\(230\) 0 0
\(231\) −1.27406 2.20674i −0.0838272 0.145193i
\(232\) 0 0
\(233\) 12.4536 0.815861 0.407931 0.913013i \(-0.366251\pi\)
0.407931 + 0.913013i \(0.366251\pi\)
\(234\) 0 0
\(235\) 3.82805 6.63037i 0.249714 0.432518i
\(236\) 0 0
\(237\) −3.20953 5.55907i −0.208481 0.361100i
\(238\) 0 0
\(239\) 22.7951 13.1608i 1.47449 0.851298i 0.474905 0.880037i \(-0.342482\pi\)
0.999587 + 0.0287388i \(0.00914910\pi\)
\(240\) 0 0
\(241\) 12.3723 + 7.14314i 0.796968 + 0.460130i 0.842410 0.538837i \(-0.181136\pi\)
−0.0454417 + 0.998967i \(0.514470\pi\)
\(242\) 0 0
\(243\) −12.3780 + 7.14642i −0.794047 + 0.458443i
\(244\) 0 0
\(245\) −25.8812 −1.65349
\(246\) 0 0
\(247\) 8.17052 + 14.1518i 0.519878 + 0.900455i
\(248\) 0 0
\(249\) −14.3025 −0.906385
\(250\) 0 0
\(251\) −7.93287 −0.500718 −0.250359 0.968153i \(-0.580549\pi\)
−0.250359 + 0.968153i \(0.580549\pi\)
\(252\) 0 0
\(253\) 14.9248 0.938315
\(254\) 0 0
\(255\) 5.11833 8.86520i 0.320522 0.555160i
\(256\) 0 0
\(257\) 0.633271 0.365619i 0.0395024 0.0228067i −0.480119 0.877204i \(-0.659406\pi\)
0.519621 + 0.854397i \(0.326073\pi\)
\(258\) 0 0
\(259\) −1.51794 + 2.10587i −0.0943203 + 0.130853i
\(260\) 0 0
\(261\) 7.01688 + 12.1536i 0.434334 + 0.752288i
\(262\) 0 0
\(263\) −13.9848 + 24.2223i −0.862338 + 1.49361i 0.00732770 + 0.999973i \(0.497667\pi\)
−0.869666 + 0.493641i \(0.835666\pi\)
\(264\) 0 0
\(265\) 22.9385i 1.40910i
\(266\) 0 0
\(267\) −13.5930 −0.831878
\(268\) 0 0
\(269\) 7.77440i 0.474014i −0.971508 0.237007i \(-0.923834\pi\)
0.971508 0.237007i \(-0.0761664\pi\)
\(270\) 0 0
\(271\) 9.35939 + 16.2109i 0.568543 + 0.984745i 0.996710 + 0.0810455i \(0.0258259\pi\)
−0.428168 + 0.903699i \(0.640841\pi\)
\(272\) 0 0
\(273\) 1.29680i 0.0784857i
\(274\) 0 0
\(275\) 40.8860 23.6055i 2.46552 1.42347i
\(276\) 0 0
\(277\) −14.9708 + 25.9301i −0.899507 + 1.55799i −0.0713808 + 0.997449i \(0.522741\pi\)
−0.828126 + 0.560542i \(0.810593\pi\)
\(278\) 0 0
\(279\) −0.389521 + 0.224890i −0.0233200 + 0.0134638i
\(280\) 0 0
\(281\) −8.39994 + 4.84971i −0.501099 + 0.289309i −0.729167 0.684336i \(-0.760092\pi\)
0.228069 + 0.973645i \(0.426759\pi\)
\(282\) 0 0
\(283\) 8.71005 15.0862i 0.517758 0.896784i −0.482029 0.876155i \(-0.660100\pi\)
0.999787 0.0206286i \(-0.00656675\pi\)
\(284\) 0 0
\(285\) 28.9144i 1.71274i
\(286\) 0 0
\(287\) −1.78315 3.08850i −0.105256 0.182308i
\(288\) 0 0
\(289\) −5.93295 + 10.2762i −0.348997 + 0.604480i
\(290\) 0 0
\(291\) −1.42596 + 2.46983i −0.0835912 + 0.144784i
\(292\) 0 0
\(293\) 9.21758 + 5.32177i 0.538497 + 0.310901i 0.744470 0.667656i \(-0.232702\pi\)
−0.205973 + 0.978558i \(0.566036\pi\)
\(294\) 0 0
\(295\) −20.4228 −1.18906
\(296\) 0 0
\(297\) 27.3677 1.58803
\(298\) 0 0
\(299\) 6.57795 + 3.79778i 0.380413 + 0.219631i
\(300\) 0 0
\(301\) 1.68524 2.91892i 0.0971357 0.168244i
\(302\) 0 0
\(303\) 3.21973 5.57674i 0.184969 0.320375i
\(304\) 0 0
\(305\) 10.7231 + 18.5729i 0.614002 + 1.06348i
\(306\) 0 0
\(307\) 19.6128i 1.11936i 0.828709 + 0.559680i \(0.189076\pi\)
−0.828709 + 0.559680i \(0.810924\pi\)
\(308\) 0 0
\(309\) 2.41750 4.18723i 0.137527 0.238203i
\(310\) 0 0
\(311\) 11.5797 6.68556i 0.656626 0.379103i −0.134364 0.990932i \(-0.542899\pi\)
0.790990 + 0.611829i \(0.209566\pi\)
\(312\) 0 0
\(313\) 16.2902 9.40513i 0.920774 0.531609i 0.0368924 0.999319i \(-0.488254\pi\)
0.883882 + 0.467710i \(0.154921\pi\)
\(314\) 0 0
\(315\) −1.28278 + 2.22184i −0.0722763 + 0.125186i
\(316\) 0 0
\(317\) 1.03008 0.594719i 0.0578552 0.0334027i −0.470793 0.882244i \(-0.656032\pi\)
0.528649 + 0.848841i \(0.322699\pi\)
\(318\) 0 0
\(319\) 44.4591i 2.48923i
\(320\) 0 0
\(321\) 2.99415 + 5.18602i 0.167117 + 0.289456i
\(322\) 0 0
\(323\) 14.5018i 0.806900i
\(324\) 0 0
\(325\) 24.0267 1.33276
\(326\) 0 0
\(327\) 18.3579i 1.01519i
\(328\) 0 0
\(329\) 0.430361 0.745406i 0.0237265 0.0410956i
\(330\) 0 0
\(331\) −6.03836 10.4587i −0.331898 0.574865i 0.650986 0.759090i \(-0.274356\pi\)
−0.982884 + 0.184225i \(0.941022\pi\)
\(332\) 0 0
\(333\) −3.95109 8.78523i −0.216518 0.481428i
\(334\) 0 0
\(335\) −41.5907 + 24.0124i −2.27234 + 1.31194i
\(336\) 0 0
\(337\) 5.72219 9.91113i 0.311708 0.539894i −0.667024 0.745036i \(-0.732432\pi\)
0.978732 + 0.205142i \(0.0657657\pi\)
\(338\) 0 0
\(339\) 4.57109 0.248268
\(340\) 0 0
\(341\) 1.42491 0.0771632
\(342\) 0 0
\(343\) −5.89703 −0.318410
\(344\) 0 0
\(345\) 6.71992 + 11.6392i 0.361788 + 0.626636i
\(346\) 0 0
\(347\) −12.4825 −0.670094 −0.335047 0.942201i \(-0.608752\pi\)
−0.335047 + 0.942201i \(0.608752\pi\)
\(348\) 0 0
\(349\) −27.1204 + 15.6580i −1.45172 + 0.838152i −0.998579 0.0532860i \(-0.983031\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(350\) 0 0
\(351\) 12.0620 + 6.96401i 0.643823 + 0.371711i
\(352\) 0 0
\(353\) 4.49580 2.59565i 0.239287 0.138153i −0.375562 0.926797i \(-0.622550\pi\)
0.614849 + 0.788645i \(0.289217\pi\)
\(354\) 0 0
\(355\) 16.2796 + 28.1971i 0.864031 + 1.49655i
\(356\) 0 0
\(357\) 0.575418 0.996653i 0.0304543 0.0527485i
\(358\) 0 0
\(359\) 23.7552 1.25375 0.626876 0.779119i \(-0.284333\pi\)
0.626876 + 0.779119i \(0.284333\pi\)
\(360\) 0 0
\(361\) −10.9808 19.0193i −0.577938 1.00102i
\(362\) 0 0
\(363\) −14.6044 8.43185i −0.766532 0.442557i
\(364\) 0 0
\(365\) 9.08111 15.7289i 0.475327 0.823291i
\(366\) 0 0
\(367\) 17.5385 30.3775i 0.915501 1.58569i 0.109334 0.994005i \(-0.465128\pi\)
0.806167 0.591688i \(-0.201538\pi\)
\(368\) 0 0
\(369\) 13.2336 0.688913
\(370\) 0 0
\(371\) 2.57882i 0.133885i
\(372\) 0 0
\(373\) 24.4329 + 14.1063i 1.26509 + 0.730398i 0.974054 0.226316i \(-0.0726681\pi\)
0.291032 + 0.956713i \(0.406001\pi\)
\(374\) 0 0
\(375\) 17.2554 + 9.96239i 0.891063 + 0.514456i
\(376\) 0 0
\(377\) 11.3131 19.5949i 0.582655 1.00919i
\(378\) 0 0
\(379\) 6.51732 3.76278i 0.334772 0.193281i −0.323186 0.946336i \(-0.604754\pi\)
0.657958 + 0.753055i \(0.271420\pi\)
\(380\) 0 0
\(381\) 12.2554i 0.627861i
\(382\) 0 0
\(383\) −11.7019 6.75608i −0.597938 0.345220i 0.170292 0.985394i \(-0.445529\pi\)
−0.768230 + 0.640174i \(0.778862\pi\)
\(384\) 0 0
\(385\) 7.03881 4.06386i 0.358731 0.207113i
\(386\) 0 0
\(387\) 6.25350 + 10.8314i 0.317883 + 0.550590i
\(388\) 0 0
\(389\) 12.1713 21.0813i 0.617110 1.06887i −0.372901 0.927871i \(-0.621637\pi\)
0.990010 0.140994i \(-0.0450298\pi\)
\(390\) 0 0
\(391\) 3.37032 + 5.83757i 0.170444 + 0.295219i
\(392\) 0 0
\(393\) 10.2578i 0.517440i
\(394\) 0 0
\(395\) 17.7317 10.2374i 0.892177 0.515099i
\(396\) 0 0
\(397\) 37.9459i 1.90445i 0.305395 + 0.952226i \(0.401211\pi\)
−0.305395 + 0.952226i \(0.598789\pi\)
\(398\) 0 0
\(399\) 3.25064i 0.162736i
\(400\) 0 0
\(401\) 12.9699i 0.647685i 0.946111 + 0.323843i \(0.104975\pi\)
−0.946111 + 0.323843i \(0.895025\pi\)
\(402\) 0 0
\(403\) 0.628014 + 0.362584i 0.0312836 + 0.0180616i
\(404\) 0 0
\(405\) 3.30496 + 5.72436i 0.164225 + 0.284446i
\(406\) 0 0
\(407\) −3.07574 + 30.3615i −0.152459 + 1.50497i
\(408\) 0 0
\(409\) −28.6468 + 16.5392i −1.41649 + 0.817811i −0.995989 0.0894801i \(-0.971479\pi\)
−0.420502 + 0.907292i \(0.638146\pi\)
\(410\) 0 0
\(411\) 11.9786 + 6.91588i 0.590863 + 0.341135i
\(412\) 0 0
\(413\) −2.29599 −0.112978
\(414\) 0 0
\(415\) 45.6205i 2.23942i
\(416\) 0 0
\(417\) −25.7545 −1.26120
\(418\) 0 0
\(419\) 26.9463 15.5574i 1.31641 0.760031i 0.333263 0.942834i \(-0.391850\pi\)
0.983150 + 0.182803i \(0.0585170\pi\)
\(420\) 0 0
\(421\) −22.9118 −1.11665 −0.558327 0.829621i \(-0.688556\pi\)
−0.558327 + 0.829621i \(0.688556\pi\)
\(422\) 0 0
\(423\) 1.59696 + 2.76601i 0.0776467 + 0.134488i
\(424\) 0 0
\(425\) 18.4657 + 10.6612i 0.895720 + 0.517144i
\(426\) 0 0
\(427\) 1.20552 + 2.08803i 0.0583393 + 0.101047i
\(428\) 0 0
\(429\) −7.62237 13.2023i −0.368012 0.637415i
\(430\) 0 0
\(431\) −9.41345 5.43486i −0.453430 0.261788i 0.255848 0.966717i \(-0.417645\pi\)
−0.709278 + 0.704929i \(0.750979\pi\)
\(432\) 0 0
\(433\) −33.2508 −1.59793 −0.798966 0.601376i \(-0.794619\pi\)
−0.798966 + 0.601376i \(0.794619\pi\)
\(434\) 0 0
\(435\) 34.6719 20.0178i 1.66239 0.959780i
\(436\) 0 0
\(437\) −16.4888 9.51979i −0.788764 0.455393i
\(438\) 0 0
\(439\) 11.2077 + 6.47079i 0.534916 + 0.308834i 0.743016 0.669274i \(-0.233395\pi\)
−0.208100 + 0.978108i \(0.566728\pi\)
\(440\) 0 0
\(441\) 5.39848 9.35044i 0.257070 0.445259i
\(442\) 0 0
\(443\) 1.77080i 0.0841332i 0.999115 + 0.0420666i \(0.0133942\pi\)
−0.999115 + 0.0420666i \(0.986606\pi\)
\(444\) 0 0
\(445\) 43.3574i 2.05534i
\(446\) 0 0
\(447\) −11.8625 + 20.5465i −0.561079 + 0.971817i
\(448\) 0 0
\(449\) −14.8682 8.58415i −0.701673 0.405111i 0.106297 0.994334i \(-0.466101\pi\)
−0.807970 + 0.589223i \(0.799434\pi\)
\(450\) 0 0
\(451\) −36.3074 20.9621i −1.70965 0.987067i
\(452\) 0 0
\(453\) −1.36013 + 0.785272i −0.0639045 + 0.0368953i
\(454\) 0 0
\(455\) 4.13637 0.193916
\(456\) 0 0
\(457\) −18.3049 10.5684i −0.856268 0.494367i 0.00649254 0.999979i \(-0.497933\pi\)
−0.862761 + 0.505612i \(0.831267\pi\)
\(458\) 0 0
\(459\) 6.18017 + 10.7044i 0.288466 + 0.499637i
\(460\) 0 0
\(461\) 2.42205 + 4.19511i 0.112806 + 0.195386i 0.916901 0.399116i \(-0.130683\pi\)
−0.804095 + 0.594501i \(0.797350\pi\)
\(462\) 0 0
\(463\) −29.1589 16.8349i −1.35513 0.782383i −0.366165 0.930550i \(-0.619330\pi\)
−0.988962 + 0.148166i \(0.952663\pi\)
\(464\) 0 0
\(465\) 0.641568 + 1.11123i 0.0297520 + 0.0515320i
\(466\) 0 0
\(467\) −3.33438 −0.154297 −0.0771484 0.997020i \(-0.524582\pi\)
−0.0771484 + 0.997020i \(0.524582\pi\)
\(468\) 0 0
\(469\) −4.67575 + 2.69955i −0.215906 + 0.124653i
\(470\) 0 0
\(471\) 0.948987 0.0437270
\(472\) 0 0
\(473\) 39.6223i 1.82184i
\(474\) 0 0
\(475\) −60.2271 −2.76341
\(476\) 0 0
\(477\) 8.28727 + 4.78466i 0.379448 + 0.219075i
\(478\) 0 0
\(479\) −1.41671 + 0.817941i −0.0647314 + 0.0373727i −0.532016 0.846734i \(-0.678566\pi\)
0.467285 + 0.884107i \(0.345232\pi\)
\(480\) 0 0
\(481\) −9.08143 + 12.5989i −0.414078 + 0.574459i
\(482\) 0 0
\(483\) 0.755474 + 1.30852i 0.0343753 + 0.0595397i
\(484\) 0 0
\(485\) −7.87799 4.54836i −0.357721 0.206530i
\(486\) 0 0
\(487\) 5.27573i 0.239066i 0.992830 + 0.119533i \(0.0381397\pi\)
−0.992830 + 0.119533i \(0.961860\pi\)
\(488\) 0 0
\(489\) 1.39947i 0.0632864i
\(490\) 0 0
\(491\) 22.0882i 0.996828i −0.866939 0.498414i \(-0.833916\pi\)
0.866939 0.498414i \(-0.166084\pi\)
\(492\) 0 0
\(493\) 17.3894 10.0398i 0.783179 0.452168i
\(494\) 0 0
\(495\) 30.1599i 1.35559i
\(496\) 0 0
\(497\) 1.83020 + 3.17000i 0.0820958 + 0.142194i
\(498\) 0 0
\(499\) −9.83969 + 17.0428i −0.440485 + 0.762943i −0.997725 0.0674087i \(-0.978527\pi\)
0.557240 + 0.830351i \(0.311860\pi\)
\(500\) 0 0
\(501\) 0.546755 + 0.947008i 0.0244272 + 0.0423092i
\(502\) 0 0
\(503\) 31.4456 18.1551i 1.40209 0.809498i 0.407484 0.913212i \(-0.366406\pi\)
0.994607 + 0.103714i \(0.0330728\pi\)
\(504\) 0 0
\(505\) 17.7880 + 10.2699i 0.791557 + 0.457006i
\(506\) 0 0
\(507\) 7.71311i 0.342551i
\(508\) 0 0
\(509\) 5.13131 2.96256i 0.227441 0.131313i −0.381950 0.924183i \(-0.624747\pi\)
0.609391 + 0.792870i \(0.291414\pi\)
\(510\) 0 0
\(511\) 1.02093 1.76830i 0.0451631 0.0782248i
\(512\) 0 0
\(513\) −30.2355 17.4565i −1.33493 0.770722i
\(514\) 0 0
\(515\) 13.3559 + 7.71106i 0.588533 + 0.339790i
\(516\) 0 0
\(517\) 10.1184i 0.445005i
\(518\) 0 0
\(519\) −21.1570 −0.928688
\(520\) 0 0
\(521\) −11.1420 + 19.2986i −0.488141 + 0.845486i −0.999907 0.0136393i \(-0.995658\pi\)
0.511766 + 0.859125i \(0.328992\pi\)
\(522\) 0 0
\(523\) −12.7748 + 22.1267i −0.558604 + 0.967531i 0.439009 + 0.898483i \(0.355330\pi\)
−0.997613 + 0.0690486i \(0.978004\pi\)
\(524\) 0 0
\(525\) 4.13919 + 2.38976i 0.180649 + 0.104298i
\(526\) 0 0
\(527\) 0.321773 + 0.557328i 0.0140167 + 0.0242776i
\(528\) 0 0
\(529\) 14.1501 0.615222
\(530\) 0 0
\(531\) 4.25992 7.37840i 0.184865 0.320195i
\(532\) 0 0
\(533\) −10.6681 18.4776i −0.462086 0.800356i
\(534\) 0 0
\(535\) −16.5418 + 9.55040i −0.715163 + 0.412900i
\(536\) 0 0
\(537\) 8.58645 + 4.95739i 0.370533 + 0.213927i
\(538\) 0 0
\(539\) −29.6223 + 17.1025i −1.27592 + 0.736655i
\(540\) 0 0
\(541\) −1.59945 −0.0687659 −0.0343829 0.999409i \(-0.510947\pi\)
−0.0343829 + 0.999409i \(0.510947\pi\)
\(542\) 0 0
\(543\) −1.57611 2.72990i −0.0676374 0.117151i
\(544\) 0 0
\(545\) −58.5559 −2.50826
\(546\) 0 0
\(547\) 20.8576 0.891806 0.445903 0.895081i \(-0.352883\pi\)
0.445903 + 0.895081i \(0.352883\pi\)
\(548\) 0 0
\(549\) −8.94676 −0.381839
\(550\) 0 0
\(551\) −28.3583 + 49.1180i −1.20810 + 2.09250i
\(552\) 0 0
\(553\) 1.99345 1.15092i 0.0847701 0.0489420i
\(554\) 0 0
\(555\) −25.0626 + 11.2717i −1.06385 + 0.478456i
\(556\) 0 0
\(557\) 13.7514 + 23.8181i 0.582665 + 1.00921i 0.995162 + 0.0982469i \(0.0313235\pi\)
−0.412497 + 0.910959i \(0.635343\pi\)
\(558\) 0 0
\(559\) 10.0823 17.4631i 0.426438 0.738611i
\(560\) 0 0
\(561\) 13.5289i 0.571189i
\(562\) 0 0
\(563\) −19.3088 −0.813771 −0.406885 0.913479i \(-0.633385\pi\)
−0.406885 + 0.913479i \(0.633385\pi\)
\(564\) 0 0
\(565\) 14.5803i 0.613399i
\(566\) 0 0
\(567\) 0.371554 + 0.643550i 0.0156038 + 0.0270266i
\(568\) 0 0
\(569\) 19.8789i 0.833366i −0.909052 0.416683i \(-0.863193\pi\)
0.909052 0.416683i \(-0.136807\pi\)
\(570\) 0 0
\(571\) −20.4611 + 11.8132i −0.856270 + 0.494368i −0.862761 0.505611i \(-0.831267\pi\)
0.00649165 + 0.999979i \(0.497934\pi\)
\(572\) 0 0
\(573\) −2.42957 + 4.20815i −0.101497 + 0.175798i
\(574\) 0 0
\(575\) −24.2439 + 13.9972i −1.01104 + 0.583725i
\(576\) 0 0
\(577\) 13.9615 8.06069i 0.581226 0.335571i −0.180395 0.983594i \(-0.557737\pi\)
0.761620 + 0.648023i \(0.224404\pi\)
\(578\) 0 0
\(579\) 14.4473 25.0234i 0.600408 1.03994i
\(580\) 0 0
\(581\) 5.12880i 0.212778i
\(582\) 0 0
\(583\) −15.1579 26.2542i −0.627775 1.08734i
\(584\) 0 0
\(585\) −7.67451 + 13.2926i −0.317302 + 0.549583i
\(586\) 0 0
\(587\) −17.1134 + 29.6413i −0.706345 + 1.22343i 0.259858 + 0.965647i \(0.416324\pi\)
−0.966204 + 0.257779i \(0.917009\pi\)
\(588\) 0 0
\(589\) −1.57422 0.908879i −0.0648648 0.0374497i
\(590\) 0 0
\(591\) 11.5050 0.473252
\(592\) 0 0
\(593\) 13.2117 0.542539 0.271269 0.962503i \(-0.412557\pi\)
0.271269 + 0.962503i \(0.412557\pi\)
\(594\) 0 0
\(595\) 3.17901 + 1.83540i 0.130327 + 0.0752441i
\(596\) 0 0
\(597\) −3.70130 + 6.41084i −0.151484 + 0.262378i
\(598\) 0 0
\(599\) −4.55540 + 7.89019i −0.186129 + 0.322384i −0.943956 0.330070i \(-0.892927\pi\)
0.757828 + 0.652455i \(0.226261\pi\)
\(600\) 0 0
\(601\) 8.08129 + 13.9972i 0.329643 + 0.570958i 0.982441 0.186574i \(-0.0597384\pi\)
−0.652798 + 0.757532i \(0.726405\pi\)
\(602\) 0 0
\(603\) 20.0346i 0.815874i
\(604\) 0 0
\(605\) 26.8949 46.5834i 1.09343 1.89388i
\(606\) 0 0
\(607\) 4.02567 2.32422i 0.163397 0.0943374i −0.416072 0.909332i \(-0.636593\pi\)
0.579469 + 0.814995i \(0.303260\pi\)
\(608\) 0 0
\(609\) 3.89792 2.25046i 0.157952 0.0911934i
\(610\) 0 0
\(611\) 2.57473 4.45956i 0.104162 0.180415i
\(612\) 0 0
\(613\) 23.5335 13.5871i 0.950508 0.548776i 0.0572692 0.998359i \(-0.481761\pi\)
0.893239 + 0.449583i \(0.148427\pi\)
\(614\) 0 0
\(615\) 37.7529i 1.52234i
\(616\) 0 0
\(617\) −3.69054 6.39220i −0.148575 0.257340i 0.782126 0.623121i \(-0.214135\pi\)
−0.930701 + 0.365780i \(0.880802\pi\)
\(618\) 0 0
\(619\) 23.3239i 0.937465i −0.883340 0.468732i \(-0.844711\pi\)
0.883340 0.468732i \(-0.155289\pi\)
\(620\) 0 0
\(621\) −16.2281 −0.651210
\(622\) 0 0
\(623\) 4.87437i 0.195287i
\(624\) 0 0
\(625\) −8.25113 + 14.2914i −0.330045 + 0.571655i
\(626\) 0 0
\(627\) 19.1068 + 33.0939i 0.763051 + 1.32164i
\(628\) 0 0
\(629\) −12.5699 + 5.65322i −0.501196 + 0.225409i
\(630\) 0 0
\(631\) −29.8300 + 17.2224i −1.18751 + 0.685611i −0.957741 0.287633i \(-0.907132\pi\)
−0.229773 + 0.973244i \(0.573798\pi\)
\(632\) 0 0
\(633\) 4.85767 8.41373i 0.193075 0.334416i
\(634\) 0 0
\(635\) −39.0907 −1.55127
\(636\) 0 0
\(637\) −17.4076 −0.689716
\(638\) 0 0
\(639\) −13.5828 −0.537328
\(640\) 0 0
\(641\) 0.434949 + 0.753353i 0.0171794 + 0.0297557i 0.874487 0.485048i \(-0.161198\pi\)
−0.857308 + 0.514804i \(0.827865\pi\)
\(642\) 0 0
\(643\) 22.5045 0.887492 0.443746 0.896153i \(-0.353649\pi\)
0.443746 + 0.896153i \(0.353649\pi\)
\(644\) 0 0
\(645\) 30.8998 17.8400i 1.21668 0.702450i
\(646\) 0 0
\(647\) −9.57728 5.52945i −0.376522 0.217385i 0.299782 0.954008i \(-0.403086\pi\)
−0.676304 + 0.736623i \(0.736419\pi\)
\(648\) 0 0
\(649\) −23.3749 + 13.4955i −0.917544 + 0.529744i
\(650\) 0 0
\(651\) 0.0721271 + 0.124928i 0.00282688 + 0.00489630i
\(652\) 0 0
\(653\) −16.3051 + 28.2413i −0.638068 + 1.10517i 0.347788 + 0.937573i \(0.386933\pi\)
−0.985856 + 0.167593i \(0.946401\pi\)
\(654\) 0 0
\(655\) −32.7193 −1.27845
\(656\) 0 0
\(657\) 3.78840 + 6.56169i 0.147799 + 0.255996i
\(658\) 0 0
\(659\) 35.2571 + 20.3557i 1.37342 + 0.792945i 0.991357 0.131191i \(-0.0418800\pi\)
0.382064 + 0.924136i \(0.375213\pi\)
\(660\) 0 0
\(661\) 4.03995 6.99740i 0.157136 0.272167i −0.776699 0.629872i \(-0.783107\pi\)
0.933835 + 0.357705i \(0.116441\pi\)
\(662\) 0 0
\(663\) 3.44257 5.96270i 0.133698 0.231572i
\(664\) 0 0
\(665\) −10.3685 −0.402074
\(666\) 0 0
\(667\) 26.3627i 1.02077i
\(668\) 0 0
\(669\) 7.30580 + 4.21801i 0.282459 + 0.163078i
\(670\) 0 0
\(671\) 24.5462 + 14.1717i 0.947594 + 0.547094i
\(672\) 0 0
\(673\) −0.0151282 + 0.0262027i −0.000583148 + 0.00101004i −0.866317 0.499495i \(-0.833519\pi\)
0.865734 + 0.500505i \(0.166852\pi\)
\(674\) 0 0
\(675\) −44.4562 + 25.6668i −1.71112 + 0.987915i
\(676\) 0 0
\(677\) 19.8875i 0.764340i −0.924092 0.382170i \(-0.875177\pi\)
0.924092 0.382170i \(-0.124823\pi\)
\(678\) 0 0
\(679\) −0.885668 0.511340i −0.0339888 0.0196234i
\(680\) 0 0
\(681\) 12.8585 7.42384i 0.492738 0.284482i
\(682\) 0 0
\(683\) −15.3476 26.5829i −0.587261 1.01717i −0.994589 0.103884i \(-0.966873\pi\)
0.407329 0.913282i \(-0.366460\pi\)
\(684\) 0 0
\(685\) −22.0595 + 38.2081i −0.842849 + 1.45986i
\(686\) 0 0
\(687\) −3.12682 5.41581i −0.119296 0.206626i
\(688\) 0 0
\(689\) 15.4283i 0.587773i
\(690\) 0 0
\(691\) −21.0711 + 12.1654i −0.801584 + 0.462795i −0.844025 0.536304i \(-0.819820\pi\)
0.0424409 + 0.999099i \(0.486487\pi\)
\(692\) 0 0
\(693\) 3.39066i 0.128801i
\(694\) 0 0
\(695\) 82.1486i 3.11607i
\(696\) 0 0
\(697\) 18.9347i 0.717201i
\(698\) 0 0
\(699\) 12.8355 + 7.41060i 0.485484 + 0.280294i
\(700\) 0 0
\(701\) −12.9329 22.4005i −0.488469 0.846054i 0.511443 0.859317i \(-0.329111\pi\)
−0.999912 + 0.0132638i \(0.995778\pi\)
\(702\) 0 0
\(703\) 22.7642 31.5812i 0.858566 1.19111i
\(704\) 0 0
\(705\) 7.89090 4.55581i 0.297188 0.171582i
\(706\) 0 0
\(707\) 1.99979 + 1.15458i 0.0752097 + 0.0434223i
\(708\) 0 0
\(709\) −41.3033 −1.55118 −0.775589 0.631238i \(-0.782547\pi\)
−0.775589 + 0.631238i \(0.782547\pi\)
\(710\) 0 0
\(711\) 8.54152i 0.320332i
\(712\) 0 0
\(713\) −0.844921 −0.0316425
\(714\) 0 0
\(715\) 42.1113 24.3130i 1.57487 0.909253i
\(716\) 0 0
\(717\) 31.3256 1.16988
\(718\) 0 0
\(719\) 26.1816 + 45.3478i 0.976407 + 1.69119i 0.675210 + 0.737625i \(0.264053\pi\)
0.301197 + 0.953562i \(0.402614\pi\)
\(720\) 0 0
\(721\) 1.50152 + 0.866901i 0.0559194 + 0.0322851i
\(722\) 0 0
\(723\) 8.50115 + 14.7244i 0.316161 + 0.547607i
\(724\) 0 0
\(725\) 41.6960 + 72.2196i 1.54855 + 2.68217i
\(726\) 0 0
\(727\) 1.52964 + 0.883136i 0.0567311 + 0.0327537i 0.528097 0.849184i \(-0.322906\pi\)
−0.471366 + 0.881938i \(0.656239\pi\)
\(728\) 0 0
\(729\) −22.2339 −0.823476
\(730\) 0 0
\(731\) 15.4976 8.94752i 0.573198 0.330936i
\(732\) 0 0
\(733\) 38.1733 + 22.0394i 1.40996 + 0.814043i 0.995384 0.0959706i \(-0.0305955\pi\)
0.414579 + 0.910013i \(0.363929\pi\)
\(734\) 0 0
\(735\) −26.6750 15.4008i −0.983923 0.568068i
\(736\) 0 0
\(737\) −31.7350 + 54.9666i −1.16897 + 2.02472i
\(738\) 0 0
\(739\) 21.1088i 0.776498i 0.921554 + 0.388249i \(0.126920\pi\)
−0.921554 + 0.388249i \(0.873080\pi\)
\(740\) 0 0
\(741\) 19.4477i 0.714430i
\(742\) 0 0
\(743\) −5.22651 + 9.05258i −0.191742 + 0.332107i −0.945828 0.324669i \(-0.894747\pi\)
0.754086 + 0.656776i \(0.228080\pi\)
\(744\) 0 0
\(745\) −65.5369 37.8377i −2.40109 1.38627i
\(746\) 0 0
\(747\) 16.4819 + 9.51582i 0.603041 + 0.348166i
\(748\) 0 0
\(749\) −1.85968 + 1.07369i −0.0679511 + 0.0392316i
\(750\) 0 0
\(751\) 31.6105 1.15348 0.576742 0.816927i \(-0.304324\pi\)
0.576742 + 0.816927i \(0.304324\pi\)
\(752\) 0 0
\(753\) −8.17617 4.72051i −0.297956 0.172025i
\(754\) 0 0
\(755\) −2.50477 4.33839i −0.0911579 0.157890i
\(756\) 0 0
\(757\) −7.68179 13.3052i −0.279199 0.483587i 0.691987 0.721910i \(-0.256736\pi\)
−0.971186 + 0.238323i \(0.923402\pi\)
\(758\) 0 0
\(759\) 15.3825 + 8.88112i 0.558351 + 0.322364i
\(760\) 0 0
\(761\) 6.77803 + 11.7399i 0.245703 + 0.425571i 0.962329 0.271887i \(-0.0876478\pi\)
−0.716626 + 0.697458i \(0.754314\pi\)
\(762\) 0 0
\(763\) −6.58304 −0.238322
\(764\) 0 0
\(765\) −11.7965 + 6.81070i −0.426503 + 0.246241i
\(766\) 0 0
\(767\) −13.7363 −0.495989
\(768\) 0 0
\(769\) 0.216663i 0.00781308i 0.999992 + 0.00390654i \(0.00124349\pi\)
−0.999992 + 0.00390654i \(0.998757\pi\)
\(770\) 0 0
\(771\) 0.870258 0.0313416
\(772\) 0 0
\(773\) 10.0040 + 5.77582i 0.359819 + 0.207742i 0.669002 0.743261i \(-0.266722\pi\)
−0.309182 + 0.951003i \(0.600055\pi\)
\(774\) 0 0
\(775\) −2.31463 + 1.33635i −0.0831440 + 0.0480032i
\(776\) 0 0
\(777\) −2.81761 + 1.26720i −0.101081 + 0.0454605i
\(778\) 0 0
\(779\) 26.7414 + 46.3174i 0.958108 + 1.65949i
\(780\) 0 0
\(781\) 37.2656 + 21.5153i 1.33347 + 0.769877i
\(782\) 0 0
\(783\) 48.3414i 1.72758i
\(784\) 0 0
\(785\) 3.02697i 0.108037i
\(786\) 0 0
\(787\) 39.2723i 1.39991i −0.714189 0.699953i \(-0.753204\pi\)
0.714189 0.699953i \(-0.246796\pi\)
\(788\) 0 0
\(789\) −28.8274 + 16.6435i −1.02628 + 0.592524i
\(790\) 0 0
\(791\) 1.63917i 0.0582820i
\(792\) 0 0
\(793\) 7.21231 + 12.4921i 0.256117 + 0.443607i
\(794\) 0 0
\(795\) 13.6497 23.6420i 0.484105 0.838495i
\(796\) 0 0
\(797\) −19.4526 33.6930i −0.689048 1.19347i −0.972146 0.234375i \(-0.924696\pi\)
0.283098 0.959091i \(-0.408638\pi\)
\(798\) 0 0
\(799\) 3.95762 2.28493i 0.140010 0.0808350i
\(800\) 0 0
\(801\) 15.6643 + 9.04376i 0.553469 + 0.319546i
\(802\) 0 0
\(803\) 24.0034i 0.847061i
\(804\) 0 0
\(805\) −4.17376 + 2.40972i −0.147106 + 0.0849316i
\(806\) 0 0
\(807\) 4.62622 8.01284i 0.162851 0.282065i
\(808\) 0 0
\(809\) 41.3750 + 23.8879i 1.45467 + 0.839853i 0.998741 0.0501646i \(-0.0159746\pi\)
0.455927 + 0.890017i \(0.349308\pi\)
\(810\) 0 0
\(811\) −33.0646 19.0899i −1.16106 0.670336i −0.209500 0.977809i \(-0.567184\pi\)
−0.951557 + 0.307472i \(0.900517\pi\)
\(812\) 0 0
\(813\) 22.2775i 0.781306i
\(814\) 0 0
\(815\) 4.46388 0.156363
\(816\) 0 0
\(817\) −25.2731 + 43.7743i −0.884194 + 1.53147i
\(818\) 0 0
\(819\) −0.862792 + 1.49440i −0.0301484 + 0.0522186i
\(820\) 0 0
\(821\) −20.4469 11.8050i −0.713601 0.411997i 0.0987922 0.995108i \(-0.468502\pi\)
−0.812393 + 0.583111i \(0.801835\pi\)
\(822\) 0 0
\(823\) −23.5696 40.8237i −0.821584 1.42303i −0.904502 0.426469i \(-0.859757\pi\)
0.0829178 0.996556i \(-0.473576\pi\)
\(824\) 0 0
\(825\) 56.1865 1.95616
\(826\) 0 0
\(827\) 18.2448 31.6008i 0.634432 1.09887i −0.352203 0.935924i \(-0.614567\pi\)
0.986635 0.162945i \(-0.0520993\pi\)
\(828\) 0 0
\(829\) 0.443993 + 0.769018i 0.0154205 + 0.0267091i 0.873633 0.486586i \(-0.161758\pi\)
−0.858212 + 0.513295i \(0.828425\pi\)
\(830\) 0 0
\(831\) −30.8598 + 17.8169i −1.07052 + 0.618063i
\(832\) 0 0
\(833\) −13.3786 7.72416i −0.463542 0.267626i
\(834\) 0 0
\(835\) −3.02066 + 1.74398i −0.104534 + 0.0603528i
\(836\) 0 0
\(837\) −1.54934 −0.0535529
\(838\) 0 0
\(839\) −0.939799 1.62778i −0.0324455 0.0561972i 0.849347 0.527835i \(-0.176996\pi\)
−0.881792 + 0.471638i \(0.843663\pi\)
\(840\) 0 0
\(841\) 49.5312 1.70797
\(842\) 0 0
\(843\) −11.5434 −0.397577
\(844\) 0 0
\(845\) −24.6024 −0.846347
\(846\) 0 0
\(847\) 3.02361 5.23705i 0.103893 0.179947i
\(848\) 0 0
\(849\) 17.9544 10.3660i 0.616192 0.355759i
\(850\) 0 0
\(851\) 1.82381 18.0033i 0.0625193 0.617146i
\(852\) 0 0
\(853\) −10.7629 18.6419i −0.368516 0.638288i 0.620818 0.783955i \(-0.286801\pi\)
−0.989334 + 0.145667i \(0.953467\pi\)
\(854\) 0 0
\(855\) 19.2375 33.3203i 0.657908 1.13953i
\(856\) 0 0
\(857\) 5.86496i 0.200343i 0.994970 + 0.100172i \(0.0319392\pi\)
−0.994970 + 0.100172i \(0.968061\pi\)
\(858\) 0 0
\(859\) 34.0633 1.16223 0.581113 0.813823i \(-0.302618\pi\)
0.581113 + 0.813823i \(0.302618\pi\)
\(860\) 0 0
\(861\) 4.24430i 0.144645i
\(862\) 0 0
\(863\) 1.29900 + 2.24993i 0.0442184 + 0.0765886i 0.887288 0.461217i \(-0.152587\pi\)
−0.843069 + 0.537805i \(0.819254\pi\)
\(864\) 0 0
\(865\) 67.4841i 2.29453i
\(866\) 0 0
\(867\) −12.2298 + 7.06089i −0.415346 + 0.239800i
\(868\) 0 0
\(869\) 13.5298 23.4344i 0.458968 0.794956i
\(870\) 0 0
\(871\) −27.9737 + 16.1506i −0.947854 + 0.547244i
\(872\) 0 0
\(873\) 3.28648 1.89745i 0.111231 0.0642191i
\(874\) 0 0
\(875\) −3.57246 + 6.18767i −0.120771 + 0.209182i
\(876\) 0 0
\(877\) 20.1301i 0.679747i −0.940471 0.339873i \(-0.889616\pi\)
0.940471 0.339873i \(-0.110384\pi\)
\(878\) 0 0
\(879\) 6.33352 + 10.9700i 0.213624 + 0.370008i
\(880\) 0 0
\(881\) 7.56128 13.0965i 0.254746 0.441233i −0.710080 0.704121i \(-0.751341\pi\)
0.964827 + 0.262887i \(0.0846748\pi\)
\(882\) 0 0
\(883\) 17.6714 30.6078i 0.594691 1.03003i −0.398900 0.916995i \(-0.630608\pi\)
0.993590 0.113040i \(-0.0360588\pi\)
\(884\) 0 0
\(885\) −21.0492 12.1527i −0.707560 0.408510i
\(886\) 0 0
\(887\) −25.2875 −0.849070 −0.424535 0.905412i \(-0.639562\pi\)
−0.424535 + 0.905412i \(0.639562\pi\)
\(888\) 0 0
\(889\) −4.39470 −0.147394
\(890\) 0 0
\(891\) 7.56538 + 4.36787i 0.253450 + 0.146329i
\(892\) 0 0
\(893\) −6.45400 + 11.1787i −0.215975 + 0.374080i
\(894\) 0 0
\(895\) −15.8125 + 27.3881i −0.528554 + 0.915482i
\(896\) 0 0
\(897\) 4.51980 + 7.82852i 0.150912 + 0.261387i
\(898\) 0 0
\(899\) 2.51691i 0.0839438i
\(900\) 0 0
\(901\) 6.84590 11.8575i 0.228070 0.395029i
\(902\) 0 0
\(903\) 3.47385 2.00563i 0.115603 0.0667432i
\(904\) 0 0
\(905\) 8.70753 5.02729i 0.289448 0.167113i
\(906\) 0 0
\(907\) 28.1116 48.6907i 0.933430 1.61675i 0.156020 0.987754i \(-0.450134\pi\)
0.777410 0.628994i \(-0.216533\pi\)
\(908\) 0 0
\(909\) −7.42069 + 4.28434i −0.246129 + 0.142103i
\(910\) 0 0
\(911\) 4.64280i 0.153823i −0.997038 0.0769115i \(-0.975494\pi\)
0.997038 0.0769115i \(-0.0245059\pi\)
\(912\) 0 0
\(913\) −30.1463 52.2148i −0.997695 1.72806i
\(914\) 0 0
\(915\) 25.5234i 0.843777i
\(916\) 0 0
\(917\) −3.67840 −0.121472
\(918\) 0 0
\(919\) 35.6030i 1.17444i 0.809429 + 0.587218i \(0.199777\pi\)
−0.809429 + 0.587218i \(0.800223\pi\)
\(920\) 0 0
\(921\) −11.6707 + 20.2143i −0.384564 + 0.666084i
\(922\) 0 0
\(923\) 10.9496 + 18.9653i 0.360410 + 0.624249i
\(924\) 0 0
\(925\) −23.4783 52.2040i −0.771962 1.71646i
\(926\) 0 0
\(927\) −5.57174 + 3.21685i −0.183000 + 0.105655i
\(928\) 0 0
\(929\) −8.97349 + 15.5425i −0.294411 + 0.509934i −0.974848 0.222872i \(-0.928457\pi\)
0.680437 + 0.732807i \(0.261790\pi\)
\(930\) 0 0
\(931\) 43.6352 1.43009
\(932\) 0 0
\(933\) 15.9132 0.520973
\(934\) 0 0
\(935\) 43.1528 1.41125
\(936\) 0 0
\(937\) −9.51155 16.4745i −0.310729 0.538198i 0.667792 0.744348i \(-0.267240\pi\)
−0.978520 + 0.206150i \(0.933906\pi\)
\(938\) 0 0
\(939\) 22.3864 0.730551
\(940\) 0 0
\(941\) −28.6171 + 16.5221i −0.932892 + 0.538605i −0.887725 0.460374i \(-0.847715\pi\)
−0.0451668 + 0.998979i \(0.514382\pi\)
\(942\) 0 0
\(943\) 21.5290 + 12.4298i 0.701081 + 0.404769i
\(944\) 0 0
\(945\) −7.65345 + 4.41872i −0.248967 + 0.143741i
\(946\) 0 0
\(947\) −22.2200 38.4861i −0.722052 1.25063i −0.960176 0.279396i \(-0.909866\pi\)
0.238124 0.971235i \(-0.423468\pi\)
\(948\) 0 0
\(949\) 6.10793 10.5792i 0.198272 0.343417i
\(950\) 0 0
\(951\) 1.41557 0.0459029
\(952\) 0 0
\(953\) −12.2359 21.1931i −0.396359 0.686513i 0.596915 0.802305i \(-0.296393\pi\)
−0.993274 + 0.115791i \(0.963060\pi\)
\(954\) 0 0
\(955\) −13.4227 7.74957i −0.434347 0.250770i
\(956\) 0 0
\(957\) 26.4557 45.8227i 0.855193 1.48124i
\(958\) 0 0
\(959\) −2.47999 + 4.29547i −0.0800831 + 0.138708i
\(960\) 0 0
\(961\) 30.9193 0.997398
\(962\) 0 0
\(963\) 7.96834i 0.256776i
\(964\) 0 0
\(965\) 79.8167 + 46.0822i 2.56939 + 1.48344i
\(966\) 0 0
\(967\) 31.3620 + 18.1068i 1.00853 + 0.582277i 0.910762 0.412932i \(-0.135495\pi\)
0.0977711 + 0.995209i \(0.468829\pi\)
\(968\) 0 0
\(969\) −8.62939 + 14.9465i −0.277216 + 0.480152i
\(970\) 0 0
\(971\) −28.9581 + 16.7190i −0.929311 + 0.536538i −0.886594 0.462549i \(-0.846935\pi\)
−0.0427176 + 0.999087i \(0.513602\pi\)
\(972\) 0 0
\(973\) 9.23540i 0.296073i
\(974\) 0 0
\(975\) 24.7636 + 14.2973i 0.793071 + 0.457880i
\(976\) 0 0
\(977\) 23.0664 13.3174i 0.737958 0.426060i −0.0833682 0.996519i \(-0.526568\pi\)
0.821327 + 0.570458i \(0.193234\pi\)
\(978\) 0 0
\(979\) −28.6508 49.6246i −0.915683 1.58601i
\(980\) 0 0
\(981\) 12.2140 21.1552i 0.389962 0.675435i
\(982\) 0 0
\(983\) −12.1934 21.1195i −0.388908 0.673608i 0.603395 0.797442i \(-0.293814\pi\)
−0.992303 + 0.123834i \(0.960481\pi\)
\(984\) 0 0
\(985\) 36.6973i 1.16927i
\(986\) 0 0
\(987\) 0.887119 0.512179i 0.0282373 0.0163028i
\(988\) 0 0
\(989\) 23.4946i 0.747086i
\(990\) 0 0
\(991\) 16.0860i 0.510988i −0.966811 0.255494i \(-0.917762\pi\)
0.966811 0.255494i \(-0.0822382\pi\)
\(992\) 0 0
\(993\) 14.3727i 0.456103i
\(994\) 0 0
\(995\) −20.4485 11.8060i −0.648263 0.374275i
\(996\) 0 0
\(997\) 10.6753 + 18.4902i 0.338091 + 0.585590i 0.984074 0.177762i \(-0.0568856\pi\)
−0.645983 + 0.763352i \(0.723552\pi\)
\(998\) 0 0
\(999\) 3.34432 33.0128i 0.105810 1.04448i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1184.2.y.a.529.25 72
4.3 odd 2 296.2.q.a.85.24 yes 72
8.3 odd 2 296.2.q.a.85.12 72
8.5 even 2 inner 1184.2.y.a.529.12 72
37.27 even 6 inner 1184.2.y.a.1137.12 72
148.27 odd 6 296.2.q.a.101.12 yes 72
296.27 odd 6 296.2.q.a.101.24 yes 72
296.101 even 6 inner 1184.2.y.a.1137.25 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.q.a.85.12 72 8.3 odd 2
296.2.q.a.85.24 yes 72 4.3 odd 2
296.2.q.a.101.12 yes 72 148.27 odd 6
296.2.q.a.101.24 yes 72 296.27 odd 6
1184.2.y.a.529.12 72 8.5 even 2 inner
1184.2.y.a.529.25 72 1.1 even 1 trivial
1184.2.y.a.1137.12 72 37.27 even 6 inner
1184.2.y.a.1137.25 72 296.101 even 6 inner