Properties

Label 1184.2.y.a.1137.32
Level $1184$
Weight $2$
Character 1184.1137
Analytic conductor $9.454$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1184,2,Mod(529,1184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1184, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1184.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1184 = 2^{5} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1184.y (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.45428759932\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 296)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1137.32
Character \(\chi\) \(=\) 1184.1137
Dual form 1184.2.y.a.529.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.16163 - 1.24802i) q^{3} +(-0.890777 - 1.54287i) q^{5} +(1.76150 + 3.05101i) q^{7} +(1.61510 - 2.79744i) q^{9} -4.13321i q^{11} +(-0.0436485 - 0.0756014i) q^{13} +(-3.85106 - 2.22341i) q^{15} +(6.70855 + 3.87318i) q^{17} +(-2.34289 - 4.05801i) q^{19} +(7.61542 + 4.39677i) q^{21} -4.36925i q^{23} +(0.913033 - 1.58142i) q^{25} -0.574592i q^{27} -3.98156 q^{29} -1.77678i q^{31} +(-5.15832 - 8.93447i) q^{33} +(3.13820 - 5.43553i) q^{35} +(3.42531 - 5.02666i) q^{37} +(-0.188704 - 0.108948i) q^{39} +(4.07638 + 7.06049i) q^{41} -5.20812 q^{43} -5.75478 q^{45} +4.78830 q^{47} +(-2.70576 + 4.68651i) q^{49} +19.3352 q^{51} +(8.84851 + 5.10869i) q^{53} +(-6.37700 + 3.68176i) q^{55} +(-10.1289 - 5.84795i) q^{57} +(-1.80578 + 3.12770i) q^{59} +(0.507638 + 0.879255i) q^{61} +11.3800 q^{63} +(-0.0777621 + 0.134688i) q^{65} +(-2.90651 + 1.67808i) q^{67} +(-5.45291 - 9.44471i) q^{69} +(-7.96677 - 13.7988i) q^{71} -14.8336 q^{73} -4.55793i q^{75} +(12.6104 - 7.28064i) q^{77} +(-3.90643 + 2.25538i) q^{79} +(4.12820 + 7.15025i) q^{81} +(7.49112 + 4.32500i) q^{83} -13.8006i q^{85} +(-8.60666 + 4.96906i) q^{87} +(-7.29943 - 4.21433i) q^{89} +(0.153773 - 0.266343i) q^{91} +(-2.21745 - 3.84074i) q^{93} +(-4.17399 + 7.22956i) q^{95} +9.43247i q^{97} +(-11.5624 - 6.67555i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 2 q^{7} + 30 q^{9} + 6 q^{15} - 12 q^{17} - 32 q^{25} + 4 q^{33} + 6 q^{39} - 32 q^{47} - 18 q^{49} - 24 q^{55} - 6 q^{57} - 8 q^{63} + 6 q^{65} - 18 q^{71} - 64 q^{73} - 54 q^{79} - 16 q^{81} + 108 q^{87}+ \cdots - 50 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1184\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(705\) \(741\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.16163 1.24802i 1.24802 0.720544i 0.277305 0.960782i \(-0.410559\pi\)
0.970714 + 0.240238i \(0.0772255\pi\)
\(4\) 0 0
\(5\) −0.890777 1.54287i −0.398368 0.689993i 0.595157 0.803609i \(-0.297090\pi\)
−0.993525 + 0.113617i \(0.963756\pi\)
\(6\) 0 0
\(7\) 1.76150 + 3.05101i 0.665784 + 1.15317i 0.979072 + 0.203514i \(0.0652361\pi\)
−0.313288 + 0.949658i \(0.601431\pi\)
\(8\) 0 0
\(9\) 1.61510 2.79744i 0.538367 0.932479i
\(10\) 0 0
\(11\) 4.13321i 1.24621i −0.782139 0.623104i \(-0.785871\pi\)
0.782139 0.623104i \(-0.214129\pi\)
\(12\) 0 0
\(13\) −0.0436485 0.0756014i −0.0121059 0.0209680i 0.859909 0.510447i \(-0.170520\pi\)
−0.872015 + 0.489479i \(0.837187\pi\)
\(14\) 0 0
\(15\) −3.85106 2.22341i −0.994340 0.574083i
\(16\) 0 0
\(17\) 6.70855 + 3.87318i 1.62706 + 0.939384i 0.984964 + 0.172761i \(0.0552689\pi\)
0.642097 + 0.766623i \(0.278064\pi\)
\(18\) 0 0
\(19\) −2.34289 4.05801i −0.537497 0.930972i −0.999038 0.0438529i \(-0.986037\pi\)
0.461541 0.887119i \(-0.347297\pi\)
\(20\) 0 0
\(21\) 7.61542 + 4.39677i 1.66182 + 0.959453i
\(22\) 0 0
\(23\) 4.36925i 0.911052i −0.890222 0.455526i \(-0.849451\pi\)
0.890222 0.455526i \(-0.150549\pi\)
\(24\) 0 0
\(25\) 0.913033 1.58142i 0.182607 0.316284i
\(26\) 0 0
\(27\) 0.574592i 0.110580i
\(28\) 0 0
\(29\) −3.98156 −0.739357 −0.369678 0.929160i \(-0.620532\pi\)
−0.369678 + 0.929160i \(0.620532\pi\)
\(30\) 0 0
\(31\) 1.77678i 0.319119i −0.987188 0.159559i \(-0.948993\pi\)
0.987188 0.159559i \(-0.0510074\pi\)
\(32\) 0 0
\(33\) −5.15832 8.93447i −0.897948 1.55529i
\(34\) 0 0
\(35\) 3.13820 5.43553i 0.530453 0.918772i
\(36\) 0 0
\(37\) 3.42531 5.02666i 0.563117 0.826377i
\(38\) 0 0
\(39\) −0.188704 0.108948i −0.0302168 0.0174457i
\(40\) 0 0
\(41\) 4.07638 + 7.06049i 0.636623 + 1.10266i 0.986169 + 0.165745i \(0.0530027\pi\)
−0.349545 + 0.936919i \(0.613664\pi\)
\(42\) 0 0
\(43\) −5.20812 −0.794230 −0.397115 0.917769i \(-0.629989\pi\)
−0.397115 + 0.917769i \(0.629989\pi\)
\(44\) 0 0
\(45\) −5.75478 −0.857872
\(46\) 0 0
\(47\) 4.78830 0.698446 0.349223 0.937040i \(-0.386446\pi\)
0.349223 + 0.937040i \(0.386446\pi\)
\(48\) 0 0
\(49\) −2.70576 + 4.68651i −0.386537 + 0.669501i
\(50\) 0 0
\(51\) 19.3352 2.70747
\(52\) 0 0
\(53\) 8.84851 + 5.10869i 1.21544 + 0.701733i 0.963938 0.266125i \(-0.0857435\pi\)
0.251498 + 0.967858i \(0.419077\pi\)
\(54\) 0 0
\(55\) −6.37700 + 3.68176i −0.859875 + 0.496449i
\(56\) 0 0
\(57\) −10.1289 5.84795i −1.34161 0.774580i
\(58\) 0 0
\(59\) −1.80578 + 3.12770i −0.235092 + 0.407192i −0.959300 0.282391i \(-0.908873\pi\)
0.724207 + 0.689582i \(0.242206\pi\)
\(60\) 0 0
\(61\) 0.507638 + 0.879255i 0.0649964 + 0.112577i 0.896692 0.442654i \(-0.145963\pi\)
−0.831696 + 0.555231i \(0.812630\pi\)
\(62\) 0 0
\(63\) 11.3800 1.43374
\(64\) 0 0
\(65\) −0.0777621 + 0.134688i −0.00964520 + 0.0167060i
\(66\) 0 0
\(67\) −2.90651 + 1.67808i −0.355087 + 0.205010i −0.666923 0.745126i \(-0.732389\pi\)
0.311837 + 0.950136i \(0.399056\pi\)
\(68\) 0 0
\(69\) −5.45291 9.44471i −0.656453 1.13701i
\(70\) 0 0
\(71\) −7.96677 13.7988i −0.945481 1.63762i −0.754785 0.655972i \(-0.772259\pi\)
−0.190696 0.981649i \(-0.561074\pi\)
\(72\) 0 0
\(73\) −14.8336 −1.73614 −0.868068 0.496445i \(-0.834639\pi\)
−0.868068 + 0.496445i \(0.834639\pi\)
\(74\) 0 0
\(75\) 4.55793i 0.526304i
\(76\) 0 0
\(77\) 12.6104 7.28064i 1.43709 0.829706i
\(78\) 0 0
\(79\) −3.90643 + 2.25538i −0.439508 + 0.253750i −0.703389 0.710805i \(-0.748331\pi\)
0.263881 + 0.964555i \(0.414997\pi\)
\(80\) 0 0
\(81\) 4.12820 + 7.15025i 0.458689 + 0.794473i
\(82\) 0 0
\(83\) 7.49112 + 4.32500i 0.822257 + 0.474731i 0.851194 0.524851i \(-0.175879\pi\)
−0.0289369 + 0.999581i \(0.509212\pi\)
\(84\) 0 0
\(85\) 13.8006i 1.49688i
\(86\) 0 0
\(87\) −8.60666 + 4.96906i −0.922731 + 0.532739i
\(88\) 0 0
\(89\) −7.29943 4.21433i −0.773739 0.446718i 0.0604681 0.998170i \(-0.480741\pi\)
−0.834207 + 0.551452i \(0.814074\pi\)
\(90\) 0 0
\(91\) 0.153773 0.266343i 0.0161198 0.0279204i
\(92\) 0 0
\(93\) −2.21745 3.84074i −0.229939 0.398266i
\(94\) 0 0
\(95\) −4.17399 + 7.22956i −0.428242 + 0.741738i
\(96\) 0 0
\(97\) 9.43247i 0.957722i 0.877891 + 0.478861i \(0.158950\pi\)
−0.877891 + 0.478861i \(0.841050\pi\)
\(98\) 0 0
\(99\) −11.5624 6.67555i −1.16206 0.670918i
\(100\) 0 0
\(101\) 0.346589i 0.0344869i −0.999851 0.0172435i \(-0.994511\pi\)
0.999851 0.0172435i \(-0.00548904\pi\)
\(102\) 0 0
\(103\) 1.49463i 0.147270i 0.997285 + 0.0736352i \(0.0234600\pi\)
−0.997285 + 0.0736352i \(0.976540\pi\)
\(104\) 0 0
\(105\) 15.6662i 1.52886i
\(106\) 0 0
\(107\) 5.13282 2.96344i 0.496208 0.286486i −0.230938 0.972968i \(-0.574179\pi\)
0.727146 + 0.686482i \(0.240846\pi\)
\(108\) 0 0
\(109\) −6.33750 + 10.9769i −0.607022 + 1.05139i 0.384706 + 0.923039i \(0.374303\pi\)
−0.991728 + 0.128354i \(0.959031\pi\)
\(110\) 0 0
\(111\) 1.13089 15.1406i 0.107340 1.43708i
\(112\) 0 0
\(113\) 9.40525 + 5.43012i 0.884771 + 0.510823i 0.872229 0.489098i \(-0.162674\pi\)
0.0125427 + 0.999921i \(0.496007\pi\)
\(114\) 0 0
\(115\) −6.74119 + 3.89203i −0.628619 + 0.362934i
\(116\) 0 0
\(117\) −0.281987 −0.0260697
\(118\) 0 0
\(119\) 27.2904i 2.50171i
\(120\) 0 0
\(121\) −6.08340 −0.553036
\(122\) 0 0
\(123\) 17.6233 + 10.1748i 1.58904 + 0.917430i
\(124\) 0 0
\(125\) −12.1610 −1.08771
\(126\) 0 0
\(127\) −5.48594 + 9.50192i −0.486798 + 0.843159i −0.999885 0.0151778i \(-0.995169\pi\)
0.513087 + 0.858337i \(0.328502\pi\)
\(128\) 0 0
\(129\) −11.2580 + 6.49983i −0.991214 + 0.572278i
\(130\) 0 0
\(131\) −8.39271 + 14.5366i −0.733274 + 1.27007i 0.222202 + 0.975001i \(0.428676\pi\)
−0.955476 + 0.295068i \(0.904658\pi\)
\(132\) 0 0
\(133\) 8.25401 14.2964i 0.715713 1.23965i
\(134\) 0 0
\(135\) −0.886521 + 0.511833i −0.0762996 + 0.0440516i
\(136\) 0 0
\(137\) 4.38663 0.374775 0.187388 0.982286i \(-0.439998\pi\)
0.187388 + 0.982286i \(0.439998\pi\)
\(138\) 0 0
\(139\) −9.76556 5.63815i −0.828304 0.478222i 0.0249674 0.999688i \(-0.492052\pi\)
−0.853272 + 0.521467i \(0.825385\pi\)
\(140\) 0 0
\(141\) 10.3505 5.97589i 0.871673 0.503261i
\(142\) 0 0
\(143\) −0.312476 + 0.180408i −0.0261306 + 0.0150865i
\(144\) 0 0
\(145\) 3.54668 + 6.14303i 0.294536 + 0.510151i
\(146\) 0 0
\(147\) 13.5073i 1.11407i
\(148\) 0 0
\(149\) 15.3551i 1.25794i 0.777432 + 0.628968i \(0.216522\pi\)
−0.777432 + 0.628968i \(0.783478\pi\)
\(150\) 0 0
\(151\) −3.99423 6.91822i −0.325046 0.562996i 0.656476 0.754347i \(-0.272046\pi\)
−0.981522 + 0.191351i \(0.938713\pi\)
\(152\) 0 0
\(153\) 21.6700 12.5112i 1.75191 1.01147i
\(154\) 0 0
\(155\) −2.74134 + 1.58271i −0.220190 + 0.127127i
\(156\) 0 0
\(157\) 1.26284 + 0.729102i 0.100786 + 0.0581887i 0.549546 0.835464i \(-0.314801\pi\)
−0.448760 + 0.893652i \(0.648134\pi\)
\(158\) 0 0
\(159\) 25.5030 2.02252
\(160\) 0 0
\(161\) 13.3306 7.69643i 1.05060 0.606564i
\(162\) 0 0
\(163\) 0.315274 0.546071i 0.0246942 0.0427716i −0.853414 0.521233i \(-0.825472\pi\)
0.878108 + 0.478462i \(0.158805\pi\)
\(164\) 0 0
\(165\) −9.18982 + 15.9172i −0.715427 + 1.23916i
\(166\) 0 0
\(167\) 17.6690 10.2012i 1.36727 0.789393i 0.376690 0.926339i \(-0.377062\pi\)
0.990578 + 0.136947i \(0.0437289\pi\)
\(168\) 0 0
\(169\) 6.49619 11.2517i 0.499707 0.865518i
\(170\) 0 0
\(171\) −15.1360 −1.15748
\(172\) 0 0
\(173\) 16.1422 + 9.31968i 1.22727 + 0.708562i 0.966457 0.256828i \(-0.0826775\pi\)
0.260809 + 0.965390i \(0.416011\pi\)
\(174\) 0 0
\(175\) 6.43323 0.486306
\(176\) 0 0
\(177\) 9.01458i 0.677577i
\(178\) 0 0
\(179\) 5.95491 0.445091 0.222545 0.974922i \(-0.428563\pi\)
0.222545 + 0.974922i \(0.428563\pi\)
\(180\) 0 0
\(181\) −17.4288 + 10.0625i −1.29548 + 0.747943i −0.979619 0.200864i \(-0.935625\pi\)
−0.315856 + 0.948807i \(0.602292\pi\)
\(182\) 0 0
\(183\) 2.19465 + 1.26708i 0.162233 + 0.0936656i
\(184\) 0 0
\(185\) −10.8067 0.807179i −0.794522 0.0593450i
\(186\) 0 0
\(187\) 16.0087 27.7278i 1.17067 2.02766i
\(188\) 0 0
\(189\) 1.75308 1.01214i 0.127518 0.0736226i
\(190\) 0 0
\(191\) 2.63141i 0.190402i −0.995458 0.0952010i \(-0.969651\pi\)
0.995458 0.0952010i \(-0.0303494\pi\)
\(192\) 0 0
\(193\) 6.45381i 0.464556i 0.972649 + 0.232278i \(0.0746179\pi\)
−0.972649 + 0.232278i \(0.925382\pi\)
\(194\) 0 0
\(195\) 0.388194i 0.0277992i
\(196\) 0 0
\(197\) 21.1982 + 12.2388i 1.51031 + 0.871979i 0.999928 + 0.0120325i \(0.00383015\pi\)
0.510384 + 0.859946i \(0.329503\pi\)
\(198\) 0 0
\(199\) 6.26164i 0.443876i −0.975061 0.221938i \(-0.928762\pi\)
0.975061 0.221938i \(-0.0712382\pi\)
\(200\) 0 0
\(201\) −4.18854 + 7.25476i −0.295437 + 0.511711i
\(202\) 0 0
\(203\) −7.01351 12.1478i −0.492252 0.852605i
\(204\) 0 0
\(205\) 7.26229 12.5787i 0.507220 0.878531i
\(206\) 0 0
\(207\) −12.2227 7.05678i −0.849537 0.490480i
\(208\) 0 0
\(209\) −16.7726 + 9.68366i −1.16018 + 0.669833i
\(210\) 0 0
\(211\) 12.8294i 0.883210i 0.897210 + 0.441605i \(0.145591\pi\)
−0.897210 + 0.441605i \(0.854409\pi\)
\(212\) 0 0
\(213\) −34.4424 19.8853i −2.35996 1.36252i
\(214\) 0 0
\(215\) 4.63927 + 8.03545i 0.316396 + 0.548013i
\(216\) 0 0
\(217\) 5.42096 3.12979i 0.367999 0.212464i
\(218\) 0 0
\(219\) −32.0647 + 18.5126i −2.16673 + 1.25096i
\(220\) 0 0
\(221\) 0.676234i 0.0454884i
\(222\) 0 0
\(223\) 8.43355 0.564753 0.282376 0.959304i \(-0.408877\pi\)
0.282376 + 0.959304i \(0.408877\pi\)
\(224\) 0 0
\(225\) −2.94928 5.10830i −0.196619 0.340554i
\(226\) 0 0
\(227\) 5.90252 + 10.2235i 0.391764 + 0.678555i 0.992682 0.120755i \(-0.0385316\pi\)
−0.600918 + 0.799310i \(0.705198\pi\)
\(228\) 0 0
\(229\) −5.42518 + 3.13223i −0.358506 + 0.206984i −0.668425 0.743779i \(-0.733031\pi\)
0.309919 + 0.950763i \(0.399698\pi\)
\(230\) 0 0
\(231\) 18.1727 31.4761i 1.19568 2.07098i
\(232\) 0 0
\(233\) 8.15339 0.534147 0.267073 0.963676i \(-0.413943\pi\)
0.267073 + 0.963676i \(0.413943\pi\)
\(234\) 0 0
\(235\) −4.26531 7.38773i −0.278238 0.481922i
\(236\) 0 0
\(237\) −5.62951 + 9.75060i −0.365676 + 0.633370i
\(238\) 0 0
\(239\) −4.06018 2.34415i −0.262631 0.151630i 0.362903 0.931827i \(-0.381786\pi\)
−0.625534 + 0.780197i \(0.715119\pi\)
\(240\) 0 0
\(241\) 6.90674 3.98761i 0.444902 0.256864i −0.260773 0.965400i \(-0.583977\pi\)
0.705675 + 0.708536i \(0.250644\pi\)
\(242\) 0 0
\(243\) 19.3401 + 11.1660i 1.24067 + 0.716301i
\(244\) 0 0
\(245\) 9.64090 0.615934
\(246\) 0 0
\(247\) −0.204527 + 0.354252i −0.0130138 + 0.0225405i
\(248\) 0 0
\(249\) 21.5907 1.36826
\(250\) 0 0
\(251\) −29.2064 −1.84349 −0.921745 0.387796i \(-0.873237\pi\)
−0.921745 + 0.387796i \(0.873237\pi\)
\(252\) 0 0
\(253\) −18.0590 −1.13536
\(254\) 0 0
\(255\) −17.2234 29.8317i −1.07857 1.86813i
\(256\) 0 0
\(257\) −4.50523 2.60110i −0.281029 0.162252i 0.352860 0.935676i \(-0.385209\pi\)
−0.633889 + 0.773424i \(0.718542\pi\)
\(258\) 0 0
\(259\) 21.3700 + 1.59619i 1.32787 + 0.0991821i
\(260\) 0 0
\(261\) −6.43062 + 11.1382i −0.398045 + 0.689435i
\(262\) 0 0
\(263\) 11.8342 + 20.4975i 0.729730 + 1.26393i 0.956997 + 0.290096i \(0.0936874\pi\)
−0.227268 + 0.973832i \(0.572979\pi\)
\(264\) 0 0
\(265\) 18.2028i 1.11819i
\(266\) 0 0
\(267\) −21.0383 −1.28752
\(268\) 0 0
\(269\) 0.924335i 0.0563577i 0.999603 + 0.0281789i \(0.00897079\pi\)
−0.999603 + 0.0281789i \(0.991029\pi\)
\(270\) 0 0
\(271\) −12.6708 + 21.9465i −0.769697 + 1.33316i 0.168030 + 0.985782i \(0.446260\pi\)
−0.937727 + 0.347373i \(0.887074\pi\)
\(272\) 0 0
\(273\) 0.767649i 0.0464602i
\(274\) 0 0
\(275\) −6.53633 3.77375i −0.394156 0.227566i
\(276\) 0 0
\(277\) −6.88276 11.9213i −0.413545 0.716281i 0.581730 0.813382i \(-0.302376\pi\)
−0.995274 + 0.0971016i \(0.969043\pi\)
\(278\) 0 0
\(279\) −4.97043 2.86968i −0.297572 0.171803i
\(280\) 0 0
\(281\) −15.0819 8.70754i −0.899710 0.519448i −0.0226042 0.999744i \(-0.507196\pi\)
−0.877106 + 0.480296i \(0.840529\pi\)
\(282\) 0 0
\(283\) 6.29225 + 10.8985i 0.374036 + 0.647849i 0.990182 0.139783i \(-0.0446404\pi\)
−0.616147 + 0.787632i \(0.711307\pi\)
\(284\) 0 0
\(285\) 20.8369i 1.23427i
\(286\) 0 0
\(287\) −14.3611 + 24.8741i −0.847707 + 1.46827i
\(288\) 0 0
\(289\) 21.5031 + 37.2444i 1.26489 + 2.19085i
\(290\) 0 0
\(291\) 11.7719 + 20.3895i 0.690081 + 1.19525i
\(292\) 0 0
\(293\) −28.4577 + 16.4300i −1.66251 + 0.959853i −0.691006 + 0.722849i \(0.742832\pi\)
−0.971509 + 0.237004i \(0.923834\pi\)
\(294\) 0 0
\(295\) 6.43418 0.374613
\(296\) 0 0
\(297\) −2.37491 −0.137806
\(298\) 0 0
\(299\) −0.330321 + 0.190711i −0.0191030 + 0.0110291i
\(300\) 0 0
\(301\) −9.17409 15.8900i −0.528786 0.915884i
\(302\) 0 0
\(303\) −0.432550 0.749198i −0.0248493 0.0430403i
\(304\) 0 0
\(305\) 0.904385 1.56644i 0.0517849 0.0896941i
\(306\) 0 0
\(307\) 3.45170i 0.196999i 0.995137 + 0.0984996i \(0.0314043\pi\)
−0.995137 + 0.0984996i \(0.968596\pi\)
\(308\) 0 0
\(309\) 1.86533 + 3.23084i 0.106115 + 0.183796i
\(310\) 0 0
\(311\) −5.86851 3.38818i −0.332773 0.192126i 0.324299 0.945955i \(-0.394872\pi\)
−0.657071 + 0.753828i \(0.728205\pi\)
\(312\) 0 0
\(313\) −6.98349 4.03192i −0.394730 0.227898i 0.289477 0.957185i \(-0.406518\pi\)
−0.684208 + 0.729287i \(0.739852\pi\)
\(314\) 0 0
\(315\) −10.1370 17.5579i −0.571157 0.989273i
\(316\) 0 0
\(317\) −5.18482 2.99346i −0.291209 0.168129i 0.347278 0.937762i \(-0.387106\pi\)
−0.638487 + 0.769633i \(0.720439\pi\)
\(318\) 0 0
\(319\) 16.4566i 0.921393i
\(320\) 0 0
\(321\) 7.39684 12.8117i 0.412852 0.715080i
\(322\) 0 0
\(323\) 36.2978i 2.01966i
\(324\) 0 0
\(325\) −0.159410 −0.00884248
\(326\) 0 0
\(327\) 31.6373i 1.74954i
\(328\) 0 0
\(329\) 8.43459 + 14.6091i 0.465014 + 0.805428i
\(330\) 0 0
\(331\) 16.2890 28.2133i 0.895322 1.55074i 0.0619171 0.998081i \(-0.480279\pi\)
0.833405 0.552662i \(-0.186388\pi\)
\(332\) 0 0
\(333\) −8.52953 17.7006i −0.467416 0.969989i
\(334\) 0 0
\(335\) 5.17811 + 2.98958i 0.282910 + 0.163338i
\(336\) 0 0
\(337\) 1.67917 + 2.90840i 0.0914701 + 0.158431i 0.908130 0.418688i \(-0.137510\pi\)
−0.816660 + 0.577119i \(0.804177\pi\)
\(338\) 0 0
\(339\) 27.1076 1.47228
\(340\) 0 0
\(341\) −7.34379 −0.397689
\(342\) 0 0
\(343\) 5.59624 0.302169
\(344\) 0 0
\(345\) −9.71465 + 16.8263i −0.523019 + 0.905896i
\(346\) 0 0
\(347\) 0.803040 0.0431094 0.0215547 0.999768i \(-0.493138\pi\)
0.0215547 + 0.999768i \(0.493138\pi\)
\(348\) 0 0
\(349\) 25.3543 + 14.6383i 1.35719 + 0.783572i 0.989244 0.146276i \(-0.0467289\pi\)
0.367943 + 0.929848i \(0.380062\pi\)
\(350\) 0 0
\(351\) −0.0434399 + 0.0250801i −0.00231865 + 0.00133867i
\(352\) 0 0
\(353\) −15.7659 9.10247i −0.839137 0.484476i 0.0178340 0.999841i \(-0.494323\pi\)
−0.856971 + 0.515365i \(0.827656\pi\)
\(354\) 0 0
\(355\) −14.1932 + 24.5834i −0.753298 + 1.30475i
\(356\) 0 0
\(357\) 34.0589 + 58.9918i 1.80259 + 3.12218i
\(358\) 0 0
\(359\) −25.1427 −1.32698 −0.663491 0.748184i \(-0.730926\pi\)
−0.663491 + 0.748184i \(0.730926\pi\)
\(360\) 0 0
\(361\) −1.47830 + 2.56049i −0.0778054 + 0.134763i
\(362\) 0 0
\(363\) −13.1501 + 7.59219i −0.690199 + 0.398487i
\(364\) 0 0
\(365\) 13.2134 + 22.8863i 0.691621 + 1.19792i
\(366\) 0 0
\(367\) 7.64346 + 13.2389i 0.398985 + 0.691063i 0.993601 0.112947i \(-0.0360291\pi\)
−0.594616 + 0.804010i \(0.702696\pi\)
\(368\) 0 0
\(369\) 26.3351 1.37095
\(370\) 0 0
\(371\) 35.9958i 1.86881i
\(372\) 0 0
\(373\) 26.2790 15.1722i 1.36067 0.785586i 0.370961 0.928649i \(-0.379029\pi\)
0.989714 + 0.143063i \(0.0456952\pi\)
\(374\) 0 0
\(375\) −26.2876 + 15.1772i −1.35749 + 0.783745i
\(376\) 0 0
\(377\) 0.173789 + 0.301011i 0.00895059 + 0.0155029i
\(378\) 0 0
\(379\) −6.46320 3.73153i −0.331992 0.191676i 0.324733 0.945806i \(-0.394726\pi\)
−0.656725 + 0.754130i \(0.728059\pi\)
\(380\) 0 0
\(381\) 27.3862i 1.40304i
\(382\) 0 0
\(383\) −13.7878 + 7.96037i −0.704522 + 0.406756i −0.809029 0.587768i \(-0.800007\pi\)
0.104507 + 0.994524i \(0.466673\pi\)
\(384\) 0 0
\(385\) −22.4662 12.9708i −1.14498 0.661056i
\(386\) 0 0
\(387\) −8.41163 + 14.5694i −0.427587 + 0.740603i
\(388\) 0 0
\(389\) −0.882710 1.52890i −0.0447552 0.0775182i 0.842780 0.538258i \(-0.180917\pi\)
−0.887535 + 0.460740i \(0.847584\pi\)
\(390\) 0 0
\(391\) 16.9229 29.3113i 0.855828 1.48234i
\(392\) 0 0
\(393\) 41.8970i 2.11343i
\(394\) 0 0
\(395\) 6.95952 + 4.01808i 0.350171 + 0.202172i
\(396\) 0 0
\(397\) 18.2297i 0.914923i −0.889229 0.457462i \(-0.848759\pi\)
0.889229 0.457462i \(-0.151241\pi\)
\(398\) 0 0
\(399\) 41.2046i 2.06281i
\(400\) 0 0
\(401\) 11.5455i 0.576555i −0.957547 0.288278i \(-0.906917\pi\)
0.957547 0.288278i \(-0.0930826\pi\)
\(402\) 0 0
\(403\) −0.134327 + 0.0775537i −0.00669130 + 0.00386322i
\(404\) 0 0
\(405\) 7.35461 12.7386i 0.365454 0.632984i
\(406\) 0 0
\(407\) −20.7762 14.1575i −1.02984 0.701762i
\(408\) 0 0
\(409\) −16.2567 9.38584i −0.803844 0.464100i 0.0409693 0.999160i \(-0.486955\pi\)
−0.844814 + 0.535061i \(0.820289\pi\)
\(410\) 0 0
\(411\) 9.48228 5.47460i 0.467727 0.270042i
\(412\) 0 0
\(413\) −12.7235 −0.626083
\(414\) 0 0
\(415\) 15.4104i 0.756469i
\(416\) 0 0
\(417\) −28.1461 −1.37832
\(418\) 0 0
\(419\) −12.8243 7.40413i −0.626509 0.361715i 0.152890 0.988243i \(-0.451142\pi\)
−0.779399 + 0.626528i \(0.784475\pi\)
\(420\) 0 0
\(421\) −5.67693 −0.276676 −0.138338 0.990385i \(-0.544176\pi\)
−0.138338 + 0.990385i \(0.544176\pi\)
\(422\) 0 0
\(423\) 7.73359 13.3950i 0.376020 0.651286i
\(424\) 0 0
\(425\) 12.2502 7.07268i 0.594224 0.343076i
\(426\) 0 0
\(427\) −1.78841 + 3.09761i −0.0865472 + 0.149904i
\(428\) 0 0
\(429\) −0.450305 + 0.779952i −0.0217410 + 0.0376564i
\(430\) 0 0
\(431\) 25.4858 14.7142i 1.22761 0.708759i 0.261077 0.965318i \(-0.415922\pi\)
0.966528 + 0.256559i \(0.0825889\pi\)
\(432\) 0 0
\(433\) −12.2227 −0.587385 −0.293692 0.955900i \(-0.594884\pi\)
−0.293692 + 0.955900i \(0.594884\pi\)
\(434\) 0 0
\(435\) 15.3332 + 8.85265i 0.735172 + 0.424452i
\(436\) 0 0
\(437\) −17.7305 + 10.2367i −0.848164 + 0.489687i
\(438\) 0 0
\(439\) −6.92570 + 3.99855i −0.330546 + 0.190841i −0.656083 0.754688i \(-0.727788\pi\)
0.325538 + 0.945529i \(0.394455\pi\)
\(440\) 0 0
\(441\) 8.74014 + 15.1384i 0.416197 + 0.720874i
\(442\) 0 0
\(443\) 20.5052i 0.974232i −0.873337 0.487116i \(-0.838049\pi\)
0.873337 0.487116i \(-0.161951\pi\)
\(444\) 0 0
\(445\) 15.0161i 0.711832i
\(446\) 0 0
\(447\) 19.1634 + 33.1920i 0.906397 + 1.56993i
\(448\) 0 0
\(449\) 9.98129 5.76270i 0.471046 0.271959i −0.245631 0.969363i \(-0.578995\pi\)
0.716678 + 0.697405i \(0.245662\pi\)
\(450\) 0 0
\(451\) 29.1825 16.8485i 1.37415 0.793366i
\(452\) 0 0
\(453\) −17.2681 9.96975i −0.811327 0.468420i
\(454\) 0 0
\(455\) −0.547911 −0.0256865
\(456\) 0 0
\(457\) −26.1478 + 15.0965i −1.22314 + 0.706183i −0.965587 0.260080i \(-0.916251\pi\)
−0.257557 + 0.966263i \(0.582918\pi\)
\(458\) 0 0
\(459\) 2.22550 3.85468i 0.103877 0.179921i
\(460\) 0 0
\(461\) 5.91311 10.2418i 0.275401 0.477008i −0.694835 0.719169i \(-0.744523\pi\)
0.970236 + 0.242161i \(0.0778561\pi\)
\(462\) 0 0
\(463\) −22.2850 + 12.8663i −1.03567 + 0.597946i −0.918605 0.395177i \(-0.870683\pi\)
−0.117069 + 0.993124i \(0.537350\pi\)
\(464\) 0 0
\(465\) −3.95051 + 6.84249i −0.183201 + 0.317313i
\(466\) 0 0
\(467\) −27.7201 −1.28273 −0.641367 0.767234i \(-0.721632\pi\)
−0.641367 + 0.767234i \(0.721632\pi\)
\(468\) 0 0
\(469\) −10.2396 5.91186i −0.472822 0.272984i
\(470\) 0 0
\(471\) 3.63973 0.167710
\(472\) 0 0
\(473\) 21.5262i 0.989777i
\(474\) 0 0
\(475\) −8.55656 −0.392602
\(476\) 0 0
\(477\) 28.5825 16.5021i 1.30870 0.755579i
\(478\) 0 0
\(479\) −11.9902 6.92257i −0.547848 0.316300i 0.200406 0.979713i \(-0.435774\pi\)
−0.748254 + 0.663413i \(0.769107\pi\)
\(480\) 0 0
\(481\) −0.529532 0.0395521i −0.0241446 0.00180342i
\(482\) 0 0
\(483\) 19.2106 33.2737i 0.874112 1.51401i
\(484\) 0 0
\(485\) 14.5531 8.40222i 0.660821 0.381525i
\(486\) 0 0
\(487\) 1.30951i 0.0593398i −0.999560 0.0296699i \(-0.990554\pi\)
0.999560 0.0296699i \(-0.00944560\pi\)
\(488\) 0 0
\(489\) 1.57387i 0.0711730i
\(490\) 0 0
\(491\) 38.6573i 1.74458i 0.488990 + 0.872290i \(0.337366\pi\)
−0.488990 + 0.872290i \(0.662634\pi\)
\(492\) 0 0
\(493\) −26.7105 15.4213i −1.20298 0.694540i
\(494\) 0 0
\(495\) 23.7857i 1.06909i
\(496\) 0 0
\(497\) 28.0669 48.6133i 1.25897 2.18060i
\(498\) 0 0
\(499\) −17.8061 30.8411i −0.797111 1.38064i −0.921490 0.388402i \(-0.873027\pi\)
0.124379 0.992235i \(-0.460306\pi\)
\(500\) 0 0
\(501\) 25.4626 44.1025i 1.13758 1.97035i
\(502\) 0 0
\(503\) 5.95414 + 3.43763i 0.265482 + 0.153276i 0.626833 0.779154i \(-0.284351\pi\)
−0.361351 + 0.932430i \(0.617684\pi\)
\(504\) 0 0
\(505\) −0.534742 + 0.308734i −0.0237957 + 0.0137385i
\(506\) 0 0
\(507\) 32.4295i 1.44024i
\(508\) 0 0
\(509\) −8.34851 4.82001i −0.370041 0.213643i 0.303435 0.952852i \(-0.401866\pi\)
−0.673476 + 0.739209i \(0.735200\pi\)
\(510\) 0 0
\(511\) −26.1293 45.2573i −1.15589 2.00206i
\(512\) 0 0
\(513\) −2.33170 + 1.34621i −0.102947 + 0.0594365i
\(514\) 0 0
\(515\) 2.30602 1.33138i 0.101615 0.0586677i
\(516\) 0 0
\(517\) 19.7910i 0.870409i
\(518\) 0 0
\(519\) 46.5245 2.04220
\(520\) 0 0
\(521\) −4.26089 7.38007i −0.186673 0.323327i 0.757466 0.652874i \(-0.226437\pi\)
−0.944139 + 0.329548i \(0.893104\pi\)
\(522\) 0 0
\(523\) −9.42406 16.3229i −0.412085 0.713753i 0.583032 0.812449i \(-0.301866\pi\)
−0.995118 + 0.0986964i \(0.968533\pi\)
\(524\) 0 0
\(525\) 13.9063 8.02879i 0.606919 0.350405i
\(526\) 0 0
\(527\) 6.88178 11.9196i 0.299775 0.519226i
\(528\) 0 0
\(529\) 3.90963 0.169984
\(530\) 0 0
\(531\) 5.83303 + 10.1031i 0.253132 + 0.438437i
\(532\) 0 0
\(533\) 0.355855 0.616360i 0.0154138 0.0266975i
\(534\) 0 0
\(535\) −9.14439 5.27952i −0.395347 0.228254i
\(536\) 0 0
\(537\) 12.8723 7.43184i 0.555481 0.320707i
\(538\) 0 0
\(539\) 19.3703 + 11.1834i 0.834338 + 0.481705i
\(540\) 0 0
\(541\) −8.96967 −0.385636 −0.192818 0.981234i \(-0.561763\pi\)
−0.192818 + 0.981234i \(0.561763\pi\)
\(542\) 0 0
\(543\) −25.1165 + 43.5030i −1.07785 + 1.86689i
\(544\) 0 0
\(545\) 22.5812 0.967272
\(546\) 0 0
\(547\) −25.6286 −1.09580 −0.547900 0.836544i \(-0.684573\pi\)
−0.547900 + 0.836544i \(0.684573\pi\)
\(548\) 0 0
\(549\) 3.27955 0.139968
\(550\) 0 0
\(551\) 9.32837 + 16.1572i 0.397402 + 0.688320i
\(552\) 0 0
\(553\) −13.7624 7.94570i −0.585235 0.337886i
\(554\) 0 0
\(555\) −24.3674 + 11.7421i −1.03434 + 0.498424i
\(556\) 0 0
\(557\) 20.4554 35.4298i 0.866723 1.50121i 0.00139745 0.999999i \(-0.499555\pi\)
0.865326 0.501210i \(-0.167111\pi\)
\(558\) 0 0
\(559\) 0.227326 + 0.393741i 0.00961488 + 0.0166535i
\(560\) 0 0
\(561\) 79.9164i 3.37407i
\(562\) 0 0
\(563\) 28.6566 1.20773 0.603867 0.797085i \(-0.293626\pi\)
0.603867 + 0.797085i \(0.293626\pi\)
\(564\) 0 0
\(565\) 19.3481i 0.813981i
\(566\) 0 0
\(567\) −14.5436 + 25.1903i −0.610776 + 1.05789i
\(568\) 0 0
\(569\) 2.98363i 0.125080i 0.998042 + 0.0625402i \(0.0199202\pi\)
−0.998042 + 0.0625402i \(0.980080\pi\)
\(570\) 0 0
\(571\) −24.2093 13.9772i −1.01313 0.584929i −0.101021 0.994884i \(-0.532211\pi\)
−0.912106 + 0.409955i \(0.865544\pi\)
\(572\) 0 0
\(573\) −3.28405 5.68813i −0.137193 0.237625i
\(574\) 0 0
\(575\) −6.90962 3.98927i −0.288151 0.166364i
\(576\) 0 0
\(577\) 32.1667 + 18.5714i 1.33912 + 0.773139i 0.986676 0.162695i \(-0.0520187\pi\)
0.352440 + 0.935834i \(0.385352\pi\)
\(578\) 0 0
\(579\) 8.05448 + 13.9508i 0.334733 + 0.579774i
\(580\) 0 0
\(581\) 30.4739i 1.26427i
\(582\) 0 0
\(583\) 21.1153 36.5727i 0.874505 1.51469i
\(584\) 0 0
\(585\) 0.251187 + 0.435069i 0.0103853 + 0.0179879i
\(586\) 0 0
\(587\) 16.4048 + 28.4140i 0.677100 + 1.17277i 0.975850 + 0.218440i \(0.0700969\pi\)
−0.298750 + 0.954331i \(0.596570\pi\)
\(588\) 0 0
\(589\) −7.21019 + 4.16280i −0.297091 + 0.171525i
\(590\) 0 0
\(591\) 61.0970 2.51320
\(592\) 0 0
\(593\) −18.4707 −0.758502 −0.379251 0.925294i \(-0.623818\pi\)
−0.379251 + 0.925294i \(0.623818\pi\)
\(594\) 0 0
\(595\) 42.1056 24.3097i 1.72616 0.996599i
\(596\) 0 0
\(597\) −7.81464 13.5354i −0.319832 0.553965i
\(598\) 0 0
\(599\) 8.58765 + 14.8743i 0.350882 + 0.607746i 0.986404 0.164337i \(-0.0525485\pi\)
−0.635522 + 0.772083i \(0.719215\pi\)
\(600\) 0 0
\(601\) 6.94512 12.0293i 0.283297 0.490685i −0.688898 0.724859i \(-0.741905\pi\)
0.972195 + 0.234173i \(0.0752384\pi\)
\(602\) 0 0
\(603\) 10.8410i 0.441481i
\(604\) 0 0
\(605\) 5.41895 + 9.38590i 0.220312 + 0.381591i
\(606\) 0 0
\(607\) 20.3273 + 11.7360i 0.825061 + 0.476349i 0.852159 0.523284i \(-0.175293\pi\)
−0.0270977 + 0.999633i \(0.508627\pi\)
\(608\) 0 0
\(609\) −30.3213 17.5060i −1.22868 0.709378i
\(610\) 0 0
\(611\) −0.209002 0.362002i −0.00845532 0.0146450i
\(612\) 0 0
\(613\) −25.6964 14.8359i −1.03787 0.599214i −0.118641 0.992937i \(-0.537854\pi\)
−0.919229 + 0.393723i \(0.871187\pi\)
\(614\) 0 0
\(615\) 36.2539i 1.46190i
\(616\) 0 0
\(617\) 3.78696 6.55921i 0.152457 0.264064i −0.779673 0.626187i \(-0.784615\pi\)
0.932130 + 0.362123i \(0.117948\pi\)
\(618\) 0 0
\(619\) 8.67027i 0.348487i 0.984703 + 0.174244i \(0.0557481\pi\)
−0.984703 + 0.174244i \(0.944252\pi\)
\(620\) 0 0
\(621\) −2.51054 −0.100744
\(622\) 0 0
\(623\) 29.6942i 1.18967i
\(624\) 0 0
\(625\) 6.26758 + 10.8558i 0.250703 + 0.434230i
\(626\) 0 0
\(627\) −24.1708 + 41.8650i −0.965288 + 1.67193i
\(628\) 0 0
\(629\) 42.4480 20.4547i 1.69251 0.815583i
\(630\) 0 0
\(631\) 13.7075 + 7.91403i 0.545687 + 0.315052i 0.747381 0.664396i \(-0.231311\pi\)
−0.201694 + 0.979449i \(0.564645\pi\)
\(632\) 0 0
\(633\) 16.0113 + 27.7324i 0.636392 + 1.10226i
\(634\) 0 0
\(635\) 19.5470 0.775698
\(636\) 0 0
\(637\) 0.472408 0.0187175
\(638\) 0 0
\(639\) −51.4685 −2.03606
\(640\) 0 0
\(641\) 7.17964 12.4355i 0.283579 0.491172i −0.688685 0.725061i \(-0.741812\pi\)
0.972263 + 0.233888i \(0.0751450\pi\)
\(642\) 0 0
\(643\) 23.8158 0.939203 0.469602 0.882878i \(-0.344398\pi\)
0.469602 + 0.882878i \(0.344398\pi\)
\(644\) 0 0
\(645\) 20.0568 + 11.5798i 0.789735 + 0.455954i
\(646\) 0 0
\(647\) 41.9603 24.2258i 1.64963 0.952415i 0.672414 0.740175i \(-0.265258\pi\)
0.977218 0.212240i \(-0.0680758\pi\)
\(648\) 0 0
\(649\) 12.9274 + 7.46366i 0.507446 + 0.292974i
\(650\) 0 0
\(651\) 7.81208 13.5309i 0.306180 0.530319i
\(652\) 0 0
\(653\) 3.61083 + 6.25415i 0.141303 + 0.244744i 0.927988 0.372611i \(-0.121538\pi\)
−0.786685 + 0.617355i \(0.788204\pi\)
\(654\) 0 0
\(655\) 29.9041 1.16845
\(656\) 0 0
\(657\) −23.9577 + 41.4959i −0.934679 + 1.61891i
\(658\) 0 0
\(659\) 15.8560 9.15444i 0.617660 0.356606i −0.158297 0.987392i \(-0.550600\pi\)
0.775958 + 0.630785i \(0.217267\pi\)
\(660\) 0 0
\(661\) −3.03719 5.26057i −0.118133 0.204613i 0.800895 0.598805i \(-0.204358\pi\)
−0.919028 + 0.394193i \(0.871024\pi\)
\(662\) 0 0
\(663\) −0.843952 1.46177i −0.0327764 0.0567704i
\(664\) 0 0
\(665\) −29.4099 −1.14047
\(666\) 0 0
\(667\) 17.3964i 0.673593i
\(668\) 0 0
\(669\) 18.2302 10.5252i 0.704822 0.406929i
\(670\) 0 0
\(671\) 3.63414 2.09817i 0.140295 0.0809991i
\(672\) 0 0
\(673\) −24.9903 43.2845i −0.963305 1.66849i −0.714101 0.700043i \(-0.753164\pi\)
−0.249205 0.968451i \(-0.580169\pi\)
\(674\) 0 0
\(675\) −0.908671 0.524621i −0.0349748 0.0201927i
\(676\) 0 0
\(677\) 39.6165i 1.52259i 0.648409 + 0.761293i \(0.275435\pi\)
−0.648409 + 0.761293i \(0.724565\pi\)
\(678\) 0 0
\(679\) −28.7785 + 16.6153i −1.10442 + 0.637636i
\(680\) 0 0
\(681\) 25.5182 + 14.7329i 0.977858 + 0.564566i
\(682\) 0 0
\(683\) 6.90066 11.9523i 0.264046 0.457342i −0.703267 0.710926i \(-0.748276\pi\)
0.967313 + 0.253584i \(0.0816095\pi\)
\(684\) 0 0
\(685\) −3.90751 6.76801i −0.149298 0.258592i
\(686\) 0 0
\(687\) −7.81816 + 13.5415i −0.298282 + 0.516639i
\(688\) 0 0
\(689\) 0.891946i 0.0339804i
\(690\) 0 0
\(691\) 25.3492 + 14.6353i 0.964328 + 0.556755i 0.897502 0.441010i \(-0.145380\pi\)
0.0668253 + 0.997765i \(0.478713\pi\)
\(692\) 0 0
\(693\) 47.0359i 1.78674i
\(694\) 0 0
\(695\) 20.0893i 0.762032i
\(696\) 0 0
\(697\) 63.1542i 2.39214i
\(698\) 0 0
\(699\) 17.6246 10.1756i 0.666625 0.384876i
\(700\) 0 0
\(701\) 19.1123 33.1035i 0.721861 1.25030i −0.238392 0.971169i \(-0.576620\pi\)
0.960253 0.279131i \(-0.0900464\pi\)
\(702\) 0 0
\(703\) −28.4234 2.12302i −1.07201 0.0800711i
\(704\) 0 0
\(705\) −18.4400 10.6464i −0.694492 0.400965i
\(706\) 0 0
\(707\) 1.05745 0.610517i 0.0397693 0.0229608i
\(708\) 0 0
\(709\) −1.38765 −0.0521142 −0.0260571 0.999660i \(-0.508295\pi\)
−0.0260571 + 0.999660i \(0.508295\pi\)
\(710\) 0 0
\(711\) 14.5707i 0.546443i
\(712\) 0 0
\(713\) −7.76319 −0.290734
\(714\) 0 0
\(715\) 0.556693 + 0.321407i 0.0208191 + 0.0120199i
\(716\) 0 0
\(717\) −11.7022 −0.437025
\(718\) 0 0
\(719\) 14.2789 24.7318i 0.532514 0.922341i −0.466765 0.884381i \(-0.654581\pi\)
0.999279 0.0379602i \(-0.0120860\pi\)
\(720\) 0 0
\(721\) −4.56013 + 2.63279i −0.169828 + 0.0980502i
\(722\) 0 0
\(723\) 9.95321 17.2395i 0.370164 0.641143i
\(724\) 0 0
\(725\) −3.63530 + 6.29652i −0.135011 + 0.233847i
\(726\) 0 0
\(727\) 5.84591 3.37514i 0.216813 0.125177i −0.387661 0.921802i \(-0.626717\pi\)
0.604474 + 0.796625i \(0.293384\pi\)
\(728\) 0 0
\(729\) 30.9725 1.14713
\(730\) 0 0
\(731\) −34.9389 20.1720i −1.29226 0.746088i
\(732\) 0 0
\(733\) 27.6648 15.9723i 1.02182 0.589949i 0.107191 0.994238i \(-0.465814\pi\)
0.914631 + 0.404289i \(0.132481\pi\)
\(734\) 0 0
\(735\) 20.8401 12.0320i 0.768698 0.443808i
\(736\) 0 0
\(737\) 6.93583 + 12.0132i 0.255485 + 0.442512i
\(738\) 0 0
\(739\) 14.9757i 0.550890i −0.961317 0.275445i \(-0.911175\pi\)
0.961317 0.275445i \(-0.0888252\pi\)
\(740\) 0 0
\(741\) 1.02102i 0.0375080i
\(742\) 0 0
\(743\) −23.6302 40.9287i −0.866909 1.50153i −0.865139 0.501532i \(-0.832770\pi\)
−0.00176941 0.999998i \(-0.500563\pi\)
\(744\) 0 0
\(745\) 23.6909 13.6779i 0.867966 0.501120i
\(746\) 0 0
\(747\) 24.1978 13.9706i 0.885352 0.511158i
\(748\) 0 0
\(749\) 18.0829 + 10.4402i 0.660735 + 0.381476i
\(750\) 0 0
\(751\) −12.6722 −0.462414 −0.231207 0.972905i \(-0.574267\pi\)
−0.231207 + 0.972905i \(0.574267\pi\)
\(752\) 0 0
\(753\) −63.1335 + 36.4501i −2.30071 + 1.32832i
\(754\) 0 0
\(755\) −7.11594 + 12.3252i −0.258976 + 0.448559i
\(756\) 0 0
\(757\) −3.24429 + 5.61927i −0.117916 + 0.204236i −0.918941 0.394394i \(-0.870955\pi\)
0.801026 + 0.598630i \(0.204288\pi\)
\(758\) 0 0
\(759\) −39.0370 + 22.5380i −1.41695 + 0.818077i
\(760\) 0 0
\(761\) 11.5291 19.9690i 0.417931 0.723877i −0.577800 0.816178i \(-0.696089\pi\)
0.995731 + 0.0923007i \(0.0294221\pi\)
\(762\) 0 0
\(763\) −44.6540 −1.61658
\(764\) 0 0
\(765\) −38.6062 22.2893i −1.39581 0.805871i
\(766\) 0 0
\(767\) 0.315278 0.0113840
\(768\) 0 0
\(769\) 25.3546i 0.914308i −0.889387 0.457154i \(-0.848869\pi\)
0.889387 0.457154i \(-0.151131\pi\)
\(770\) 0 0
\(771\) −12.9849 −0.467639
\(772\) 0 0
\(773\) 5.23763 3.02395i 0.188384 0.108764i −0.402842 0.915270i \(-0.631977\pi\)
0.591226 + 0.806506i \(0.298644\pi\)
\(774\) 0 0
\(775\) −2.80983 1.62226i −0.100932 0.0582732i
\(776\) 0 0
\(777\) 48.1862 23.2198i 1.72867 0.833007i
\(778\) 0 0
\(779\) 19.1010 33.0840i 0.684366 1.18536i
\(780\) 0 0
\(781\) −57.0335 + 32.9283i −2.04082 + 1.17827i
\(782\) 0 0
\(783\) 2.28777i 0.0817583i
\(784\) 0 0
\(785\) 2.59787i 0.0927219i
\(786\) 0 0
\(787\) 34.4150i 1.22676i −0.789786 0.613382i \(-0.789809\pi\)
0.789786 0.613382i \(-0.210191\pi\)
\(788\) 0 0
\(789\) 51.1625 + 29.5387i 1.82143 + 1.05160i
\(790\) 0 0
\(791\) 38.2606i 1.36039i
\(792\) 0 0
\(793\) 0.0443153 0.0767563i 0.00157368 0.00272570i
\(794\) 0 0
\(795\) −22.7174 39.3478i −0.805705 1.39552i
\(796\) 0 0
\(797\) −14.2093 + 24.6113i −0.503321 + 0.871777i 0.496672 + 0.867938i \(0.334555\pi\)
−0.999993 + 0.00383867i \(0.998778\pi\)
\(798\) 0 0
\(799\) 32.1225 + 18.5460i 1.13641 + 0.656109i
\(800\) 0 0
\(801\) −23.5786 + 13.6131i −0.833110 + 0.480997i
\(802\) 0 0
\(803\) 61.3102i 2.16359i
\(804\) 0 0
\(805\) −23.7492 13.7116i −0.837049 0.483271i
\(806\) 0 0
\(807\) 1.15359 + 1.99807i 0.0406082 + 0.0703355i
\(808\) 0 0
\(809\) −31.5871 + 18.2368i −1.11054 + 0.641172i −0.938970 0.344000i \(-0.888218\pi\)
−0.171572 + 0.985172i \(0.554885\pi\)
\(810\) 0 0
\(811\) 0.462912 0.267262i 0.0162550 0.00938485i −0.491850 0.870680i \(-0.663679\pi\)
0.508106 + 0.861295i \(0.330346\pi\)
\(812\) 0 0
\(813\) 63.2537i 2.21840i
\(814\) 0 0
\(815\) −1.12336 −0.0393494
\(816\) 0 0
\(817\) 12.2021 + 21.1346i 0.426896 + 0.739406i
\(818\) 0 0
\(819\) −0.496719 0.860343i −0.0173568 0.0300628i
\(820\) 0 0
\(821\) 18.3763 10.6096i 0.641337 0.370276i −0.143792 0.989608i \(-0.545930\pi\)
0.785129 + 0.619332i \(0.212596\pi\)
\(822\) 0 0
\(823\) 0.842414 1.45910i 0.0293647 0.0508611i −0.850970 0.525215i \(-0.823985\pi\)
0.880334 + 0.474354i \(0.157318\pi\)
\(824\) 0 0
\(825\) −18.8389 −0.655885
\(826\) 0 0
\(827\) 10.2285 + 17.7164i 0.355681 + 0.616058i 0.987234 0.159275i \(-0.0509155\pi\)
−0.631553 + 0.775333i \(0.717582\pi\)
\(828\) 0 0
\(829\) 2.65709 4.60221i 0.0922844 0.159841i −0.816188 0.577787i \(-0.803916\pi\)
0.908472 + 0.417946i \(0.137250\pi\)
\(830\) 0 0
\(831\) −29.7560 17.1796i −1.03222 0.595954i
\(832\) 0 0
\(833\) −36.3034 + 20.9598i −1.25784 + 0.726213i
\(834\) 0 0
\(835\) −31.4783 18.1740i −1.08935 0.628937i
\(836\) 0 0
\(837\) −1.02092 −0.0352882
\(838\) 0 0
\(839\) 6.99642 12.1182i 0.241543 0.418365i −0.719611 0.694378i \(-0.755680\pi\)
0.961154 + 0.276012i \(0.0890131\pi\)
\(840\) 0 0
\(841\) −13.1472 −0.453351
\(842\) 0 0
\(843\) −43.4687 −1.49714
\(844\) 0 0
\(845\) −23.1466 −0.796268
\(846\) 0 0
\(847\) −10.7159 18.5605i −0.368203 0.637746i
\(848\) 0 0
\(849\) 27.2031 + 15.7057i 0.933607 + 0.539018i
\(850\) 0 0
\(851\) −21.9627 14.9660i −0.752873 0.513029i
\(852\) 0 0
\(853\) 20.1421 34.8872i 0.689654 1.19452i −0.282296 0.959327i \(-0.591096\pi\)
0.971950 0.235188i \(-0.0755707\pi\)
\(854\) 0 0
\(855\) 13.4828 + 23.3530i 0.461103 + 0.798654i
\(856\) 0 0
\(857\) 5.85118i 0.199872i −0.994994 0.0999362i \(-0.968136\pi\)
0.994994 0.0999362i \(-0.0318639\pi\)
\(858\) 0 0
\(859\) −22.6563 −0.773024 −0.386512 0.922284i \(-0.626320\pi\)
−0.386512 + 0.922284i \(0.626320\pi\)
\(860\) 0 0
\(861\) 71.6915i 2.44324i
\(862\) 0 0
\(863\) −0.840900 + 1.45648i −0.0286246 + 0.0495792i −0.879983 0.475005i \(-0.842446\pi\)
0.851358 + 0.524585i \(0.175779\pi\)
\(864\) 0 0
\(865\) 33.2070i 1.12907i
\(866\) 0 0
\(867\) 92.9634 + 53.6724i 3.15720 + 1.82281i
\(868\) 0 0
\(869\) 9.32195 + 16.1461i 0.316226 + 0.547719i
\(870\) 0 0
\(871\) 0.253730 + 0.146491i 0.00859730 + 0.00496365i
\(872\) 0 0
\(873\) 26.3867 + 15.2344i 0.893055 + 0.515606i
\(874\) 0 0
\(875\) −21.4216 37.1033i −0.724182 1.25432i
\(876\) 0 0
\(877\) 2.87786i 0.0971785i 0.998819 + 0.0485893i \(0.0154725\pi\)
−0.998819 + 0.0485893i \(0.984527\pi\)
\(878\) 0 0
\(879\) −41.0100 + 71.0314i −1.38323 + 2.39583i
\(880\) 0 0
\(881\) 10.3403 + 17.9100i 0.348375 + 0.603403i 0.985961 0.166976i \(-0.0534004\pi\)
−0.637586 + 0.770379i \(0.720067\pi\)
\(882\) 0 0
\(883\) −17.3621 30.0720i −0.584280 1.01200i −0.994965 0.100225i \(-0.968044\pi\)
0.410685 0.911777i \(-0.365290\pi\)
\(884\) 0 0
\(885\) 13.9083 8.02998i 0.467523 0.269925i
\(886\) 0 0
\(887\) −41.8321 −1.40459 −0.702293 0.711888i \(-0.747840\pi\)
−0.702293 + 0.711888i \(0.747840\pi\)
\(888\) 0 0
\(889\) −38.6539 −1.29641
\(890\) 0 0
\(891\) 29.5535 17.0627i 0.990079 0.571622i
\(892\) 0 0
\(893\) −11.2185 19.4310i −0.375412 0.650233i
\(894\) 0 0
\(895\) −5.30449 9.18765i −0.177310 0.307109i
\(896\) 0 0
\(897\) −0.476022 + 0.824495i −0.0158939 + 0.0275291i
\(898\) 0 0
\(899\) 7.07435i 0.235943i
\(900\) 0 0
\(901\) 39.5738 + 68.5438i 1.31839 + 2.28352i
\(902\) 0 0
\(903\) −39.6620 22.8989i −1.31987 0.762027i
\(904\) 0 0
\(905\) 31.0504 + 17.9270i 1.03215 + 0.595912i
\(906\) 0 0
\(907\) −5.48500 9.50029i −0.182126 0.315452i 0.760478 0.649364i \(-0.224965\pi\)
−0.942604 + 0.333912i \(0.891631\pi\)
\(908\) 0 0
\(909\) −0.969561 0.559777i −0.0321583 0.0185666i
\(910\) 0 0
\(911\) 18.7503i 0.621225i −0.950537 0.310612i \(-0.899466\pi\)
0.950537 0.310612i \(-0.100534\pi\)
\(912\) 0 0
\(913\) 17.8761 30.9624i 0.591613 1.02470i
\(914\) 0 0
\(915\) 4.51476i 0.149253i
\(916\) 0 0
\(917\) −59.1350 −1.95281
\(918\) 0 0
\(919\) 14.7395i 0.486211i −0.970000 0.243106i \(-0.921834\pi\)
0.970000 0.243106i \(-0.0781662\pi\)
\(920\) 0 0
\(921\) 4.30779 + 7.46131i 0.141947 + 0.245859i
\(922\) 0 0
\(923\) −0.695474 + 1.20460i −0.0228918 + 0.0396498i
\(924\) 0 0
\(925\) −4.82183 10.0064i −0.158541 0.329007i
\(926\) 0 0
\(927\) 4.18114 + 2.41398i 0.137326 + 0.0792855i
\(928\) 0 0
\(929\) 7.89990 + 13.6830i 0.259187 + 0.448926i 0.966024 0.258451i \(-0.0832119\pi\)
−0.706837 + 0.707376i \(0.749879\pi\)
\(930\) 0 0
\(931\) 25.3572 0.831049
\(932\) 0 0
\(933\) −16.9141 −0.553742
\(934\) 0 0
\(935\) −57.0406 −1.86543
\(936\) 0 0
\(937\) −7.48297 + 12.9609i −0.244458 + 0.423414i −0.961979 0.273123i \(-0.911943\pi\)
0.717521 + 0.696537i \(0.245277\pi\)
\(938\) 0 0
\(939\) −20.1276 −0.656841
\(940\) 0 0
\(941\) −42.0222 24.2615i −1.36988 0.790903i −0.378971 0.925409i \(-0.623722\pi\)
−0.990913 + 0.134506i \(0.957055\pi\)
\(942\) 0 0
\(943\) 30.8491 17.8107i 1.00458 0.579997i
\(944\) 0 0
\(945\) −3.12321 1.80319i −0.101598 0.0586577i
\(946\) 0 0
\(947\) 1.45263 2.51603i 0.0472042 0.0817600i −0.841458 0.540323i \(-0.818302\pi\)
0.888662 + 0.458563i \(0.151636\pi\)
\(948\) 0 0
\(949\) 0.647462 + 1.12144i 0.0210175 + 0.0364034i
\(950\) 0 0
\(951\) −14.9436 −0.484579
\(952\) 0 0
\(953\) −1.21050 + 2.09665i −0.0392119 + 0.0679171i −0.884965 0.465657i \(-0.845818\pi\)
0.845753 + 0.533574i \(0.179151\pi\)
\(954\) 0 0
\(955\) −4.05992 + 2.34400i −0.131376 + 0.0758500i
\(956\) 0 0
\(957\) 20.5381 + 35.5731i 0.663904 + 1.14992i
\(958\) 0 0
\(959\) 7.72705 + 13.3836i 0.249519 + 0.432180i
\(960\) 0 0
\(961\) 27.8431 0.898163
\(962\) 0 0
\(963\) 19.1450i 0.616939i
\(964\) 0 0
\(965\) 9.95740 5.74891i 0.320540 0.185064i
\(966\) 0 0
\(967\) −47.0633 + 27.1720i −1.51345 + 0.873793i −0.513579 + 0.858042i \(0.671681\pi\)
−0.999876 + 0.0157510i \(0.994986\pi\)
\(968\) 0 0
\(969\) −45.3003 78.4625i −1.45526 2.52058i
\(970\) 0 0
\(971\) 35.3477 + 20.4080i 1.13436 + 0.654925i 0.945029 0.326988i \(-0.106034\pi\)
0.189335 + 0.981913i \(0.439367\pi\)
\(972\) 0 0
\(973\) 39.7264i 1.27357i
\(974\) 0 0
\(975\) −0.344586 + 0.198947i −0.0110356 + 0.00637139i
\(976\) 0 0
\(977\) −17.1810 9.91943i −0.549667 0.317351i 0.199320 0.979934i \(-0.436127\pi\)
−0.748988 + 0.662584i \(0.769460\pi\)
\(978\) 0 0
\(979\) −17.4187 + 30.1701i −0.556704 + 0.964240i
\(980\) 0 0
\(981\) 20.4714 + 35.4575i 0.653601 + 1.13207i
\(982\) 0 0
\(983\) 11.1646 19.3376i 0.356095 0.616775i −0.631209 0.775612i \(-0.717441\pi\)
0.987305 + 0.158837i \(0.0507745\pi\)
\(984\) 0 0
\(985\) 43.6082i 1.38947i
\(986\) 0 0
\(987\) 36.4649 + 21.0530i 1.16069 + 0.670126i
\(988\) 0 0
\(989\) 22.7556i 0.723585i
\(990\) 0 0
\(991\) 43.0109i 1.36629i 0.730285 + 0.683143i \(0.239387\pi\)
−0.730285 + 0.683143i \(0.760613\pi\)
\(992\) 0 0
\(993\) 81.3157i 2.58048i
\(994\) 0 0
\(995\) −9.66090 + 5.57772i −0.306271 + 0.176826i
\(996\) 0 0
\(997\) −12.6617 + 21.9308i −0.401001 + 0.694554i −0.993847 0.110762i \(-0.964671\pi\)
0.592846 + 0.805316i \(0.298004\pi\)
\(998\) 0 0
\(999\) −2.88828 1.96815i −0.0913810 0.0622696i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1184.2.y.a.1137.32 72
4.3 odd 2 296.2.q.a.101.11 yes 72
8.3 odd 2 296.2.q.a.101.3 yes 72
8.5 even 2 inner 1184.2.y.a.1137.5 72
37.11 even 6 inner 1184.2.y.a.529.5 72
148.11 odd 6 296.2.q.a.85.3 72
296.11 odd 6 296.2.q.a.85.11 yes 72
296.85 even 6 inner 1184.2.y.a.529.32 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.q.a.85.3 72 148.11 odd 6
296.2.q.a.85.11 yes 72 296.11 odd 6
296.2.q.a.101.3 yes 72 8.3 odd 2
296.2.q.a.101.11 yes 72 4.3 odd 2
1184.2.y.a.529.5 72 37.11 even 6 inner
1184.2.y.a.529.32 72 296.85 even 6 inner
1184.2.y.a.1137.5 72 8.5 even 2 inner
1184.2.y.a.1137.32 72 1.1 even 1 trivial