Properties

Label 1184.2.y.a.529.21
Level $1184$
Weight $2$
Character 1184.529
Analytic conductor $9.454$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1184,2,Mod(529,1184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1184, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1184.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1184 = 2^{5} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1184.y (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.45428759932\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 296)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.21
Character \(\chi\) \(=\) 1184.529
Dual form 1184.2.y.a.1137.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.576079 + 0.332599i) q^{3} +(-1.60874 + 2.78642i) q^{5} +(0.874135 - 1.51405i) q^{7} +(-1.27876 - 2.21487i) q^{9} -3.96429i q^{11} +(0.268480 - 0.465021i) q^{13} +(-1.85352 + 1.07013i) q^{15} +(6.04097 - 3.48776i) q^{17} +(-2.21841 + 3.84239i) q^{19} +(1.00714 - 0.581474i) q^{21} -2.14898i q^{23} +(-2.67607 - 4.63509i) q^{25} -3.69685i q^{27} +3.76282 q^{29} -1.95692i q^{31} +(1.31852 - 2.28375i) q^{33} +(2.81251 + 4.87141i) q^{35} +(0.0791047 - 6.08225i) q^{37} +(0.309331 - 0.178593i) q^{39} +(1.70672 - 2.95613i) q^{41} +7.07866 q^{43} +8.22873 q^{45} -8.02359 q^{47} +(1.97178 + 3.41521i) q^{49} +4.64010 q^{51} +(0.341615 - 0.197231i) q^{53} +(11.0462 + 6.37751i) q^{55} +(-2.55596 + 1.47568i) q^{57} +(4.26642 + 7.38966i) q^{59} +(0.607843 - 1.05282i) q^{61} -4.47122 q^{63} +(0.863828 + 1.49619i) q^{65} +(7.25109 + 4.18642i) q^{67} +(0.714748 - 1.23798i) q^{69} +(2.54377 - 4.40594i) q^{71} +2.30870 q^{73} -3.56024i q^{75} +(-6.00212 - 3.46533i) q^{77} +(2.04786 + 1.18233i) q^{79} +(-2.60670 + 4.51493i) q^{81} +(-1.40655 + 0.812073i) q^{83} +22.4435i q^{85} +(2.16768 + 1.25151i) q^{87} +(13.0089 - 7.51069i) q^{89} +(-0.469376 - 0.812982i) q^{91} +(0.650872 - 1.12734i) q^{93} +(-7.13767 - 12.3628i) q^{95} -16.7828i q^{97} +(-8.78039 + 5.06936i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 2 q^{7} + 30 q^{9} + 6 q^{15} - 12 q^{17} - 32 q^{25} + 4 q^{33} + 6 q^{39} - 32 q^{47} - 18 q^{49} - 24 q^{55} - 6 q^{57} - 8 q^{63} + 6 q^{65} - 18 q^{71} - 64 q^{73} - 54 q^{79} - 16 q^{81} + 108 q^{87}+ \cdots - 50 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1184\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(705\) \(741\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.576079 + 0.332599i 0.332599 + 0.192026i 0.656995 0.753895i \(-0.271827\pi\)
−0.324395 + 0.945922i \(0.605161\pi\)
\(4\) 0 0
\(5\) −1.60874 + 2.78642i −0.719449 + 1.24612i 0.241769 + 0.970334i \(0.422272\pi\)
−0.961218 + 0.275789i \(0.911061\pi\)
\(6\) 0 0
\(7\) 0.874135 1.51405i 0.330392 0.572256i −0.652197 0.758050i \(-0.726152\pi\)
0.982589 + 0.185794i \(0.0594857\pi\)
\(8\) 0 0
\(9\) −1.27876 2.21487i −0.426252 0.738290i
\(10\) 0 0
\(11\) 3.96429i 1.19528i −0.801765 0.597640i \(-0.796105\pi\)
0.801765 0.597640i \(-0.203895\pi\)
\(12\) 0 0
\(13\) 0.268480 0.465021i 0.0744630 0.128974i −0.826390 0.563099i \(-0.809609\pi\)
0.900853 + 0.434125i \(0.142942\pi\)
\(14\) 0 0
\(15\) −1.85352 + 1.07013i −0.478577 + 0.276306i
\(16\) 0 0
\(17\) 6.04097 3.48776i 1.46515 0.845905i 0.465908 0.884833i \(-0.345728\pi\)
0.999242 + 0.0389282i \(0.0123943\pi\)
\(18\) 0 0
\(19\) −2.21841 + 3.84239i −0.508938 + 0.881506i 0.491009 + 0.871155i \(0.336628\pi\)
−0.999946 + 0.0103511i \(0.996705\pi\)
\(20\) 0 0
\(21\) 1.00714 0.581474i 0.219776 0.126888i
\(22\) 0 0
\(23\) 2.14898i 0.448093i −0.974579 0.224046i \(-0.928073\pi\)
0.974579 0.224046i \(-0.0719267\pi\)
\(24\) 0 0
\(25\) −2.67607 4.63509i −0.535215 0.927019i
\(26\) 0 0
\(27\) 3.69685i 0.711459i
\(28\) 0 0
\(29\) 3.76282 0.698739 0.349369 0.936985i \(-0.386396\pi\)
0.349369 + 0.936985i \(0.386396\pi\)
\(30\) 0 0
\(31\) 1.95692i 0.351474i −0.984437 0.175737i \(-0.943769\pi\)
0.984437 0.175737i \(-0.0562308\pi\)
\(32\) 0 0
\(33\) 1.31852 2.28375i 0.229525 0.397549i
\(34\) 0 0
\(35\) 2.81251 + 4.87141i 0.475401 + 0.823418i
\(36\) 0 0
\(37\) 0.0791047 6.08225i 0.0130047 0.999915i
\(38\) 0 0
\(39\) 0.309331 0.178593i 0.0495327 0.0285977i
\(40\) 0 0
\(41\) 1.70672 2.95613i 0.266545 0.461670i −0.701422 0.712746i \(-0.747451\pi\)
0.967967 + 0.251076i \(0.0807846\pi\)
\(42\) 0 0
\(43\) 7.07866 1.07949 0.539743 0.841830i \(-0.318521\pi\)
0.539743 + 0.841830i \(0.318521\pi\)
\(44\) 0 0
\(45\) 8.22873 1.22667
\(46\) 0 0
\(47\) −8.02359 −1.17036 −0.585180 0.810903i \(-0.698976\pi\)
−0.585180 + 0.810903i \(0.698976\pi\)
\(48\) 0 0
\(49\) 1.97178 + 3.41521i 0.281682 + 0.487888i
\(50\) 0 0
\(51\) 4.64010 0.649744
\(52\) 0 0
\(53\) 0.341615 0.197231i 0.0469244 0.0270918i −0.476354 0.879253i \(-0.658042\pi\)
0.523279 + 0.852162i \(0.324709\pi\)
\(54\) 0 0
\(55\) 11.0462 + 6.37751i 1.48946 + 0.859943i
\(56\) 0 0
\(57\) −2.55596 + 1.47568i −0.338545 + 0.195459i
\(58\) 0 0
\(59\) 4.26642 + 7.38966i 0.555441 + 0.962051i 0.997869 + 0.0652477i \(0.0207837\pi\)
−0.442428 + 0.896804i \(0.645883\pi\)
\(60\) 0 0
\(61\) 0.607843 1.05282i 0.0778263 0.134799i −0.824486 0.565883i \(-0.808535\pi\)
0.902312 + 0.431084i \(0.141869\pi\)
\(62\) 0 0
\(63\) −4.47122 −0.563321
\(64\) 0 0
\(65\) 0.863828 + 1.49619i 0.107145 + 0.185580i
\(66\) 0 0
\(67\) 7.25109 + 4.18642i 0.885861 + 0.511452i 0.872587 0.488460i \(-0.162441\pi\)
0.0132749 + 0.999912i \(0.495774\pi\)
\(68\) 0 0
\(69\) 0.714748 1.23798i 0.0860456 0.149035i
\(70\) 0 0
\(71\) 2.54377 4.40594i 0.301890 0.522889i −0.674674 0.738116i \(-0.735716\pi\)
0.976564 + 0.215227i \(0.0690490\pi\)
\(72\) 0 0
\(73\) 2.30870 0.270213 0.135107 0.990831i \(-0.456862\pi\)
0.135107 + 0.990831i \(0.456862\pi\)
\(74\) 0 0
\(75\) 3.56024i 0.411101i
\(76\) 0 0
\(77\) −6.00212 3.46533i −0.684005 0.394911i
\(78\) 0 0
\(79\) 2.04786 + 1.18233i 0.230402 + 0.133023i 0.610758 0.791818i \(-0.290865\pi\)
−0.380355 + 0.924840i \(0.624198\pi\)
\(80\) 0 0
\(81\) −2.60670 + 4.51493i −0.289633 + 0.501659i
\(82\) 0 0
\(83\) −1.40655 + 0.812073i −0.154389 + 0.0891366i −0.575204 0.818010i \(-0.695077\pi\)
0.420815 + 0.907146i \(0.361744\pi\)
\(84\) 0 0
\(85\) 22.4435i 2.43434i
\(86\) 0 0
\(87\) 2.16768 + 1.25151i 0.232400 + 0.134176i
\(88\) 0 0
\(89\) 13.0089 7.51069i 1.37894 0.796132i 0.386909 0.922118i \(-0.373543\pi\)
0.992032 + 0.125986i \(0.0402094\pi\)
\(90\) 0 0
\(91\) −0.469376 0.812982i −0.0492039 0.0852237i
\(92\) 0 0
\(93\) 0.650872 1.12734i 0.0674923 0.116900i
\(94\) 0 0
\(95\) −7.13767 12.3628i −0.732309 1.26840i
\(96\) 0 0
\(97\) 16.7828i 1.70404i −0.523510 0.852019i \(-0.675378\pi\)
0.523510 0.852019i \(-0.324622\pi\)
\(98\) 0 0
\(99\) −8.78039 + 5.06936i −0.882462 + 0.509490i
\(100\) 0 0
\(101\) 9.43561i 0.938879i −0.882965 0.469439i \(-0.844456\pi\)
0.882965 0.469439i \(-0.155544\pi\)
\(102\) 0 0
\(103\) 19.4350i 1.91499i −0.288452 0.957494i \(-0.593141\pi\)
0.288452 0.957494i \(-0.406859\pi\)
\(104\) 0 0
\(105\) 3.74175i 0.365158i
\(106\) 0 0
\(107\) −14.8325 8.56353i −1.43391 0.827867i −0.436492 0.899708i \(-0.643779\pi\)
−0.997416 + 0.0718408i \(0.977113\pi\)
\(108\) 0 0
\(109\) 6.06885 + 10.5116i 0.581291 + 1.00683i 0.995327 + 0.0965646i \(0.0307854\pi\)
−0.414036 + 0.910261i \(0.635881\pi\)
\(110\) 0 0
\(111\) 2.06852 3.47754i 0.196335 0.330074i
\(112\) 0 0
\(113\) −17.7214 + 10.2315i −1.66709 + 0.962496i −0.697899 + 0.716196i \(0.745881\pi\)
−0.969194 + 0.246300i \(0.920785\pi\)
\(114\) 0 0
\(115\) 5.98794 + 3.45714i 0.558378 + 0.322380i
\(116\) 0 0
\(117\) −1.37328 −0.126960
\(118\) 0 0
\(119\) 12.1951i 1.11792i
\(120\) 0 0
\(121\) −4.71561 −0.428692
\(122\) 0 0
\(123\) 1.96641 1.13531i 0.177305 0.102367i
\(124\) 0 0
\(125\) 1.13302 0.101340
\(126\) 0 0
\(127\) 10.1083 + 17.5081i 0.896966 + 1.55359i 0.831352 + 0.555746i \(0.187567\pi\)
0.0656145 + 0.997845i \(0.479099\pi\)
\(128\) 0 0
\(129\) 4.07787 + 2.35436i 0.359036 + 0.207290i
\(130\) 0 0
\(131\) −10.5939 18.3492i −0.925595 1.60318i −0.790601 0.612332i \(-0.790232\pi\)
−0.134995 0.990846i \(-0.543102\pi\)
\(132\) 0 0
\(133\) 3.87838 + 6.71754i 0.336298 + 0.582485i
\(134\) 0 0
\(135\) 10.3010 + 5.94726i 0.886565 + 0.511859i
\(136\) 0 0
\(137\) −13.9717 −1.19368 −0.596842 0.802359i \(-0.703578\pi\)
−0.596842 + 0.802359i \(0.703578\pi\)
\(138\) 0 0
\(139\) −5.37160 + 3.10130i −0.455613 + 0.263048i −0.710198 0.704002i \(-0.751395\pi\)
0.254585 + 0.967050i \(0.418061\pi\)
\(140\) 0 0
\(141\) −4.62222 2.66864i −0.389261 0.224740i
\(142\) 0 0
\(143\) −1.84348 1.06433i −0.154159 0.0890040i
\(144\) 0 0
\(145\) −6.05340 + 10.4848i −0.502707 + 0.870714i
\(146\) 0 0
\(147\) 2.62324i 0.216362i
\(148\) 0 0
\(149\) 18.5130i 1.51664i −0.651882 0.758321i \(-0.726020\pi\)
0.651882 0.758321i \(-0.273980\pi\)
\(150\) 0 0
\(151\) −4.09172 + 7.08706i −0.332979 + 0.576737i −0.983095 0.183099i \(-0.941387\pi\)
0.650115 + 0.759835i \(0.274721\pi\)
\(152\) 0 0
\(153\) −15.4498 8.91997i −1.24905 0.721137i
\(154\) 0 0
\(155\) 5.45280 + 3.14818i 0.437980 + 0.252868i
\(156\) 0 0
\(157\) −10.6805 + 6.16641i −0.852400 + 0.492133i −0.861460 0.507826i \(-0.830449\pi\)
0.00906013 + 0.999959i \(0.497116\pi\)
\(158\) 0 0
\(159\) 0.262396 0.0208094
\(160\) 0 0
\(161\) −3.25365 1.87850i −0.256424 0.148046i
\(162\) 0 0
\(163\) 3.15252 + 5.46032i 0.246924 + 0.427685i 0.962671 0.270675i \(-0.0872468\pi\)
−0.715747 + 0.698360i \(0.753913\pi\)
\(164\) 0 0
\(165\) 4.24231 + 7.34789i 0.330263 + 0.572033i
\(166\) 0 0
\(167\) 8.91537 + 5.14729i 0.689892 + 0.398309i 0.803572 0.595208i \(-0.202930\pi\)
−0.113680 + 0.993517i \(0.536264\pi\)
\(168\) 0 0
\(169\) 6.35584 + 11.0086i 0.488911 + 0.846818i
\(170\) 0 0
\(171\) 11.3472 0.867742
\(172\) 0 0
\(173\) 0.0102715 0.00593025i 0.000780928 0.000450869i −0.499609 0.866251i \(-0.666523\pi\)
0.500390 + 0.865800i \(0.333190\pi\)
\(174\) 0 0
\(175\) −9.35700 −0.707323
\(176\) 0 0
\(177\) 5.67603i 0.426637i
\(178\) 0 0
\(179\) −6.51910 −0.487260 −0.243630 0.969868i \(-0.578338\pi\)
−0.243630 + 0.969868i \(0.578338\pi\)
\(180\) 0 0
\(181\) −10.1065 5.83497i −0.751207 0.433710i 0.0749228 0.997189i \(-0.476129\pi\)
−0.826130 + 0.563480i \(0.809462\pi\)
\(182\) 0 0
\(183\) 0.700331 0.404336i 0.0517700 0.0298894i
\(184\) 0 0
\(185\) 16.8204 + 10.0052i 1.23666 + 0.735594i
\(186\) 0 0
\(187\) −13.8265 23.9482i −1.01109 1.75126i
\(188\) 0 0
\(189\) −5.59720 3.23155i −0.407136 0.235060i
\(190\) 0 0
\(191\) 8.67149i 0.627447i −0.949514 0.313724i \(-0.898423\pi\)
0.949514 0.313724i \(-0.101577\pi\)
\(192\) 0 0
\(193\) 0.312961i 0.0225274i −0.999937 0.0112637i \(-0.996415\pi\)
0.999937 0.0112637i \(-0.00358542\pi\)
\(194\) 0 0
\(195\) 1.14923i 0.0822984i
\(196\) 0 0
\(197\) 4.59066 2.65042i 0.327071 0.188834i −0.327469 0.944862i \(-0.606196\pi\)
0.654540 + 0.756027i \(0.272862\pi\)
\(198\) 0 0
\(199\) 1.44071i 0.102129i 0.998695 + 0.0510647i \(0.0162615\pi\)
−0.998695 + 0.0510647i \(0.983739\pi\)
\(200\) 0 0
\(201\) 2.78480 + 4.82341i 0.196425 + 0.340217i
\(202\) 0 0
\(203\) 3.28922 5.69709i 0.230858 0.399857i
\(204\) 0 0
\(205\) 5.49133 + 9.51127i 0.383531 + 0.664296i
\(206\) 0 0
\(207\) −4.75970 + 2.74802i −0.330822 + 0.191000i
\(208\) 0 0
\(209\) 15.2324 + 8.79442i 1.05365 + 0.608322i
\(210\) 0 0
\(211\) 15.6762i 1.07920i 0.841923 + 0.539598i \(0.181424\pi\)
−0.841923 + 0.539598i \(0.818576\pi\)
\(212\) 0 0
\(213\) 2.93083 1.69211i 0.200817 0.115942i
\(214\) 0 0
\(215\) −11.3877 + 19.7241i −0.776635 + 1.34517i
\(216\) 0 0
\(217\) −2.96288 1.71062i −0.201133 0.116124i
\(218\) 0 0
\(219\) 1.32999 + 0.767873i 0.0898727 + 0.0518880i
\(220\) 0 0
\(221\) 3.74557i 0.251954i
\(222\) 0 0
\(223\) 28.4767 1.90694 0.953470 0.301489i \(-0.0974835\pi\)
0.953470 + 0.301489i \(0.0974835\pi\)
\(224\) 0 0
\(225\) −6.84408 + 11.8543i −0.456272 + 0.790287i
\(226\) 0 0
\(227\) −3.36734 + 5.83241i −0.223499 + 0.387111i −0.955868 0.293797i \(-0.905081\pi\)
0.732369 + 0.680908i \(0.238414\pi\)
\(228\) 0 0
\(229\) 1.22233 + 0.705713i 0.0807739 + 0.0466348i 0.539843 0.841766i \(-0.318484\pi\)
−0.459069 + 0.888401i \(0.651817\pi\)
\(230\) 0 0
\(231\) −2.30513 3.99260i −0.151667 0.262694i
\(232\) 0 0
\(233\) 14.9990 0.982614 0.491307 0.870986i \(-0.336519\pi\)
0.491307 + 0.870986i \(0.336519\pi\)
\(234\) 0 0
\(235\) 12.9078 22.3570i 0.842015 1.45841i
\(236\) 0 0
\(237\) 0.786486 + 1.36223i 0.0510878 + 0.0884866i
\(238\) 0 0
\(239\) −16.6264 + 9.59926i −1.07547 + 0.620925i −0.929672 0.368389i \(-0.879909\pi\)
−0.145802 + 0.989314i \(0.546576\pi\)
\(240\) 0 0
\(241\) −4.33365 2.50203i −0.279155 0.161170i 0.353886 0.935289i \(-0.384860\pi\)
−0.633041 + 0.774119i \(0.718193\pi\)
\(242\) 0 0
\(243\) −12.6080 + 7.27924i −0.808805 + 0.466964i
\(244\) 0 0
\(245\) −12.6883 −0.810624
\(246\) 0 0
\(247\) 1.19120 + 2.06321i 0.0757940 + 0.131279i
\(248\) 0 0
\(249\) −1.08038 −0.0684663
\(250\) 0 0
\(251\) 3.82856 0.241657 0.120828 0.992673i \(-0.461445\pi\)
0.120828 + 0.992673i \(0.461445\pi\)
\(252\) 0 0
\(253\) −8.51917 −0.535596
\(254\) 0 0
\(255\) −7.46470 + 12.9292i −0.467458 + 0.809661i
\(256\) 0 0
\(257\) 0.934828 0.539723i 0.0583130 0.0336670i −0.470560 0.882368i \(-0.655948\pi\)
0.528873 + 0.848701i \(0.322615\pi\)
\(258\) 0 0
\(259\) −9.13966 5.43648i −0.567911 0.337806i
\(260\) 0 0
\(261\) −4.81173 8.33416i −0.297839 0.515872i
\(262\) 0 0
\(263\) −9.10932 + 15.7778i −0.561705 + 0.972901i 0.435643 + 0.900119i \(0.356521\pi\)
−0.997348 + 0.0727817i \(0.976812\pi\)
\(264\) 0 0
\(265\) 1.26917i 0.0779648i
\(266\) 0 0
\(267\) 9.99221 0.611513
\(268\) 0 0
\(269\) 27.2251i 1.65994i −0.557806 0.829971i \(-0.688357\pi\)
0.557806 0.829971i \(-0.311643\pi\)
\(270\) 0 0
\(271\) 12.7826 + 22.1402i 0.776489 + 1.34492i 0.933954 + 0.357394i \(0.116335\pi\)
−0.157465 + 0.987525i \(0.550332\pi\)
\(272\) 0 0
\(273\) 0.624456i 0.0377938i
\(274\) 0 0
\(275\) −18.3749 + 10.6087i −1.10805 + 0.639731i
\(276\) 0 0
\(277\) −5.60469 + 9.70760i −0.336753 + 0.583273i −0.983820 0.179160i \(-0.942662\pi\)
0.647067 + 0.762433i \(0.275995\pi\)
\(278\) 0 0
\(279\) −4.33433 + 2.50243i −0.259490 + 0.149816i
\(280\) 0 0
\(281\) −0.725933 + 0.419117i −0.0433055 + 0.0250024i −0.521496 0.853253i \(-0.674626\pi\)
0.478191 + 0.878256i \(0.341293\pi\)
\(282\) 0 0
\(283\) −4.46864 + 7.73991i −0.265633 + 0.460090i −0.967729 0.251992i \(-0.918914\pi\)
0.702096 + 0.712082i \(0.252248\pi\)
\(284\) 0 0
\(285\) 9.49594i 0.562491i
\(286\) 0 0
\(287\) −2.98381 5.16811i −0.176129 0.305064i
\(288\) 0 0
\(289\) 15.8289 27.4164i 0.931110 1.61273i
\(290\) 0 0
\(291\) 5.58196 9.66824i 0.327220 0.566762i
\(292\) 0 0
\(293\) 17.2985 + 9.98732i 1.01059 + 0.583465i 0.911365 0.411599i \(-0.135030\pi\)
0.0992269 + 0.995065i \(0.468363\pi\)
\(294\) 0 0
\(295\) −27.4542 −1.59845
\(296\) 0 0
\(297\) −14.6554 −0.850392
\(298\) 0 0
\(299\) −0.999319 0.576957i −0.0577921 0.0333663i
\(300\) 0 0
\(301\) 6.18771 10.7174i 0.356653 0.617742i
\(302\) 0 0
\(303\) 3.13828 5.43566i 0.180289 0.312270i
\(304\) 0 0
\(305\) 1.95572 + 3.38741i 0.111984 + 0.193962i
\(306\) 0 0
\(307\) 18.8004i 1.07300i 0.843902 + 0.536498i \(0.180253\pi\)
−0.843902 + 0.536498i \(0.819747\pi\)
\(308\) 0 0
\(309\) 6.46407 11.1961i 0.367728 0.636924i
\(310\) 0 0
\(311\) −7.38592 + 4.26426i −0.418817 + 0.241804i −0.694571 0.719424i \(-0.744406\pi\)
0.275754 + 0.961228i \(0.411072\pi\)
\(312\) 0 0
\(313\) 11.9036 6.87255i 0.672832 0.388460i −0.124317 0.992243i \(-0.539674\pi\)
0.797149 + 0.603783i \(0.206341\pi\)
\(314\) 0 0
\(315\) 7.19302 12.4587i 0.405281 0.701967i
\(316\) 0 0
\(317\) −18.3949 + 10.6203i −1.03316 + 0.596494i −0.917888 0.396840i \(-0.870107\pi\)
−0.115270 + 0.993334i \(0.536773\pi\)
\(318\) 0 0
\(319\) 14.9169i 0.835188i
\(320\) 0 0
\(321\) −5.69645 9.86653i −0.317945 0.550696i
\(322\) 0 0
\(323\) 30.9490i 1.72205i
\(324\) 0 0
\(325\) −2.87389 −0.159415
\(326\) 0 0
\(327\) 8.07399i 0.446492i
\(328\) 0 0
\(329\) −7.01370 + 12.1481i −0.386678 + 0.669746i
\(330\) 0 0
\(331\) −1.16160 2.01196i −0.0638475 0.110587i 0.832335 0.554273i \(-0.187004\pi\)
−0.896182 + 0.443686i \(0.853670\pi\)
\(332\) 0 0
\(333\) −13.5725 + 7.60250i −0.743771 + 0.416614i
\(334\) 0 0
\(335\) −23.3302 + 13.4697i −1.27466 + 0.735928i
\(336\) 0 0
\(337\) −11.5021 + 19.9223i −0.626562 + 1.08524i 0.361675 + 0.932304i \(0.382205\pi\)
−0.988237 + 0.152932i \(0.951128\pi\)
\(338\) 0 0
\(339\) −13.6119 −0.739298
\(340\) 0 0
\(341\) −7.75782 −0.420110
\(342\) 0 0
\(343\) 19.1323 1.03305
\(344\) 0 0
\(345\) 2.29968 + 3.98317i 0.123811 + 0.214447i
\(346\) 0 0
\(347\) 2.24275 0.120397 0.0601985 0.998186i \(-0.480827\pi\)
0.0601985 + 0.998186i \(0.480827\pi\)
\(348\) 0 0
\(349\) −5.18368 + 2.99280i −0.277476 + 0.160201i −0.632280 0.774740i \(-0.717881\pi\)
0.354804 + 0.934941i \(0.384548\pi\)
\(350\) 0 0
\(351\) −1.71911 0.992530i −0.0917594 0.0529773i
\(352\) 0 0
\(353\) 15.1608 8.75311i 0.806929 0.465881i −0.0389590 0.999241i \(-0.512404\pi\)
0.845888 + 0.533360i \(0.179071\pi\)
\(354\) 0 0
\(355\) 8.18453 + 14.1760i 0.434390 + 0.752385i
\(356\) 0 0
\(357\) 4.05608 7.02533i 0.214670 0.371820i
\(358\) 0 0
\(359\) −19.4248 −1.02520 −0.512601 0.858627i \(-0.671318\pi\)
−0.512601 + 0.858627i \(0.671318\pi\)
\(360\) 0 0
\(361\) −0.342662 0.593508i −0.0180348 0.0312373i
\(362\) 0 0
\(363\) −2.71657 1.56841i −0.142583 0.0823202i
\(364\) 0 0
\(365\) −3.71410 + 6.43300i −0.194405 + 0.336719i
\(366\) 0 0
\(367\) 14.3982 24.9385i 0.751582 1.30178i −0.195473 0.980709i \(-0.562624\pi\)
0.947056 0.321070i \(-0.104042\pi\)
\(368\) 0 0
\(369\) −8.72991 −0.454461
\(370\) 0 0
\(371\) 0.689628i 0.0358037i
\(372\) 0 0
\(373\) −27.3585 15.7955i −1.41657 0.817857i −0.420575 0.907258i \(-0.638172\pi\)
−0.995996 + 0.0894004i \(0.971505\pi\)
\(374\) 0 0
\(375\) 0.652708 + 0.376841i 0.0337057 + 0.0194600i
\(376\) 0 0
\(377\) 1.01024 1.74979i 0.0520302 0.0901189i
\(378\) 0 0
\(379\) 9.61823 5.55309i 0.494055 0.285243i −0.232200 0.972668i \(-0.574592\pi\)
0.726255 + 0.687425i \(0.241259\pi\)
\(380\) 0 0
\(381\) 13.4481i 0.688965i
\(382\) 0 0
\(383\) 19.6991 + 11.3733i 1.00657 + 0.581146i 0.910187 0.414198i \(-0.135938\pi\)
0.0963879 + 0.995344i \(0.469271\pi\)
\(384\) 0 0
\(385\) 19.3117 11.1496i 0.984214 0.568236i
\(386\) 0 0
\(387\) −9.05188 15.6783i −0.460133 0.796973i
\(388\) 0 0
\(389\) −17.6210 + 30.5205i −0.893422 + 1.54745i −0.0576756 + 0.998335i \(0.518369\pi\)
−0.835746 + 0.549116i \(0.814964\pi\)
\(390\) 0 0
\(391\) −7.49510 12.9819i −0.379044 0.656523i
\(392\) 0 0
\(393\) 14.0941i 0.710955i
\(394\) 0 0
\(395\) −6.58894 + 3.80413i −0.331526 + 0.191406i
\(396\) 0 0
\(397\) 12.7424i 0.639525i −0.947498 0.319762i \(-0.896397\pi\)
0.947498 0.319762i \(-0.103603\pi\)
\(398\) 0 0
\(399\) 5.15978i 0.258312i
\(400\) 0 0
\(401\) 30.4901i 1.52260i 0.648397 + 0.761302i \(0.275440\pi\)
−0.648397 + 0.761302i \(0.724560\pi\)
\(402\) 0 0
\(403\) −0.910011 0.525395i −0.0453309 0.0261718i
\(404\) 0 0
\(405\) −8.38698 14.5267i −0.416752 0.721836i
\(406\) 0 0
\(407\) −24.1118 0.313594i −1.19518 0.0155443i
\(408\) 0 0
\(409\) −15.5770 + 8.99336i −0.770231 + 0.444693i −0.832957 0.553338i \(-0.813354\pi\)
0.0627259 + 0.998031i \(0.480021\pi\)
\(410\) 0 0
\(411\) −8.04881 4.64698i −0.397019 0.229219i
\(412\) 0 0
\(413\) 14.9177 0.734053
\(414\) 0 0
\(415\) 5.22565i 0.256517i
\(416\) 0 0
\(417\) −4.12596 −0.202049
\(418\) 0 0
\(419\) −1.87998 + 1.08540i −0.0918428 + 0.0530255i −0.545218 0.838294i \(-0.683553\pi\)
0.453375 + 0.891320i \(0.350220\pi\)
\(420\) 0 0
\(421\) 34.8774 1.69982 0.849910 0.526928i \(-0.176656\pi\)
0.849910 + 0.526928i \(0.176656\pi\)
\(422\) 0 0
\(423\) 10.2602 + 17.7712i 0.498868 + 0.864065i
\(424\) 0 0
\(425\) −32.3321 18.6670i −1.56834 0.905481i
\(426\) 0 0
\(427\) −1.06267 1.84061i −0.0514264 0.0890731i
\(428\) 0 0
\(429\) −0.707993 1.22628i −0.0341822 0.0592053i
\(430\) 0 0
\(431\) 19.7952 + 11.4288i 0.953502 + 0.550505i 0.894167 0.447733i \(-0.147769\pi\)
0.0593350 + 0.998238i \(0.481102\pi\)
\(432\) 0 0
\(433\) 3.06108 0.147106 0.0735529 0.997291i \(-0.476566\pi\)
0.0735529 + 0.997291i \(0.476566\pi\)
\(434\) 0 0
\(435\) −6.97447 + 4.02671i −0.334400 + 0.193066i
\(436\) 0 0
\(437\) 8.25722 + 4.76731i 0.394996 + 0.228051i
\(438\) 0 0
\(439\) −21.7928 12.5821i −1.04011 0.600510i −0.120249 0.992744i \(-0.538369\pi\)
−0.919866 + 0.392233i \(0.871703\pi\)
\(440\) 0 0
\(441\) 5.04284 8.73445i 0.240135 0.415926i
\(442\) 0 0
\(443\) 28.7440i 1.36567i −0.730573 0.682835i \(-0.760747\pi\)
0.730573 0.682835i \(-0.239253\pi\)
\(444\) 0 0
\(445\) 48.3309i 2.29111i
\(446\) 0 0
\(447\) 6.15740 10.6649i 0.291235 0.504434i
\(448\) 0 0
\(449\) −9.07421 5.23900i −0.428238 0.247244i 0.270357 0.962760i \(-0.412858\pi\)
−0.698596 + 0.715516i \(0.746191\pi\)
\(450\) 0 0
\(451\) −11.7190 6.76594i −0.551824 0.318596i
\(452\) 0 0
\(453\) −4.71430 + 2.72180i −0.221497 + 0.127881i
\(454\) 0 0
\(455\) 3.02041 0.141599
\(456\) 0 0
\(457\) 17.5624 + 10.1397i 0.821535 + 0.474314i 0.850946 0.525254i \(-0.176030\pi\)
−0.0294104 + 0.999567i \(0.509363\pi\)
\(458\) 0 0
\(459\) −12.8937 22.3325i −0.601827 1.04239i
\(460\) 0 0
\(461\) −6.46253 11.1934i −0.300990 0.521330i 0.675370 0.737479i \(-0.263984\pi\)
−0.976360 + 0.216149i \(0.930650\pi\)
\(462\) 0 0
\(463\) 26.4239 + 15.2559i 1.22802 + 0.709000i 0.966616 0.256228i \(-0.0824798\pi\)
0.261408 + 0.965228i \(0.415813\pi\)
\(464\) 0 0
\(465\) 2.09416 + 3.62720i 0.0971145 + 0.168207i
\(466\) 0 0
\(467\) 17.2988 0.800493 0.400247 0.916407i \(-0.368924\pi\)
0.400247 + 0.916407i \(0.368924\pi\)
\(468\) 0 0
\(469\) 12.6769 7.31899i 0.585363 0.337960i
\(470\) 0 0
\(471\) −8.20378 −0.378010
\(472\) 0 0
\(473\) 28.0619i 1.29029i
\(474\) 0 0
\(475\) 23.7465 1.08956
\(476\) 0 0
\(477\) −0.873684 0.504422i −0.0400032 0.0230959i
\(478\) 0 0
\(479\) 7.72894 4.46231i 0.353144 0.203888i −0.312925 0.949778i \(-0.601309\pi\)
0.666069 + 0.745890i \(0.267976\pi\)
\(480\) 0 0
\(481\) −2.80713 1.66975i −0.127994 0.0761339i
\(482\) 0 0
\(483\) −1.24957 2.16432i −0.0568575 0.0984802i
\(484\) 0 0
\(485\) 46.7639 + 26.9992i 2.12344 + 1.22597i
\(486\) 0 0
\(487\) 3.82200i 0.173192i −0.996244 0.0865958i \(-0.972401\pi\)
0.996244 0.0865958i \(-0.0275989\pi\)
\(488\) 0 0
\(489\) 4.19410i 0.189664i
\(490\) 0 0
\(491\) 15.1520i 0.683800i −0.939736 0.341900i \(-0.888930\pi\)
0.939736 0.341900i \(-0.111070\pi\)
\(492\) 0 0
\(493\) 22.7311 13.1238i 1.02376 0.591067i
\(494\) 0 0
\(495\) 32.6211i 1.46621i
\(496\) 0 0
\(497\) −4.44720 7.70278i −0.199484 0.345517i
\(498\) 0 0
\(499\) −17.5853 + 30.4586i −0.787224 + 1.36351i 0.140437 + 0.990090i \(0.455149\pi\)
−0.927661 + 0.373423i \(0.878184\pi\)
\(500\) 0 0
\(501\) 3.42397 + 5.93049i 0.152972 + 0.264955i
\(502\) 0 0
\(503\) 25.9312 14.9714i 1.15621 0.667540i 0.205820 0.978590i \(-0.434014\pi\)
0.950394 + 0.311050i \(0.100681\pi\)
\(504\) 0 0
\(505\) 26.2915 + 15.1794i 1.16996 + 0.675476i
\(506\) 0 0
\(507\) 8.45579i 0.375535i
\(508\) 0 0
\(509\) 23.3484 13.4802i 1.03490 0.597498i 0.116514 0.993189i \(-0.462828\pi\)
0.918384 + 0.395691i \(0.129495\pi\)
\(510\) 0 0
\(511\) 2.01812 3.49548i 0.0892763 0.154631i
\(512\) 0 0
\(513\) 14.2048 + 8.20112i 0.627155 + 0.362088i
\(514\) 0 0
\(515\) 54.1540 + 31.2658i 2.38631 + 1.37774i
\(516\) 0 0
\(517\) 31.8078i 1.39891i
\(518\) 0 0
\(519\) 0.00788959 0.000346315
\(520\) 0 0
\(521\) −16.2452 + 28.1374i −0.711713 + 1.23272i 0.252500 + 0.967597i \(0.418747\pi\)
−0.964214 + 0.265127i \(0.914586\pi\)
\(522\) 0 0
\(523\) −2.09888 + 3.63538i −0.0917778 + 0.158964i −0.908259 0.418408i \(-0.862588\pi\)
0.816481 + 0.577372i \(0.195922\pi\)
\(524\) 0 0
\(525\) −5.39037 3.11213i −0.235255 0.135825i
\(526\) 0 0
\(527\) −6.82527 11.8217i −0.297314 0.514962i
\(528\) 0 0
\(529\) 18.3819 0.799213
\(530\) 0 0
\(531\) 10.9114 18.8991i 0.473515 0.820152i
\(532\) 0 0
\(533\) −0.916441 1.58732i −0.0396955 0.0687546i
\(534\) 0 0
\(535\) 47.7231 27.5529i 2.06325 1.19122i
\(536\) 0 0
\(537\) −3.75552 2.16825i −0.162063 0.0935668i
\(538\) 0 0
\(539\) 13.5389 7.81669i 0.583162 0.336689i
\(540\) 0 0
\(541\) 6.09226 0.261927 0.130963 0.991387i \(-0.458193\pi\)
0.130963 + 0.991387i \(0.458193\pi\)
\(542\) 0 0
\(543\) −3.88141 6.72280i −0.166567 0.288503i
\(544\) 0 0
\(545\) −39.0528 −1.67284
\(546\) 0 0
\(547\) 18.1398 0.775601 0.387800 0.921743i \(-0.373235\pi\)
0.387800 + 0.921743i \(0.373235\pi\)
\(548\) 0 0
\(549\) −3.10913 −0.132694
\(550\) 0 0
\(551\) −8.34748 + 14.4583i −0.355614 + 0.615942i
\(552\) 0 0
\(553\) 3.58021 2.06704i 0.152246 0.0878994i
\(554\) 0 0
\(555\) 6.36217 + 11.3582i 0.270059 + 0.482130i
\(556\) 0 0
\(557\) 0.461524 + 0.799383i 0.0195554 + 0.0338709i 0.875637 0.482969i \(-0.160442\pi\)
−0.856082 + 0.516840i \(0.827108\pi\)
\(558\) 0 0
\(559\) 1.90048 3.29173i 0.0803817 0.139225i
\(560\) 0 0
\(561\) 18.3947i 0.776625i
\(562\) 0 0
\(563\) 18.9829 0.800032 0.400016 0.916508i \(-0.369005\pi\)
0.400016 + 0.916508i \(0.369005\pi\)
\(564\) 0 0
\(565\) 65.8390i 2.76987i
\(566\) 0 0
\(567\) 4.55721 + 7.89332i 0.191385 + 0.331488i
\(568\) 0 0
\(569\) 25.1360i 1.05375i 0.849942 + 0.526877i \(0.176637\pi\)
−0.849942 + 0.526877i \(0.823363\pi\)
\(570\) 0 0
\(571\) −27.1520 + 15.6762i −1.13628 + 0.656030i −0.945506 0.325604i \(-0.894432\pi\)
−0.190772 + 0.981634i \(0.561099\pi\)
\(572\) 0 0
\(573\) 2.88413 4.99546i 0.120486 0.208688i
\(574\) 0 0
\(575\) −9.96071 + 5.75082i −0.415390 + 0.239826i
\(576\) 0 0
\(577\) −8.55780 + 4.94085i −0.356266 + 0.205690i −0.667442 0.744662i \(-0.732611\pi\)
0.311176 + 0.950352i \(0.399277\pi\)
\(578\) 0 0
\(579\) 0.104091 0.180290i 0.00432586 0.00749260i
\(580\) 0 0
\(581\) 2.83945i 0.117800i
\(582\) 0 0
\(583\) −0.781883 1.35426i −0.0323823 0.0560878i
\(584\) 0 0
\(585\) 2.20925 3.82653i 0.0913412 0.158208i
\(586\) 0 0
\(587\) 20.2311 35.0412i 0.835025 1.44631i −0.0589852 0.998259i \(-0.518786\pi\)
0.894010 0.448047i \(-0.147880\pi\)
\(588\) 0 0
\(589\) 7.51928 + 4.34126i 0.309826 + 0.178878i
\(590\) 0 0
\(591\) 3.52611 0.145045
\(592\) 0 0
\(593\) 6.43804 0.264379 0.132189 0.991224i \(-0.457799\pi\)
0.132189 + 0.991224i \(0.457799\pi\)
\(594\) 0 0
\(595\) 33.9806 + 19.6187i 1.39307 + 0.804287i
\(596\) 0 0
\(597\) −0.479180 + 0.829964i −0.0196115 + 0.0339682i
\(598\) 0 0
\(599\) 7.94878 13.7677i 0.324778 0.562532i −0.656689 0.754161i \(-0.728044\pi\)
0.981467 + 0.191629i \(0.0613770\pi\)
\(600\) 0 0
\(601\) −13.9683 24.1938i −0.569778 0.986884i −0.996588 0.0825425i \(-0.973696\pi\)
0.426810 0.904341i \(-0.359637\pi\)
\(602\) 0 0
\(603\) 21.4136i 0.872030i
\(604\) 0 0
\(605\) 7.58618 13.1397i 0.308422 0.534203i
\(606\) 0 0
\(607\) −8.19892 + 4.73365i −0.332784 + 0.192133i −0.657076 0.753824i \(-0.728207\pi\)
0.324292 + 0.945957i \(0.394874\pi\)
\(608\) 0 0
\(609\) 3.78970 2.18798i 0.153566 0.0886615i
\(610\) 0 0
\(611\) −2.15417 + 3.73114i −0.0871485 + 0.150946i
\(612\) 0 0
\(613\) −21.8779 + 12.6312i −0.883639 + 0.510169i −0.871857 0.489761i \(-0.837084\pi\)
−0.0117827 + 0.999931i \(0.503751\pi\)
\(614\) 0 0
\(615\) 7.30565i 0.294592i
\(616\) 0 0
\(617\) −0.354017 0.613176i −0.0142522 0.0246855i 0.858811 0.512292i \(-0.171203\pi\)
−0.873064 + 0.487606i \(0.837870\pi\)
\(618\) 0 0
\(619\) 9.27255i 0.372695i 0.982484 + 0.186348i \(0.0596651\pi\)
−0.982484 + 0.186348i \(0.940335\pi\)
\(620\) 0 0
\(621\) −7.94444 −0.318799
\(622\) 0 0
\(623\) 26.2615i 1.05214i
\(624\) 0 0
\(625\) 11.5576 20.0184i 0.462305 0.800736i
\(626\) 0 0
\(627\) 5.85003 + 10.1326i 0.233628 + 0.404655i
\(628\) 0 0
\(629\) −20.7355 37.0186i −0.826779 1.47603i
\(630\) 0 0
\(631\) 3.70834 2.14101i 0.147627 0.0852323i −0.424367 0.905490i \(-0.639503\pi\)
0.571994 + 0.820258i \(0.306170\pi\)
\(632\) 0 0
\(633\) −5.21390 + 9.03074i −0.207234 + 0.358940i
\(634\) 0 0
\(635\) −65.0464 −2.58129
\(636\) 0 0
\(637\) 2.11753 0.0838995
\(638\) 0 0
\(639\) −13.0115 −0.514725
\(640\) 0 0
\(641\) 0.806106 + 1.39622i 0.0318393 + 0.0551472i 0.881506 0.472173i \(-0.156530\pi\)
−0.849667 + 0.527320i \(0.823197\pi\)
\(642\) 0 0
\(643\) −41.7263 −1.64552 −0.822762 0.568386i \(-0.807568\pi\)
−0.822762 + 0.568386i \(0.807568\pi\)
\(644\) 0 0
\(645\) −13.1204 + 7.57509i −0.516617 + 0.298269i
\(646\) 0 0
\(647\) −34.4585 19.8946i −1.35471 0.782139i −0.365801 0.930693i \(-0.619205\pi\)
−0.988904 + 0.148554i \(0.952538\pi\)
\(648\) 0 0
\(649\) 29.2948 16.9133i 1.14992 0.663907i
\(650\) 0 0
\(651\) −1.13790 1.97090i −0.0445978 0.0772457i
\(652\) 0 0
\(653\) −23.0088 + 39.8523i −0.900402 + 1.55954i −0.0734292 + 0.997300i \(0.523394\pi\)
−0.826973 + 0.562242i \(0.809939\pi\)
\(654\) 0 0
\(655\) 68.1714 2.66368
\(656\) 0 0
\(657\) −2.95227 5.11347i −0.115179 0.199496i
\(658\) 0 0
\(659\) 14.3355 + 8.27661i 0.558432 + 0.322411i 0.752516 0.658574i \(-0.228840\pi\)
−0.194084 + 0.980985i \(0.562173\pi\)
\(660\) 0 0
\(661\) −3.48320 + 6.03308i −0.135481 + 0.234660i −0.925781 0.378060i \(-0.876591\pi\)
0.790300 + 0.612720i \(0.209925\pi\)
\(662\) 0 0
\(663\) 1.24577 2.15774i 0.0483819 0.0837998i
\(664\) 0 0
\(665\) −24.9572 −0.967797
\(666\) 0 0
\(667\) 8.08622i 0.313100i
\(668\) 0 0
\(669\) 16.4048 + 9.47132i 0.634247 + 0.366183i
\(670\) 0 0
\(671\) −4.17367 2.40967i −0.161123 0.0930242i
\(672\) 0 0
\(673\) 6.01450 10.4174i 0.231842 0.401562i −0.726508 0.687158i \(-0.758858\pi\)
0.958350 + 0.285596i \(0.0921914\pi\)
\(674\) 0 0
\(675\) −17.1352 + 9.89304i −0.659536 + 0.380783i
\(676\) 0 0
\(677\) 8.24618i 0.316926i 0.987365 + 0.158463i \(0.0506539\pi\)
−0.987365 + 0.158463i \(0.949346\pi\)
\(678\) 0 0
\(679\) −25.4100 14.6705i −0.975146 0.563001i
\(680\) 0 0
\(681\) −3.87971 + 2.23995i −0.148671 + 0.0858352i
\(682\) 0 0
\(683\) 10.9776 + 19.0138i 0.420046 + 0.727542i 0.995944 0.0899805i \(-0.0286805\pi\)
−0.575897 + 0.817522i \(0.695347\pi\)
\(684\) 0 0
\(685\) 22.4768 38.9310i 0.858795 1.48748i
\(686\) 0 0
\(687\) 0.469439 + 0.813093i 0.0179102 + 0.0310214i
\(688\) 0 0
\(689\) 0.211811i 0.00806935i
\(690\) 0 0
\(691\) −16.0037 + 9.23977i −0.608811 + 0.351497i −0.772500 0.635015i \(-0.780994\pi\)
0.163689 + 0.986512i \(0.447661\pi\)
\(692\) 0 0
\(693\) 17.7252i 0.673326i
\(694\) 0 0
\(695\) 19.9567i 0.757000i
\(696\) 0 0
\(697\) 23.8105i 0.901887i
\(698\) 0 0
\(699\) 8.64058 + 4.98864i 0.326817 + 0.188688i
\(700\) 0 0
\(701\) 5.75067 + 9.96046i 0.217200 + 0.376201i 0.953951 0.299963i \(-0.0969743\pi\)
−0.736751 + 0.676164i \(0.763641\pi\)
\(702\) 0 0
\(703\) 23.1949 + 13.7969i 0.874813 + 0.520358i
\(704\) 0 0
\(705\) 14.8719 8.58628i 0.560107 0.323378i
\(706\) 0 0
\(707\) −14.2860 8.24800i −0.537279 0.310198i
\(708\) 0 0
\(709\) 9.52448 0.357699 0.178850 0.983876i \(-0.442762\pi\)
0.178850 + 0.983876i \(0.442762\pi\)
\(710\) 0 0
\(711\) 6.04766i 0.226805i
\(712\) 0 0
\(713\) −4.20539 −0.157493
\(714\) 0 0
\(715\) 5.93135 3.42447i 0.221820 0.128068i
\(716\) 0 0
\(717\) −12.7708 −0.476936
\(718\) 0 0
\(719\) −18.9100 32.7531i −0.705224 1.22148i −0.966611 0.256250i \(-0.917513\pi\)
0.261386 0.965234i \(-0.415820\pi\)
\(720\) 0 0
\(721\) −29.4255 16.9888i −1.09586 0.632697i
\(722\) 0 0
\(723\) −1.66435 2.88274i −0.0618978 0.107210i
\(724\) 0 0
\(725\) −10.0696 17.4410i −0.373975 0.647744i
\(726\) 0 0
\(727\) 34.4965 + 19.9165i 1.27940 + 0.738663i 0.976739 0.214434i \(-0.0687906\pi\)
0.302664 + 0.953097i \(0.402124\pi\)
\(728\) 0 0
\(729\) 5.95589 0.220589
\(730\) 0 0
\(731\) 42.7620 24.6886i 1.58161 0.913142i
\(732\) 0 0
\(733\) 13.9768 + 8.06949i 0.516244 + 0.298053i 0.735396 0.677637i \(-0.236996\pi\)
−0.219153 + 0.975691i \(0.570329\pi\)
\(734\) 0 0
\(735\) −7.30945 4.22011i −0.269613 0.155661i
\(736\) 0 0
\(737\) 16.5962 28.7454i 0.611328 1.05885i
\(738\) 0 0
\(739\) 31.0229i 1.14120i 0.821230 + 0.570598i \(0.193289\pi\)
−0.821230 + 0.570598i \(0.806711\pi\)
\(740\) 0 0
\(741\) 1.58476i 0.0582178i
\(742\) 0 0
\(743\) 3.30582 5.72584i 0.121279 0.210061i −0.798994 0.601340i \(-0.794634\pi\)
0.920272 + 0.391279i \(0.127967\pi\)
\(744\) 0 0
\(745\) 51.5848 + 29.7825i 1.88992 + 1.09115i
\(746\) 0 0
\(747\) 3.59727 + 2.07689i 0.131617 + 0.0759893i
\(748\) 0 0
\(749\) −25.9312 + 14.9714i −0.947504 + 0.547042i
\(750\) 0 0
\(751\) −42.5856 −1.55397 −0.776985 0.629519i \(-0.783252\pi\)
−0.776985 + 0.629519i \(0.783252\pi\)
\(752\) 0 0
\(753\) 2.20555 + 1.27338i 0.0803749 + 0.0464045i
\(754\) 0 0
\(755\) −13.1650 22.8024i −0.479123 0.829866i
\(756\) 0 0
\(757\) −1.07846 1.86794i −0.0391971 0.0678914i 0.845761 0.533561i \(-0.179147\pi\)
−0.884958 + 0.465670i \(0.845813\pi\)
\(758\) 0 0
\(759\) −4.90772 2.83347i −0.178139 0.102848i
\(760\) 0 0
\(761\) 8.16322 + 14.1391i 0.295916 + 0.512542i 0.975198 0.221336i \(-0.0710417\pi\)
−0.679281 + 0.733878i \(0.737708\pi\)
\(762\) 0 0
\(763\) 21.2200 0.768215
\(764\) 0 0
\(765\) 49.7095 28.6998i 1.79725 1.03764i
\(766\) 0 0
\(767\) 4.58179 0.165439
\(768\) 0 0
\(769\) 7.06397i 0.254733i 0.991856 + 0.127367i \(0.0406525\pi\)
−0.991856 + 0.127367i \(0.959348\pi\)
\(770\) 0 0
\(771\) 0.718046 0.0258598
\(772\) 0 0
\(773\) 31.8001 + 18.3598i 1.14377 + 0.660356i 0.947361 0.320166i \(-0.103739\pi\)
0.196409 + 0.980522i \(0.437072\pi\)
\(774\) 0 0
\(775\) −9.07053 + 5.23687i −0.325823 + 0.188114i
\(776\) 0 0
\(777\) −3.45700 6.17168i −0.124019 0.221408i
\(778\) 0 0
\(779\) 7.57240 + 13.1158i 0.271310 + 0.469922i
\(780\) 0 0
\(781\) −17.4665 10.0843i −0.624999 0.360843i
\(782\) 0 0
\(783\) 13.9106i 0.497124i
\(784\) 0 0
\(785\) 39.6805i 1.41626i
\(786\) 0 0
\(787\) 16.8047i 0.599023i 0.954093 + 0.299512i \(0.0968237\pi\)
−0.954093 + 0.299512i \(0.903176\pi\)
\(788\) 0 0
\(789\) −10.4954 + 6.05951i −0.373645 + 0.215724i
\(790\) 0 0
\(791\) 35.7748i 1.27200i
\(792\) 0 0
\(793\) −0.326387 0.565320i −0.0115904 0.0200751i
\(794\) 0 0
\(795\) −0.422127 + 0.731145i −0.0149713 + 0.0259310i
\(796\) 0 0
\(797\) 0.349355 + 0.605100i 0.0123748 + 0.0214338i 0.872146 0.489245i \(-0.162728\pi\)
−0.859772 + 0.510679i \(0.829394\pi\)
\(798\) 0 0
\(799\) −48.4702 + 27.9843i −1.71475 + 0.990014i
\(800\) 0 0
\(801\) −33.2704 19.2087i −1.17555 0.678705i
\(802\) 0 0
\(803\) 9.15237i 0.322980i
\(804\) 0 0
\(805\) 10.4685 6.04401i 0.368968 0.213024i
\(806\) 0 0
\(807\) 9.05505 15.6838i 0.318753 0.552096i
\(808\) 0 0
\(809\) 26.4968 + 15.2979i 0.931577 + 0.537846i 0.887310 0.461174i \(-0.152571\pi\)
0.0442669 + 0.999020i \(0.485905\pi\)
\(810\) 0 0
\(811\) −6.49251 3.74845i −0.227983 0.131626i 0.381658 0.924304i \(-0.375353\pi\)
−0.609641 + 0.792678i \(0.708686\pi\)
\(812\) 0 0
\(813\) 17.0060i 0.596425i
\(814\) 0 0
\(815\) −20.2863 −0.710598
\(816\) 0 0
\(817\) −15.7034 + 27.1990i −0.549391 + 0.951573i
\(818\) 0 0
\(819\) −1.20043 + 2.07921i −0.0419465 + 0.0726535i
\(820\) 0 0
\(821\) −6.79113 3.92086i −0.237012 0.136839i 0.376791 0.926298i \(-0.377028\pi\)
−0.613803 + 0.789459i \(0.710361\pi\)
\(822\) 0 0
\(823\) −7.27104 12.5938i −0.253453 0.438993i 0.711021 0.703170i \(-0.248233\pi\)
−0.964474 + 0.264177i \(0.914900\pi\)
\(824\) 0 0
\(825\) −14.1138 −0.491381
\(826\) 0 0
\(827\) 10.6385 18.4264i 0.369936 0.640747i −0.619620 0.784902i \(-0.712713\pi\)
0.989555 + 0.144155i \(0.0460464\pi\)
\(828\) 0 0
\(829\) 14.1711 + 24.5450i 0.492182 + 0.852485i 0.999959 0.00900385i \(-0.00286605\pi\)
−0.507777 + 0.861488i \(0.669533\pi\)
\(830\) 0 0
\(831\) −6.45748 + 3.72823i −0.224008 + 0.129331i
\(832\) 0 0
\(833\) 23.8229 + 13.7541i 0.825413 + 0.476553i
\(834\) 0 0
\(835\) −28.6850 + 16.5613i −0.992685 + 0.573127i
\(836\) 0 0
\(837\) −7.23445 −0.250059
\(838\) 0 0
\(839\) 20.7540 + 35.9470i 0.716507 + 1.24103i 0.962375 + 0.271724i \(0.0875936\pi\)
−0.245868 + 0.969303i \(0.579073\pi\)
\(840\) 0 0
\(841\) −14.8412 −0.511764
\(842\) 0 0
\(843\) −0.557593 −0.0192045
\(844\) 0 0
\(845\) −40.8995 −1.40699
\(846\) 0 0
\(847\) −4.12208 + 7.13966i −0.141636 + 0.245322i
\(848\) 0 0
\(849\) −5.14857 + 2.97253i −0.176699 + 0.102017i
\(850\) 0 0
\(851\) −13.0706 0.169994i −0.448055 0.00582732i
\(852\) 0 0
\(853\) 26.1730 + 45.3330i 0.896147 + 1.55217i 0.832379 + 0.554207i \(0.186978\pi\)
0.0637681 + 0.997965i \(0.479688\pi\)
\(854\) 0 0
\(855\) −18.2547 + 31.6180i −0.624296 + 1.08131i
\(856\) 0 0
\(857\) 47.2486i 1.61398i −0.590564 0.806991i \(-0.701095\pi\)
0.590564 0.806991i \(-0.298905\pi\)
\(858\) 0 0
\(859\) 15.1220 0.515958 0.257979 0.966151i \(-0.416944\pi\)
0.257979 + 0.966151i \(0.416944\pi\)
\(860\) 0 0
\(861\) 3.96965i 0.135285i
\(862\) 0 0
\(863\) 22.0511 + 38.1936i 0.750627 + 1.30012i 0.947519 + 0.319699i \(0.103582\pi\)
−0.196892 + 0.980425i \(0.563085\pi\)
\(864\) 0 0
\(865\) 0.0381609i 0.00129751i
\(866\) 0 0
\(867\) 18.2374 10.5293i 0.619373 0.357595i
\(868\) 0 0
\(869\) 4.68711 8.11832i 0.158999 0.275395i
\(870\) 0 0
\(871\) 3.89354 2.24794i 0.131928 0.0761685i
\(872\) 0 0
\(873\) −37.1718 + 21.4611i −1.25807 + 0.726349i
\(874\) 0 0
\(875\) 0.990411 1.71544i 0.0334820 0.0579925i
\(876\) 0 0
\(877\) 15.0650i 0.508708i −0.967111 0.254354i \(-0.918137\pi\)
0.967111 0.254354i \(-0.0818628\pi\)
\(878\) 0 0
\(879\) 6.64355 + 11.5070i 0.224081 + 0.388120i
\(880\) 0 0
\(881\) −19.6313 + 34.0025i −0.661396 + 1.14557i 0.318853 + 0.947804i \(0.396702\pi\)
−0.980249 + 0.197768i \(0.936631\pi\)
\(882\) 0 0
\(883\) 13.3227 23.0755i 0.448344 0.776554i −0.549935 0.835208i \(-0.685347\pi\)
0.998278 + 0.0586537i \(0.0186808\pi\)
\(884\) 0 0
\(885\) −15.8158 9.13125i −0.531642 0.306944i
\(886\) 0 0
\(887\) 21.1228 0.709233 0.354617 0.935012i \(-0.384611\pi\)
0.354617 + 0.935012i \(0.384611\pi\)
\(888\) 0 0
\(889\) 35.3441 1.18540
\(890\) 0 0
\(891\) 17.8985 + 10.3337i 0.599623 + 0.346192i
\(892\) 0 0
\(893\) 17.7996 30.8298i 0.595640 1.03168i
\(894\) 0 0
\(895\) 10.4875 18.1649i 0.350559 0.607186i
\(896\) 0 0
\(897\) −0.383791 0.664746i −0.0128144 0.0221952i
\(898\) 0 0
\(899\) 7.36356i 0.245589i
\(900\) 0 0
\(901\) 1.37579 2.38294i 0.0458342 0.0793872i
\(902\) 0 0
\(903\) 7.12921 4.11605i 0.237245 0.136974i
\(904\) 0 0
\(905\) 32.5173 18.7739i 1.08091 0.624064i
\(906\) 0 0
\(907\) 2.70347 4.68254i 0.0897672 0.155481i −0.817645 0.575722i \(-0.804721\pi\)
0.907413 + 0.420241i \(0.138054\pi\)
\(908\) 0 0
\(909\) −20.8987 + 12.0658i −0.693165 + 0.400199i
\(910\) 0 0
\(911\) 7.13798i 0.236492i −0.992984 0.118246i \(-0.962273\pi\)
0.992984 0.118246i \(-0.0377271\pi\)
\(912\) 0 0
\(913\) 3.21930 + 5.57598i 0.106543 + 0.184538i
\(914\) 0 0
\(915\) 2.60188i 0.0860157i
\(916\) 0 0
\(917\) −37.0421 −1.22324
\(918\) 0 0
\(919\) 18.8976i 0.623375i −0.950185 0.311688i \(-0.899106\pi\)
0.950185 0.311688i \(-0.100894\pi\)
\(920\) 0 0
\(921\) −6.25300 + 10.8305i −0.206043 + 0.356878i
\(922\) 0 0
\(923\) −1.36590 2.36582i −0.0449593 0.0778718i
\(924\) 0 0
\(925\) −28.4035 + 15.9099i −0.933901 + 0.523114i
\(926\) 0 0
\(927\) −43.0460 + 24.8526i −1.41382 + 0.816267i
\(928\) 0 0
\(929\) −10.1932 + 17.6551i −0.334427 + 0.579244i −0.983375 0.181589i \(-0.941876\pi\)
0.648948 + 0.760833i \(0.275209\pi\)
\(930\) 0 0
\(931\) −17.4968 −0.573435
\(932\) 0 0
\(933\) −5.67316 −0.185731
\(934\) 0 0
\(935\) 88.9727 2.90972
\(936\) 0 0
\(937\) −4.12749 7.14903i −0.134839 0.233549i 0.790697 0.612208i \(-0.209718\pi\)
−0.925536 + 0.378659i \(0.876385\pi\)
\(938\) 0 0
\(939\) 9.14323 0.298378
\(940\) 0 0
\(941\) 41.0244 23.6854i 1.33736 0.772123i 0.350941 0.936398i \(-0.385862\pi\)
0.986415 + 0.164275i \(0.0525284\pi\)
\(942\) 0 0
\(943\) −6.35265 3.66770i −0.206871 0.119437i
\(944\) 0 0
\(945\) 18.0089 10.3974i 0.585828 0.338228i
\(946\) 0 0
\(947\) 9.82338 + 17.0146i 0.319217 + 0.552900i 0.980325 0.197391i \(-0.0632468\pi\)
−0.661108 + 0.750291i \(0.729913\pi\)
\(948\) 0 0
\(949\) 0.619840 1.07359i 0.0201209 0.0348504i
\(950\) 0 0
\(951\) −14.1292 −0.458170
\(952\) 0 0
\(953\) −2.08755 3.61574i −0.0676223 0.117125i 0.830232 0.557418i \(-0.188208\pi\)
−0.897854 + 0.440293i \(0.854875\pi\)
\(954\) 0 0
\(955\) 24.1624 + 13.9502i 0.781876 + 0.451416i
\(956\) 0 0
\(957\) 4.96136 8.59333i 0.160378 0.277783i
\(958\) 0 0
\(959\) −12.2132 + 21.1538i −0.394384 + 0.683093i
\(960\) 0 0
\(961\) 27.1704 0.876466
\(962\) 0 0
\(963\) 43.8026i 1.41152i
\(964\) 0 0
\(965\) 0.872039 + 0.503472i 0.0280719 + 0.0162073i
\(966\) 0 0
\(967\) −47.1713 27.2344i −1.51693 0.875798i −0.999802 0.0198888i \(-0.993669\pi\)
−0.517125 0.855910i \(-0.672998\pi\)
\(968\) 0 0
\(969\) −10.2936 + 17.8291i −0.330679 + 0.572753i
\(970\) 0 0
\(971\) −21.6943 + 12.5252i −0.696204 + 0.401953i −0.805932 0.592008i \(-0.798335\pi\)
0.109728 + 0.993962i \(0.465002\pi\)
\(972\) 0 0
\(973\) 10.8438i 0.347637i
\(974\) 0 0
\(975\) −1.65559 0.955853i −0.0530212 0.0306118i
\(976\) 0 0
\(977\) −8.60464 + 4.96789i −0.275287 + 0.158937i −0.631288 0.775549i \(-0.717473\pi\)
0.356001 + 0.934486i \(0.384140\pi\)
\(978\) 0 0
\(979\) −29.7746 51.5711i −0.951600 1.64822i
\(980\) 0 0
\(981\) 15.5212 26.8834i 0.495552 0.858322i
\(982\) 0 0
\(983\) 10.8235 + 18.7468i 0.345215 + 0.597930i 0.985393 0.170297i \(-0.0544727\pi\)
−0.640178 + 0.768227i \(0.721139\pi\)
\(984\) 0 0
\(985\) 17.0553i 0.543427i
\(986\) 0 0
\(987\) −8.08089 + 4.66550i −0.257218 + 0.148505i
\(988\) 0 0
\(989\) 15.2119i 0.483710i
\(990\) 0 0
\(991\) 44.7931i 1.42290i 0.702736 + 0.711451i \(0.251961\pi\)
−0.702736 + 0.711451i \(0.748039\pi\)
\(992\) 0 0
\(993\) 1.54539i 0.0490416i
\(994\) 0 0
\(995\) −4.01442 2.31773i −0.127266 0.0734769i
\(996\) 0 0
\(997\) 13.7735 + 23.8564i 0.436211 + 0.755539i 0.997394 0.0721525i \(-0.0229868\pi\)
−0.561183 + 0.827692i \(0.689653\pi\)
\(998\) 0 0
\(999\) −22.4852 0.292438i −0.711399 0.00925233i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1184.2.y.a.529.21 72
4.3 odd 2 296.2.q.a.85.33 yes 72
8.3 odd 2 296.2.q.a.85.21 72
8.5 even 2 inner 1184.2.y.a.529.16 72
37.27 even 6 inner 1184.2.y.a.1137.16 72
148.27 odd 6 296.2.q.a.101.21 yes 72
296.27 odd 6 296.2.q.a.101.33 yes 72
296.101 even 6 inner 1184.2.y.a.1137.21 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.q.a.85.21 72 8.3 odd 2
296.2.q.a.85.33 yes 72 4.3 odd 2
296.2.q.a.101.21 yes 72 148.27 odd 6
296.2.q.a.101.33 yes 72 296.27 odd 6
1184.2.y.a.529.16 72 8.5 even 2 inner
1184.2.y.a.529.21 72 1.1 even 1 trivial
1184.2.y.a.1137.16 72 37.27 even 6 inner
1184.2.y.a.1137.21 72 296.101 even 6 inner