Properties

Label 1184.2.a.p.1.6
Level $1184$
Weight $2$
Character 1184.1
Self dual yes
Analytic conductor $9.454$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1184,2,Mod(1,1184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1184.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1184, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1184 = 2^{5} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1184.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.45428759932\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 20x^{6} + 116x^{4} - 221x^{2} + 128 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.34313\) of defining polynomial
Character \(\chi\) \(=\) 1184.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.34313 q^{3} +3.42359 q^{5} +1.69567 q^{7} -1.19601 q^{9} -3.25519 q^{11} +2.67104 q^{13} +4.59832 q^{15} +2.00000 q^{17} +6.95547 q^{19} +2.27751 q^{21} -7.30801 q^{23} +6.72097 q^{25} -5.63578 q^{27} +2.67104 q^{29} +2.70969 q^{31} -4.37214 q^{33} +5.80529 q^{35} +1.00000 q^{37} +3.58755 q^{39} +8.94855 q^{41} +7.66056 q^{43} -4.09463 q^{45} -7.50097 q^{47} -4.12469 q^{49} +2.68626 q^{51} -8.66952 q^{53} -11.1444 q^{55} +9.34209 q^{57} -4.92743 q^{59} +0.576410 q^{61} -2.02804 q^{63} +9.14456 q^{65} -12.7842 q^{67} -9.81560 q^{69} -10.1872 q^{71} +3.80399 q^{73} +9.02712 q^{75} -5.51975 q^{77} -7.30801 q^{79} -3.98155 q^{81} -0.990583 q^{83} +6.84718 q^{85} +3.58755 q^{87} +18.7443 q^{89} +4.52922 q^{91} +3.63947 q^{93} +23.8127 q^{95} +2.00000 q^{97} +3.89323 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{5} + 16 q^{9} + 2 q^{13} + 16 q^{17} + 2 q^{21} + 22 q^{25} + 2 q^{29} + 30 q^{33} + 8 q^{37} + 36 q^{41} + 16 q^{45} + 42 q^{49} - 2 q^{53} + 36 q^{57} + 34 q^{61} + 12 q^{65} + 2 q^{69} + 56 q^{73}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.34313 0.775456 0.387728 0.921774i \(-0.373260\pi\)
0.387728 + 0.921774i \(0.373260\pi\)
\(4\) 0 0
\(5\) 3.42359 1.53108 0.765538 0.643391i \(-0.222473\pi\)
0.765538 + 0.643391i \(0.222473\pi\)
\(6\) 0 0
\(7\) 1.69567 0.640905 0.320452 0.947265i \(-0.396165\pi\)
0.320452 + 0.947265i \(0.396165\pi\)
\(8\) 0 0
\(9\) −1.19601 −0.398669
\(10\) 0 0
\(11\) −3.25519 −0.981478 −0.490739 0.871307i \(-0.663273\pi\)
−0.490739 + 0.871307i \(0.663273\pi\)
\(12\) 0 0
\(13\) 2.67104 0.740814 0.370407 0.928870i \(-0.379218\pi\)
0.370407 + 0.928870i \(0.379218\pi\)
\(14\) 0 0
\(15\) 4.59832 1.18728
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 6.95547 1.59569 0.797847 0.602860i \(-0.205972\pi\)
0.797847 + 0.602860i \(0.205972\pi\)
\(20\) 0 0
\(21\) 2.27751 0.496993
\(22\) 0 0
\(23\) −7.30801 −1.52383 −0.761913 0.647679i \(-0.775740\pi\)
−0.761913 + 0.647679i \(0.775740\pi\)
\(24\) 0 0
\(25\) 6.72097 1.34419
\(26\) 0 0
\(27\) −5.63578 −1.08461
\(28\) 0 0
\(29\) 2.67104 0.496000 0.248000 0.968760i \(-0.420227\pi\)
0.248000 + 0.968760i \(0.420227\pi\)
\(30\) 0 0
\(31\) 2.70969 0.486675 0.243338 0.969942i \(-0.421758\pi\)
0.243338 + 0.969942i \(0.421758\pi\)
\(32\) 0 0
\(33\) −4.37214 −0.761092
\(34\) 0 0
\(35\) 5.80529 0.981274
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) 3.58755 0.574469
\(40\) 0 0
\(41\) 8.94855 1.39753 0.698765 0.715352i \(-0.253734\pi\)
0.698765 + 0.715352i \(0.253734\pi\)
\(42\) 0 0
\(43\) 7.66056 1.16822 0.584112 0.811673i \(-0.301443\pi\)
0.584112 + 0.811673i \(0.301443\pi\)
\(44\) 0 0
\(45\) −4.09463 −0.610392
\(46\) 0 0
\(47\) −7.50097 −1.09413 −0.547064 0.837091i \(-0.684255\pi\)
−0.547064 + 0.837091i \(0.684255\pi\)
\(48\) 0 0
\(49\) −4.12469 −0.589241
\(50\) 0 0
\(51\) 2.68626 0.376151
\(52\) 0 0
\(53\) −8.66952 −1.19085 −0.595425 0.803411i \(-0.703016\pi\)
−0.595425 + 0.803411i \(0.703016\pi\)
\(54\) 0 0
\(55\) −11.1444 −1.50272
\(56\) 0 0
\(57\) 9.34209 1.23739
\(58\) 0 0
\(59\) −4.92743 −0.641497 −0.320748 0.947164i \(-0.603934\pi\)
−0.320748 + 0.947164i \(0.603934\pi\)
\(60\) 0 0
\(61\) 0.576410 0.0738017 0.0369009 0.999319i \(-0.488251\pi\)
0.0369009 + 0.999319i \(0.488251\pi\)
\(62\) 0 0
\(63\) −2.02804 −0.255509
\(64\) 0 0
\(65\) 9.14456 1.13424
\(66\) 0 0
\(67\) −12.7842 −1.56184 −0.780919 0.624632i \(-0.785249\pi\)
−0.780919 + 0.624632i \(0.785249\pi\)
\(68\) 0 0
\(69\) −9.81560 −1.18166
\(70\) 0 0
\(71\) −10.1872 −1.20900 −0.604501 0.796605i \(-0.706627\pi\)
−0.604501 + 0.796605i \(0.706627\pi\)
\(72\) 0 0
\(73\) 3.80399 0.445224 0.222612 0.974907i \(-0.428542\pi\)
0.222612 + 0.974907i \(0.428542\pi\)
\(74\) 0 0
\(75\) 9.02712 1.04236
\(76\) 0 0
\(77\) −5.51975 −0.629034
\(78\) 0 0
\(79\) −7.30801 −0.822216 −0.411108 0.911587i \(-0.634858\pi\)
−0.411108 + 0.911587i \(0.634858\pi\)
\(80\) 0 0
\(81\) −3.98155 −0.442395
\(82\) 0 0
\(83\) −0.990583 −0.108731 −0.0543653 0.998521i \(-0.517314\pi\)
−0.0543653 + 0.998521i \(0.517314\pi\)
\(84\) 0 0
\(85\) 6.84718 0.742681
\(86\) 0 0
\(87\) 3.58755 0.384626
\(88\) 0 0
\(89\) 18.7443 1.98689 0.993445 0.114310i \(-0.0364659\pi\)
0.993445 + 0.114310i \(0.0364659\pi\)
\(90\) 0 0
\(91\) 4.52922 0.474791
\(92\) 0 0
\(93\) 3.63947 0.377395
\(94\) 0 0
\(95\) 23.8127 2.44313
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 3.89323 0.391284
\(100\) 0 0
\(101\) −1.43033 −0.142323 −0.0711615 0.997465i \(-0.522671\pi\)
−0.0711615 + 0.997465i \(0.522671\pi\)
\(102\) 0 0
\(103\) 15.7305 1.54997 0.774984 0.631980i \(-0.217758\pi\)
0.774984 + 0.631980i \(0.217758\pi\)
\(104\) 0 0
\(105\) 7.79726 0.760934
\(106\) 0 0
\(107\) −9.11641 −0.881316 −0.440658 0.897675i \(-0.645255\pi\)
−0.440658 + 0.897675i \(0.645255\pi\)
\(108\) 0 0
\(109\) −9.23919 −0.884954 −0.442477 0.896780i \(-0.645900\pi\)
−0.442477 + 0.896780i \(0.645900\pi\)
\(110\) 0 0
\(111\) 1.34313 0.127484
\(112\) 0 0
\(113\) 0.455168 0.0428186 0.0214093 0.999771i \(-0.493185\pi\)
0.0214093 + 0.999771i \(0.493185\pi\)
\(114\) 0 0
\(115\) −25.0196 −2.33309
\(116\) 0 0
\(117\) −3.19458 −0.295339
\(118\) 0 0
\(119\) 3.39135 0.310884
\(120\) 0 0
\(121\) −0.403720 −0.0367019
\(122\) 0 0
\(123\) 12.0191 1.08372
\(124\) 0 0
\(125\) 5.89189 0.526987
\(126\) 0 0
\(127\) 13.5786 1.20490 0.602452 0.798155i \(-0.294191\pi\)
0.602452 + 0.798155i \(0.294191\pi\)
\(128\) 0 0
\(129\) 10.2891 0.905906
\(130\) 0 0
\(131\) −0.445082 −0.0388870 −0.0194435 0.999811i \(-0.506189\pi\)
−0.0194435 + 0.999811i \(0.506189\pi\)
\(132\) 0 0
\(133\) 11.7942 1.02269
\(134\) 0 0
\(135\) −19.2946 −1.66061
\(136\) 0 0
\(137\) 19.6129 1.67564 0.837820 0.545947i \(-0.183830\pi\)
0.837820 + 0.545947i \(0.183830\pi\)
\(138\) 0 0
\(139\) −16.9497 −1.43766 −0.718829 0.695187i \(-0.755322\pi\)
−0.718829 + 0.695187i \(0.755322\pi\)
\(140\) 0 0
\(141\) −10.0748 −0.848448
\(142\) 0 0
\(143\) −8.69476 −0.727092
\(144\) 0 0
\(145\) 9.14456 0.759414
\(146\) 0 0
\(147\) −5.53999 −0.456930
\(148\) 0 0
\(149\) 7.51670 0.615792 0.307896 0.951420i \(-0.400375\pi\)
0.307896 + 0.951420i \(0.400375\pi\)
\(150\) 0 0
\(151\) −15.2742 −1.24300 −0.621500 0.783414i \(-0.713477\pi\)
−0.621500 + 0.783414i \(0.713477\pi\)
\(152\) 0 0
\(153\) −2.39201 −0.193383
\(154\) 0 0
\(155\) 9.27688 0.745137
\(156\) 0 0
\(157\) −4.11450 −0.328373 −0.164187 0.986429i \(-0.552500\pi\)
−0.164187 + 0.986429i \(0.552500\pi\)
\(158\) 0 0
\(159\) −11.6443 −0.923451
\(160\) 0 0
\(161\) −12.3920 −0.976627
\(162\) 0 0
\(163\) 18.8852 1.47921 0.739603 0.673043i \(-0.235013\pi\)
0.739603 + 0.673043i \(0.235013\pi\)
\(164\) 0 0
\(165\) −14.9684 −1.16529
\(166\) 0 0
\(167\) 12.5646 0.972275 0.486137 0.873882i \(-0.338406\pi\)
0.486137 + 0.873882i \(0.338406\pi\)
\(168\) 0 0
\(169\) −5.86553 −0.451194
\(170\) 0 0
\(171\) −8.31878 −0.636153
\(172\) 0 0
\(173\) −24.2640 −1.84476 −0.922380 0.386284i \(-0.873759\pi\)
−0.922380 + 0.386284i \(0.873759\pi\)
\(174\) 0 0
\(175\) 11.3966 0.861500
\(176\) 0 0
\(177\) −6.61817 −0.497452
\(178\) 0 0
\(179\) −2.28805 −0.171017 −0.0855083 0.996337i \(-0.527251\pi\)
−0.0855083 + 0.996337i \(0.527251\pi\)
\(180\) 0 0
\(181\) −12.8588 −0.955786 −0.477893 0.878418i \(-0.658599\pi\)
−0.477893 + 0.878418i \(0.658599\pi\)
\(182\) 0 0
\(183\) 0.774193 0.0572300
\(184\) 0 0
\(185\) 3.42359 0.251707
\(186\) 0 0
\(187\) −6.51039 −0.476087
\(188\) 0 0
\(189\) −9.55644 −0.695129
\(190\) 0 0
\(191\) −2.43738 −0.176363 −0.0881813 0.996104i \(-0.528105\pi\)
−0.0881813 + 0.996104i \(0.528105\pi\)
\(192\) 0 0
\(193\) −18.1893 −1.30929 −0.654646 0.755936i \(-0.727182\pi\)
−0.654646 + 0.755936i \(0.727182\pi\)
\(194\) 0 0
\(195\) 12.2823 0.879555
\(196\) 0 0
\(197\) −3.33048 −0.237287 −0.118643 0.992937i \(-0.537855\pi\)
−0.118643 + 0.992937i \(0.537855\pi\)
\(198\) 0 0
\(199\) 7.61369 0.539720 0.269860 0.962900i \(-0.413023\pi\)
0.269860 + 0.962900i \(0.413023\pi\)
\(200\) 0 0
\(201\) −17.1708 −1.21114
\(202\) 0 0
\(203\) 4.52922 0.317889
\(204\) 0 0
\(205\) 30.6362 2.13972
\(206\) 0 0
\(207\) 8.74043 0.607502
\(208\) 0 0
\(209\) −22.6414 −1.56614
\(210\) 0 0
\(211\) 13.7748 0.948295 0.474147 0.880445i \(-0.342756\pi\)
0.474147 + 0.880445i \(0.342756\pi\)
\(212\) 0 0
\(213\) −13.6828 −0.937527
\(214\) 0 0
\(215\) 26.2266 1.78864
\(216\) 0 0
\(217\) 4.59476 0.311912
\(218\) 0 0
\(219\) 5.10925 0.345251
\(220\) 0 0
\(221\) 5.34209 0.359348
\(222\) 0 0
\(223\) −7.50097 −0.502302 −0.251151 0.967948i \(-0.580809\pi\)
−0.251151 + 0.967948i \(0.580809\pi\)
\(224\) 0 0
\(225\) −8.03832 −0.535888
\(226\) 0 0
\(227\) 2.28805 0.151863 0.0759315 0.997113i \(-0.475807\pi\)
0.0759315 + 0.997113i \(0.475807\pi\)
\(228\) 0 0
\(229\) −8.46678 −0.559500 −0.279750 0.960073i \(-0.590252\pi\)
−0.279750 + 0.960073i \(0.590252\pi\)
\(230\) 0 0
\(231\) −7.41373 −0.487788
\(232\) 0 0
\(233\) −18.0732 −1.18402 −0.592009 0.805932i \(-0.701665\pi\)
−0.592009 + 0.805932i \(0.701665\pi\)
\(234\) 0 0
\(235\) −25.6802 −1.67519
\(236\) 0 0
\(237\) −9.81560 −0.637592
\(238\) 0 0
\(239\) 0.409344 0.0264783 0.0132391 0.999912i \(-0.495786\pi\)
0.0132391 + 0.999912i \(0.495786\pi\)
\(240\) 0 0
\(241\) 5.04992 0.325294 0.162647 0.986684i \(-0.447997\pi\)
0.162647 + 0.986684i \(0.447997\pi\)
\(242\) 0 0
\(243\) 11.5596 0.741548
\(244\) 0 0
\(245\) −14.1212 −0.902173
\(246\) 0 0
\(247\) 18.5784 1.18211
\(248\) 0 0
\(249\) −1.33048 −0.0843157
\(250\) 0 0
\(251\) −24.9160 −1.57268 −0.786341 0.617793i \(-0.788027\pi\)
−0.786341 + 0.617793i \(0.788027\pi\)
\(252\) 0 0
\(253\) 23.7890 1.49560
\(254\) 0 0
\(255\) 9.19664 0.575916
\(256\) 0 0
\(257\) −19.6944 −1.22850 −0.614250 0.789111i \(-0.710541\pi\)
−0.614250 + 0.789111i \(0.710541\pi\)
\(258\) 0 0
\(259\) 1.69567 0.105364
\(260\) 0 0
\(261\) −3.19458 −0.197740
\(262\) 0 0
\(263\) 7.82015 0.482211 0.241106 0.970499i \(-0.422490\pi\)
0.241106 + 0.970499i \(0.422490\pi\)
\(264\) 0 0
\(265\) −29.6809 −1.82328
\(266\) 0 0
\(267\) 25.1760 1.54075
\(268\) 0 0
\(269\) −25.9835 −1.58424 −0.792120 0.610365i \(-0.791023\pi\)
−0.792120 + 0.610365i \(0.791023\pi\)
\(270\) 0 0
\(271\) −2.40077 −0.145836 −0.0729181 0.997338i \(-0.523231\pi\)
−0.0729181 + 0.997338i \(0.523231\pi\)
\(272\) 0 0
\(273\) 6.08332 0.368180
\(274\) 0 0
\(275\) −21.8780 −1.31930
\(276\) 0 0
\(277\) −1.13143 −0.0679809 −0.0339904 0.999422i \(-0.510822\pi\)
−0.0339904 + 0.999422i \(0.510822\pi\)
\(278\) 0 0
\(279\) −3.24081 −0.194022
\(280\) 0 0
\(281\) 21.4285 1.27831 0.639157 0.769076i \(-0.279283\pi\)
0.639157 + 0.769076i \(0.279283\pi\)
\(282\) 0 0
\(283\) 1.19705 0.0711570 0.0355785 0.999367i \(-0.488673\pi\)
0.0355785 + 0.999367i \(0.488673\pi\)
\(284\) 0 0
\(285\) 31.9835 1.89454
\(286\) 0 0
\(287\) 15.1738 0.895683
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 2.68626 0.157471
\(292\) 0 0
\(293\) −28.1261 −1.64314 −0.821572 0.570104i \(-0.806903\pi\)
−0.821572 + 0.570104i \(0.806903\pi\)
\(294\) 0 0
\(295\) −16.8695 −0.982181
\(296\) 0 0
\(297\) 18.3455 1.06452
\(298\) 0 0
\(299\) −19.5200 −1.12887
\(300\) 0 0
\(301\) 12.9898 0.748720
\(302\) 0 0
\(303\) −1.92112 −0.110365
\(304\) 0 0
\(305\) 1.97339 0.112996
\(306\) 0 0
\(307\) 26.4787 1.51122 0.755611 0.655021i \(-0.227340\pi\)
0.755611 + 0.655021i \(0.227340\pi\)
\(308\) 0 0
\(309\) 21.1280 1.20193
\(310\) 0 0
\(311\) −17.8276 −1.01091 −0.505455 0.862853i \(-0.668675\pi\)
−0.505455 + 0.862853i \(0.668675\pi\)
\(312\) 0 0
\(313\) −8.49186 −0.479988 −0.239994 0.970774i \(-0.577146\pi\)
−0.239994 + 0.970774i \(0.577146\pi\)
\(314\) 0 0
\(315\) −6.94317 −0.391203
\(316\) 0 0
\(317\) −8.49491 −0.477122 −0.238561 0.971128i \(-0.576676\pi\)
−0.238561 + 0.971128i \(0.576676\pi\)
\(318\) 0 0
\(319\) −8.69476 −0.486813
\(320\) 0 0
\(321\) −12.2445 −0.683422
\(322\) 0 0
\(323\) 13.9109 0.774025
\(324\) 0 0
\(325\) 17.9520 0.995798
\(326\) 0 0
\(327\) −12.4094 −0.686243
\(328\) 0 0
\(329\) −12.7192 −0.701232
\(330\) 0 0
\(331\) 7.38825 0.406095 0.203047 0.979169i \(-0.434915\pi\)
0.203047 + 0.979169i \(0.434915\pi\)
\(332\) 0 0
\(333\) −1.19601 −0.0655407
\(334\) 0 0
\(335\) −43.7678 −2.39129
\(336\) 0 0
\(337\) 17.4984 0.953196 0.476598 0.879121i \(-0.341870\pi\)
0.476598 + 0.879121i \(0.341870\pi\)
\(338\) 0 0
\(339\) 0.611349 0.0332039
\(340\) 0 0
\(341\) −8.82057 −0.477661
\(342\) 0 0
\(343\) −18.8638 −1.01855
\(344\) 0 0
\(345\) −33.6046 −1.80921
\(346\) 0 0
\(347\) 32.3165 1.73484 0.867421 0.497575i \(-0.165776\pi\)
0.867421 + 0.497575i \(0.165776\pi\)
\(348\) 0 0
\(349\) 35.1363 1.88080 0.940401 0.340066i \(-0.110450\pi\)
0.940401 + 0.340066i \(0.110450\pi\)
\(350\) 0 0
\(351\) −15.0534 −0.803491
\(352\) 0 0
\(353\) −1.64773 −0.0876997 −0.0438498 0.999038i \(-0.513962\pi\)
−0.0438498 + 0.999038i \(0.513962\pi\)
\(354\) 0 0
\(355\) −34.8769 −1.85107
\(356\) 0 0
\(357\) 4.55502 0.241077
\(358\) 0 0
\(359\) 19.0448 1.00515 0.502574 0.864534i \(-0.332386\pi\)
0.502574 + 0.864534i \(0.332386\pi\)
\(360\) 0 0
\(361\) 29.3785 1.54624
\(362\) 0 0
\(363\) −0.542248 −0.0284607
\(364\) 0 0
\(365\) 13.0233 0.681672
\(366\) 0 0
\(367\) 3.77726 0.197171 0.0985856 0.995129i \(-0.468568\pi\)
0.0985856 + 0.995129i \(0.468568\pi\)
\(368\) 0 0
\(369\) −10.7025 −0.557151
\(370\) 0 0
\(371\) −14.7007 −0.763221
\(372\) 0 0
\(373\) −34.7162 −1.79753 −0.898767 0.438426i \(-0.855536\pi\)
−0.898767 + 0.438426i \(0.855536\pi\)
\(374\) 0 0
\(375\) 7.91356 0.408655
\(376\) 0 0
\(377\) 7.13447 0.367444
\(378\) 0 0
\(379\) 12.5678 0.645565 0.322782 0.946473i \(-0.395382\pi\)
0.322782 + 0.946473i \(0.395382\pi\)
\(380\) 0 0
\(381\) 18.2378 0.934349
\(382\) 0 0
\(383\) −24.6905 −1.26163 −0.630814 0.775934i \(-0.717279\pi\)
−0.630814 + 0.775934i \(0.717279\pi\)
\(384\) 0 0
\(385\) −18.8973 −0.963098
\(386\) 0 0
\(387\) −9.16207 −0.465734
\(388\) 0 0
\(389\) −11.0233 −0.558904 −0.279452 0.960160i \(-0.590153\pi\)
−0.279452 + 0.960160i \(0.590153\pi\)
\(390\) 0 0
\(391\) −14.6160 −0.739164
\(392\) 0 0
\(393\) −0.597803 −0.0301552
\(394\) 0 0
\(395\) −25.0196 −1.25887
\(396\) 0 0
\(397\) 22.0116 1.10473 0.552365 0.833602i \(-0.313725\pi\)
0.552365 + 0.833602i \(0.313725\pi\)
\(398\) 0 0
\(399\) 15.8411 0.793049
\(400\) 0 0
\(401\) 17.4022 0.869024 0.434512 0.900666i \(-0.356921\pi\)
0.434512 + 0.900666i \(0.356921\pi\)
\(402\) 0 0
\(403\) 7.23771 0.360536
\(404\) 0 0
\(405\) −13.6312 −0.677340
\(406\) 0 0
\(407\) −3.25519 −0.161354
\(408\) 0 0
\(409\) 6.35227 0.314100 0.157050 0.987591i \(-0.449802\pi\)
0.157050 + 0.987591i \(0.449802\pi\)
\(410\) 0 0
\(411\) 26.3426 1.29938
\(412\) 0 0
\(413\) −8.35532 −0.411138
\(414\) 0 0
\(415\) −3.39135 −0.166475
\(416\) 0 0
\(417\) −22.7657 −1.11484
\(418\) 0 0
\(419\) 18.6454 0.910888 0.455444 0.890264i \(-0.349481\pi\)
0.455444 + 0.890264i \(0.349481\pi\)
\(420\) 0 0
\(421\) 23.0233 1.12209 0.561044 0.827786i \(-0.310400\pi\)
0.561044 + 0.827786i \(0.310400\pi\)
\(422\) 0 0
\(423\) 8.97120 0.436195
\(424\) 0 0
\(425\) 13.4419 0.652030
\(426\) 0 0
\(427\) 0.977404 0.0472999
\(428\) 0 0
\(429\) −11.6782 −0.563828
\(430\) 0 0
\(431\) 37.7113 1.81649 0.908245 0.418439i \(-0.137423\pi\)
0.908245 + 0.418439i \(0.137423\pi\)
\(432\) 0 0
\(433\) 24.7458 1.18921 0.594604 0.804019i \(-0.297309\pi\)
0.594604 + 0.804019i \(0.297309\pi\)
\(434\) 0 0
\(435\) 12.2823 0.588892
\(436\) 0 0
\(437\) −50.8307 −2.43156
\(438\) 0 0
\(439\) −6.41785 −0.306307 −0.153154 0.988202i \(-0.548943\pi\)
−0.153154 + 0.988202i \(0.548943\pi\)
\(440\) 0 0
\(441\) 4.93315 0.234912
\(442\) 0 0
\(443\) −22.0145 −1.04594 −0.522971 0.852350i \(-0.675176\pi\)
−0.522971 + 0.852350i \(0.675176\pi\)
\(444\) 0 0
\(445\) 64.1727 3.04208
\(446\) 0 0
\(447\) 10.0959 0.477519
\(448\) 0 0
\(449\) 37.0334 1.74771 0.873857 0.486183i \(-0.161611\pi\)
0.873857 + 0.486183i \(0.161611\pi\)
\(450\) 0 0
\(451\) −29.1293 −1.37164
\(452\) 0 0
\(453\) −20.5153 −0.963892
\(454\) 0 0
\(455\) 15.5062 0.726942
\(456\) 0 0
\(457\) −19.5314 −0.913638 −0.456819 0.889560i \(-0.651011\pi\)
−0.456819 + 0.889560i \(0.651011\pi\)
\(458\) 0 0
\(459\) −11.2716 −0.526111
\(460\) 0 0
\(461\) −22.1495 −1.03161 −0.515803 0.856707i \(-0.672506\pi\)
−0.515803 + 0.856707i \(0.672506\pi\)
\(462\) 0 0
\(463\) −23.7201 −1.10237 −0.551184 0.834384i \(-0.685824\pi\)
−0.551184 + 0.834384i \(0.685824\pi\)
\(464\) 0 0
\(465\) 12.4600 0.577820
\(466\) 0 0
\(467\) 12.7608 0.590498 0.295249 0.955420i \(-0.404597\pi\)
0.295249 + 0.955420i \(0.404597\pi\)
\(468\) 0 0
\(469\) −21.6778 −1.00099
\(470\) 0 0
\(471\) −5.52631 −0.254639
\(472\) 0 0
\(473\) −24.9366 −1.14659
\(474\) 0 0
\(475\) 46.7475 2.14492
\(476\) 0 0
\(477\) 10.3688 0.474755
\(478\) 0 0
\(479\) −9.99427 −0.456650 −0.228325 0.973585i \(-0.573325\pi\)
−0.228325 + 0.973585i \(0.573325\pi\)
\(480\) 0 0
\(481\) 2.67104 0.121789
\(482\) 0 0
\(483\) −16.6441 −0.757331
\(484\) 0 0
\(485\) 6.84718 0.310914
\(486\) 0 0
\(487\) 6.52269 0.295571 0.147786 0.989019i \(-0.452785\pi\)
0.147786 + 0.989019i \(0.452785\pi\)
\(488\) 0 0
\(489\) 25.3653 1.14706
\(490\) 0 0
\(491\) −30.8607 −1.39272 −0.696361 0.717691i \(-0.745199\pi\)
−0.696361 + 0.717691i \(0.745199\pi\)
\(492\) 0 0
\(493\) 5.34209 0.240596
\(494\) 0 0
\(495\) 13.3288 0.599086
\(496\) 0 0
\(497\) −17.2742 −0.774855
\(498\) 0 0
\(499\) 18.6129 0.833229 0.416615 0.909083i \(-0.363216\pi\)
0.416615 + 0.909083i \(0.363216\pi\)
\(500\) 0 0
\(501\) 16.8758 0.753956
\(502\) 0 0
\(503\) 31.8949 1.42212 0.711061 0.703130i \(-0.248215\pi\)
0.711061 + 0.703130i \(0.248215\pi\)
\(504\) 0 0
\(505\) −4.89686 −0.217907
\(506\) 0 0
\(507\) −7.87816 −0.349881
\(508\) 0 0
\(509\) 5.26732 0.233470 0.116735 0.993163i \(-0.462757\pi\)
0.116735 + 0.993163i \(0.462757\pi\)
\(510\) 0 0
\(511\) 6.45034 0.285346
\(512\) 0 0
\(513\) −39.1995 −1.73070
\(514\) 0 0
\(515\) 53.8547 2.37312
\(516\) 0 0
\(517\) 24.4171 1.07386
\(518\) 0 0
\(519\) −32.5897 −1.43053
\(520\) 0 0
\(521\) −17.2245 −0.754621 −0.377310 0.926087i \(-0.623151\pi\)
−0.377310 + 0.926087i \(0.623151\pi\)
\(522\) 0 0
\(523\) −32.7493 −1.43203 −0.716014 0.698086i \(-0.754035\pi\)
−0.716014 + 0.698086i \(0.754035\pi\)
\(524\) 0 0
\(525\) 15.3071 0.668055
\(526\) 0 0
\(527\) 5.41939 0.236072
\(528\) 0 0
\(529\) 30.4071 1.32205
\(530\) 0 0
\(531\) 5.89324 0.255745
\(532\) 0 0
\(533\) 23.9020 1.03531
\(534\) 0 0
\(535\) −31.2108 −1.34936
\(536\) 0 0
\(537\) −3.07314 −0.132616
\(538\) 0 0
\(539\) 13.4267 0.578327
\(540\) 0 0
\(541\) 32.5201 1.39815 0.699075 0.715048i \(-0.253595\pi\)
0.699075 + 0.715048i \(0.253595\pi\)
\(542\) 0 0
\(543\) −17.2710 −0.741170
\(544\) 0 0
\(545\) −31.6312 −1.35493
\(546\) 0 0
\(547\) −36.7989 −1.57341 −0.786703 0.617332i \(-0.788214\pi\)
−0.786703 + 0.617332i \(0.788214\pi\)
\(548\) 0 0
\(549\) −0.689390 −0.0294224
\(550\) 0 0
\(551\) 18.5784 0.791465
\(552\) 0 0
\(553\) −12.3920 −0.526962
\(554\) 0 0
\(555\) 4.59832 0.195188
\(556\) 0 0
\(557\) −23.8021 −1.00853 −0.504264 0.863549i \(-0.668236\pi\)
−0.504264 + 0.863549i \(0.668236\pi\)
\(558\) 0 0
\(559\) 20.4617 0.865437
\(560\) 0 0
\(561\) −8.74428 −0.369184
\(562\) 0 0
\(563\) 0.717395 0.0302346 0.0151173 0.999886i \(-0.495188\pi\)
0.0151173 + 0.999886i \(0.495188\pi\)
\(564\) 0 0
\(565\) 1.55831 0.0655586
\(566\) 0 0
\(567\) −6.75142 −0.283533
\(568\) 0 0
\(569\) −1.81073 −0.0759099 −0.0379549 0.999279i \(-0.512084\pi\)
−0.0379549 + 0.999279i \(0.512084\pi\)
\(570\) 0 0
\(571\) 26.1999 1.09643 0.548216 0.836337i \(-0.315307\pi\)
0.548216 + 0.836337i \(0.315307\pi\)
\(572\) 0 0
\(573\) −3.27372 −0.136761
\(574\) 0 0
\(575\) −49.1169 −2.04832
\(576\) 0 0
\(577\) 23.0966 0.961522 0.480761 0.876852i \(-0.340360\pi\)
0.480761 + 0.876852i \(0.340360\pi\)
\(578\) 0 0
\(579\) −24.4305 −1.01530
\(580\) 0 0
\(581\) −1.67971 −0.0696859
\(582\) 0 0
\(583\) 28.2210 1.16879
\(584\) 0 0
\(585\) −10.9369 −0.452187
\(586\) 0 0
\(587\) 12.8480 0.530294 0.265147 0.964208i \(-0.414580\pi\)
0.265147 + 0.964208i \(0.414580\pi\)
\(588\) 0 0
\(589\) 18.8472 0.776585
\(590\) 0 0
\(591\) −4.47326 −0.184005
\(592\) 0 0
\(593\) −1.89037 −0.0776280 −0.0388140 0.999246i \(-0.512358\pi\)
−0.0388140 + 0.999246i \(0.512358\pi\)
\(594\) 0 0
\(595\) 11.6106 0.475988
\(596\) 0 0
\(597\) 10.2262 0.418529
\(598\) 0 0
\(599\) −21.8916 −0.894465 −0.447232 0.894418i \(-0.647590\pi\)
−0.447232 + 0.894418i \(0.647590\pi\)
\(600\) 0 0
\(601\) 15.0285 0.613027 0.306513 0.951866i \(-0.400838\pi\)
0.306513 + 0.951866i \(0.400838\pi\)
\(602\) 0 0
\(603\) 15.2900 0.622656
\(604\) 0 0
\(605\) −1.38217 −0.0561933
\(606\) 0 0
\(607\) 39.8377 1.61696 0.808481 0.588523i \(-0.200290\pi\)
0.808481 + 0.588523i \(0.200290\pi\)
\(608\) 0 0
\(609\) 6.08332 0.246509
\(610\) 0 0
\(611\) −20.0354 −0.810546
\(612\) 0 0
\(613\) 7.91176 0.319553 0.159776 0.987153i \(-0.448923\pi\)
0.159776 + 0.987153i \(0.448923\pi\)
\(614\) 0 0
\(615\) 41.1483 1.65926
\(616\) 0 0
\(617\) 15.4037 0.620130 0.310065 0.950715i \(-0.399649\pi\)
0.310065 + 0.950715i \(0.399649\pi\)
\(618\) 0 0
\(619\) 42.9600 1.72671 0.863353 0.504600i \(-0.168360\pi\)
0.863353 + 0.504600i \(0.168360\pi\)
\(620\) 0 0
\(621\) 41.1863 1.65275
\(622\) 0 0
\(623\) 31.7842 1.27341
\(624\) 0 0
\(625\) −13.4334 −0.537337
\(626\) 0 0
\(627\) −30.4103 −1.21447
\(628\) 0 0
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) 40.0919 1.59603 0.798016 0.602636i \(-0.205883\pi\)
0.798016 + 0.602636i \(0.205883\pi\)
\(632\) 0 0
\(633\) 18.5013 0.735361
\(634\) 0 0
\(635\) 46.4875 1.84480
\(636\) 0 0
\(637\) −11.0172 −0.436518
\(638\) 0 0
\(639\) 12.1840 0.481991
\(640\) 0 0
\(641\) −45.9084 −1.81327 −0.906636 0.421914i \(-0.861358\pi\)
−0.906636 + 0.421914i \(0.861358\pi\)
\(642\) 0 0
\(643\) −46.9548 −1.85172 −0.925859 0.377870i \(-0.876657\pi\)
−0.925859 + 0.377870i \(0.876657\pi\)
\(644\) 0 0
\(645\) 35.2257 1.38701
\(646\) 0 0
\(647\) −15.6860 −0.616679 −0.308340 0.951276i \(-0.599773\pi\)
−0.308340 + 0.951276i \(0.599773\pi\)
\(648\) 0 0
\(649\) 16.0397 0.629615
\(650\) 0 0
\(651\) 6.17135 0.241874
\(652\) 0 0
\(653\) −0.418620 −0.0163819 −0.00819093 0.999966i \(-0.502607\pi\)
−0.00819093 + 0.999966i \(0.502607\pi\)
\(654\) 0 0
\(655\) −1.52378 −0.0595390
\(656\) 0 0
\(657\) −4.54960 −0.177497
\(658\) 0 0
\(659\) 19.5759 0.762571 0.381285 0.924457i \(-0.375482\pi\)
0.381285 + 0.924457i \(0.375482\pi\)
\(660\) 0 0
\(661\) 14.3188 0.556936 0.278468 0.960446i \(-0.410173\pi\)
0.278468 + 0.960446i \(0.410173\pi\)
\(662\) 0 0
\(663\) 7.17511 0.278658
\(664\) 0 0
\(665\) 40.3785 1.56581
\(666\) 0 0
\(667\) −19.5200 −0.755818
\(668\) 0 0
\(669\) −10.0748 −0.389513
\(670\) 0 0
\(671\) −1.87633 −0.0724348
\(672\) 0 0
\(673\) 39.0214 1.50417 0.752083 0.659068i \(-0.229049\pi\)
0.752083 + 0.659068i \(0.229049\pi\)
\(674\) 0 0
\(675\) −37.8779 −1.45792
\(676\) 0 0
\(677\) 24.6560 0.947609 0.473804 0.880630i \(-0.342880\pi\)
0.473804 + 0.880630i \(0.342880\pi\)
\(678\) 0 0
\(679\) 3.39135 0.130148
\(680\) 0 0
\(681\) 3.07314 0.117763
\(682\) 0 0
\(683\) −18.3587 −0.702477 −0.351238 0.936286i \(-0.614239\pi\)
−0.351238 + 0.936286i \(0.614239\pi\)
\(684\) 0 0
\(685\) 67.1464 2.56553
\(686\) 0 0
\(687\) −11.3720 −0.433868
\(688\) 0 0
\(689\) −23.1567 −0.882199
\(690\) 0 0
\(691\) 35.4701 1.34935 0.674674 0.738116i \(-0.264284\pi\)
0.674674 + 0.738116i \(0.264284\pi\)
\(692\) 0 0
\(693\) 6.60165 0.250776
\(694\) 0 0
\(695\) −58.0290 −2.20116
\(696\) 0 0
\(697\) 17.8971 0.677901
\(698\) 0 0
\(699\) −24.2747 −0.918153
\(700\) 0 0
\(701\) 23.2973 0.879926 0.439963 0.898016i \(-0.354992\pi\)
0.439963 + 0.898016i \(0.354992\pi\)
\(702\) 0 0
\(703\) 6.95547 0.262330
\(704\) 0 0
\(705\) −34.4919 −1.29904
\(706\) 0 0
\(707\) −2.42537 −0.0912155
\(708\) 0 0
\(709\) −7.50307 −0.281784 −0.140892 0.990025i \(-0.544997\pi\)
−0.140892 + 0.990025i \(0.544997\pi\)
\(710\) 0 0
\(711\) 8.74043 0.327792
\(712\) 0 0
\(713\) −19.8025 −0.741608
\(714\) 0 0
\(715\) −29.7673 −1.11323
\(716\) 0 0
\(717\) 0.549802 0.0205327
\(718\) 0 0
\(719\) −22.8690 −0.852868 −0.426434 0.904519i \(-0.640230\pi\)
−0.426434 + 0.904519i \(0.640230\pi\)
\(720\) 0 0
\(721\) 26.6737 0.993382
\(722\) 0 0
\(723\) 6.78270 0.252251
\(724\) 0 0
\(725\) 17.9520 0.666720
\(726\) 0 0
\(727\) 36.9482 1.37033 0.685167 0.728386i \(-0.259729\pi\)
0.685167 + 0.728386i \(0.259729\pi\)
\(728\) 0 0
\(729\) 27.4707 1.01743
\(730\) 0 0
\(731\) 15.3211 0.566672
\(732\) 0 0
\(733\) −45.6031 −1.68439 −0.842194 0.539175i \(-0.818736\pi\)
−0.842194 + 0.539175i \(0.818736\pi\)
\(734\) 0 0
\(735\) −18.9666 −0.699595
\(736\) 0 0
\(737\) 41.6150 1.53291
\(738\) 0 0
\(739\) 39.4485 1.45114 0.725569 0.688150i \(-0.241577\pi\)
0.725569 + 0.688150i \(0.241577\pi\)
\(740\) 0 0
\(741\) 24.9531 0.916676
\(742\) 0 0
\(743\) −51.7596 −1.89887 −0.949437 0.313957i \(-0.898345\pi\)
−0.949437 + 0.313957i \(0.898345\pi\)
\(744\) 0 0
\(745\) 25.7341 0.942824
\(746\) 0 0
\(747\) 1.18474 0.0433475
\(748\) 0 0
\(749\) −15.4585 −0.564840
\(750\) 0 0
\(751\) −1.74255 −0.0635864 −0.0317932 0.999494i \(-0.510122\pi\)
−0.0317932 + 0.999494i \(0.510122\pi\)
\(752\) 0 0
\(753\) −33.4654 −1.21955
\(754\) 0 0
\(755\) −52.2928 −1.90313
\(756\) 0 0
\(757\) −32.8054 −1.19233 −0.596167 0.802861i \(-0.703310\pi\)
−0.596167 + 0.802861i \(0.703310\pi\)
\(758\) 0 0
\(759\) 31.9517 1.15977
\(760\) 0 0
\(761\) 9.15130 0.331734 0.165867 0.986148i \(-0.446958\pi\)
0.165867 + 0.986148i \(0.446958\pi\)
\(762\) 0 0
\(763\) −15.6667 −0.567171
\(764\) 0 0
\(765\) −8.18927 −0.296084
\(766\) 0 0
\(767\) −13.1614 −0.475230
\(768\) 0 0
\(769\) −45.6177 −1.64502 −0.822509 0.568753i \(-0.807426\pi\)
−0.822509 + 0.568753i \(0.807426\pi\)
\(770\) 0 0
\(771\) −26.4521 −0.952648
\(772\) 0 0
\(773\) 25.6428 0.922308 0.461154 0.887320i \(-0.347436\pi\)
0.461154 + 0.887320i \(0.347436\pi\)
\(774\) 0 0
\(775\) 18.2118 0.654186
\(776\) 0 0
\(777\) 2.27751 0.0817052
\(778\) 0 0
\(779\) 62.2414 2.23003
\(780\) 0 0
\(781\) 33.1614 1.18661
\(782\) 0 0
\(783\) −15.0534 −0.537965
\(784\) 0 0
\(785\) −14.0864 −0.502764
\(786\) 0 0
\(787\) −0.789747 −0.0281515 −0.0140757 0.999901i \(-0.504481\pi\)
−0.0140757 + 0.999901i \(0.504481\pi\)
\(788\) 0 0
\(789\) 10.5035 0.373933
\(790\) 0 0
\(791\) 0.771817 0.0274427
\(792\) 0 0
\(793\) 1.53962 0.0546734
\(794\) 0 0
\(795\) −39.8652 −1.41387
\(796\) 0 0
\(797\) 46.6410 1.65211 0.826055 0.563589i \(-0.190580\pi\)
0.826055 + 0.563589i \(0.190580\pi\)
\(798\) 0 0
\(799\) −15.0019 −0.530730
\(800\) 0 0
\(801\) −22.4183 −0.792111
\(802\) 0 0
\(803\) −12.3827 −0.436977
\(804\) 0 0
\(805\) −42.4252 −1.49529
\(806\) 0 0
\(807\) −34.8991 −1.22851
\(808\) 0 0
\(809\) 1.75752 0.0617910 0.0308955 0.999523i \(-0.490164\pi\)
0.0308955 + 0.999523i \(0.490164\pi\)
\(810\) 0 0
\(811\) −18.5763 −0.652303 −0.326151 0.945318i \(-0.605752\pi\)
−0.326151 + 0.945318i \(0.605752\pi\)
\(812\) 0 0
\(813\) −3.22454 −0.113089
\(814\) 0 0
\(815\) 64.6553 2.26478
\(816\) 0 0
\(817\) 53.2828 1.86413
\(818\) 0 0
\(819\) −5.41697 −0.189284
\(820\) 0 0
\(821\) 36.6927 1.28059 0.640293 0.768131i \(-0.278813\pi\)
0.640293 + 0.768131i \(0.278813\pi\)
\(822\) 0 0
\(823\) 28.3419 0.987936 0.493968 0.869480i \(-0.335546\pi\)
0.493968 + 0.869480i \(0.335546\pi\)
\(824\) 0 0
\(825\) −29.3850 −1.02306
\(826\) 0 0
\(827\) −25.9666 −0.902947 −0.451474 0.892284i \(-0.649102\pi\)
−0.451474 + 0.892284i \(0.649102\pi\)
\(828\) 0 0
\(829\) −32.1889 −1.11797 −0.558984 0.829179i \(-0.688809\pi\)
−0.558984 + 0.829179i \(0.688809\pi\)
\(830\) 0 0
\(831\) −1.51965 −0.0527161
\(832\) 0 0
\(833\) −8.24938 −0.285824
\(834\) 0 0
\(835\) 43.0159 1.48863
\(836\) 0 0
\(837\) −15.2712 −0.527851
\(838\) 0 0
\(839\) 31.4855 1.08700 0.543501 0.839409i \(-0.317099\pi\)
0.543501 + 0.839409i \(0.317099\pi\)
\(840\) 0 0
\(841\) −21.8655 −0.753984
\(842\) 0 0
\(843\) 28.7812 0.991276
\(844\) 0 0
\(845\) −20.0812 −0.690813
\(846\) 0 0
\(847\) −0.684578 −0.0235224
\(848\) 0 0
\(849\) 1.60779 0.0551791
\(850\) 0 0
\(851\) −7.30801 −0.250515
\(852\) 0 0
\(853\) −3.79239 −0.129849 −0.0649244 0.997890i \(-0.520681\pi\)
−0.0649244 + 0.997890i \(0.520681\pi\)
\(854\) 0 0
\(855\) −28.4801 −0.973999
\(856\) 0 0
\(857\) −10.5782 −0.361346 −0.180673 0.983543i \(-0.557827\pi\)
−0.180673 + 0.983543i \(0.557827\pi\)
\(858\) 0 0
\(859\) 2.69856 0.0920737 0.0460368 0.998940i \(-0.485341\pi\)
0.0460368 + 0.998940i \(0.485341\pi\)
\(860\) 0 0
\(861\) 20.3804 0.694562
\(862\) 0 0
\(863\) 48.5155 1.65149 0.825743 0.564046i \(-0.190756\pi\)
0.825743 + 0.564046i \(0.190756\pi\)
\(864\) 0 0
\(865\) −83.0701 −2.82447
\(866\) 0 0
\(867\) −17.4607 −0.592995
\(868\) 0 0
\(869\) 23.7890 0.806986
\(870\) 0 0
\(871\) −34.1471 −1.15703
\(872\) 0 0
\(873\) −2.39201 −0.0809573
\(874\) 0 0
\(875\) 9.99073 0.337748
\(876\) 0 0
\(877\) −27.1626 −0.917214 −0.458607 0.888639i \(-0.651651\pi\)
−0.458607 + 0.888639i \(0.651651\pi\)
\(878\) 0 0
\(879\) −37.7770 −1.27419
\(880\) 0 0
\(881\) 17.8757 0.602248 0.301124 0.953585i \(-0.402638\pi\)
0.301124 + 0.953585i \(0.402638\pi\)
\(882\) 0 0
\(883\) 8.27841 0.278591 0.139295 0.990251i \(-0.455516\pi\)
0.139295 + 0.990251i \(0.455516\pi\)
\(884\) 0 0
\(885\) −22.6579 −0.761637
\(886\) 0 0
\(887\) 27.5833 0.926155 0.463077 0.886318i \(-0.346745\pi\)
0.463077 + 0.886318i \(0.346745\pi\)
\(888\) 0 0
\(889\) 23.0248 0.772228
\(890\) 0 0
\(891\) 12.9607 0.434200
\(892\) 0 0
\(893\) −52.1727 −1.74589
\(894\) 0 0
\(895\) −7.83333 −0.261839
\(896\) 0 0
\(897\) −26.2179 −0.875390
\(898\) 0 0
\(899\) 7.23771 0.241391
\(900\) 0 0
\(901\) −17.3390 −0.577647
\(902\) 0 0
\(903\) 17.4470 0.580599
\(904\) 0 0
\(905\) −44.0232 −1.46338
\(906\) 0 0
\(907\) 32.7962 1.08898 0.544490 0.838768i \(-0.316723\pi\)
0.544490 + 0.838768i \(0.316723\pi\)
\(908\) 0 0
\(909\) 1.71068 0.0567397
\(910\) 0 0
\(911\) 4.63527 0.153573 0.0767866 0.997048i \(-0.475534\pi\)
0.0767866 + 0.997048i \(0.475534\pi\)
\(912\) 0 0
\(913\) 3.22454 0.106717
\(914\) 0 0
\(915\) 2.65052 0.0876234
\(916\) 0 0
\(917\) −0.754715 −0.0249229
\(918\) 0 0
\(919\) 4.76696 0.157248 0.0786238 0.996904i \(-0.474947\pi\)
0.0786238 + 0.996904i \(0.474947\pi\)
\(920\) 0 0
\(921\) 35.5644 1.17189
\(922\) 0 0
\(923\) −27.2105 −0.895645
\(924\) 0 0
\(925\) 6.72097 0.220984
\(926\) 0 0
\(927\) −18.8137 −0.617924
\(928\) 0 0
\(929\) 35.4499 1.16307 0.581536 0.813521i \(-0.302452\pi\)
0.581536 + 0.813521i \(0.302452\pi\)
\(930\) 0 0
\(931\) −28.6891 −0.940249
\(932\) 0 0
\(933\) −23.9448 −0.783916
\(934\) 0 0
\(935\) −22.2889 −0.728925
\(936\) 0 0
\(937\) 4.39354 0.143531 0.0717653 0.997422i \(-0.477137\pi\)
0.0717653 + 0.997422i \(0.477137\pi\)
\(938\) 0 0
\(939\) −11.4057 −0.372210
\(940\) 0 0
\(941\) −21.2422 −0.692477 −0.346239 0.938146i \(-0.612541\pi\)
−0.346239 + 0.938146i \(0.612541\pi\)
\(942\) 0 0
\(943\) −65.3961 −2.12959
\(944\) 0 0
\(945\) −32.7173 −1.06429
\(946\) 0 0
\(947\) 23.8004 0.773408 0.386704 0.922204i \(-0.373614\pi\)
0.386704 + 0.922204i \(0.373614\pi\)
\(948\) 0 0
\(949\) 10.1606 0.329828
\(950\) 0 0
\(951\) −11.4098 −0.369987
\(952\) 0 0
\(953\) 43.7477 1.41713 0.708564 0.705647i \(-0.249343\pi\)
0.708564 + 0.705647i \(0.249343\pi\)
\(954\) 0 0
\(955\) −8.34459 −0.270025
\(956\) 0 0
\(957\) −11.6782 −0.377502
\(958\) 0 0
\(959\) 33.2570 1.07393
\(960\) 0 0
\(961\) −23.6576 −0.763147
\(962\) 0 0
\(963\) 10.9033 0.351353
\(964\) 0 0
\(965\) −62.2726 −2.00463
\(966\) 0 0
\(967\) 1.72579 0.0554975 0.0277488 0.999615i \(-0.491166\pi\)
0.0277488 + 0.999615i \(0.491166\pi\)
\(968\) 0 0
\(969\) 18.6842 0.600222
\(970\) 0 0
\(971\) −18.2036 −0.584181 −0.292090 0.956391i \(-0.594351\pi\)
−0.292090 + 0.956391i \(0.594351\pi\)
\(972\) 0 0
\(973\) −28.7412 −0.921402
\(974\) 0 0
\(975\) 24.1118 0.772197
\(976\) 0 0
\(977\) 39.6381 1.26814 0.634068 0.773278i \(-0.281384\pi\)
0.634068 + 0.773278i \(0.281384\pi\)
\(978\) 0 0
\(979\) −61.0163 −1.95009
\(980\) 0 0
\(981\) 11.0501 0.352803
\(982\) 0 0
\(983\) −45.4500 −1.44963 −0.724815 0.688943i \(-0.758075\pi\)
−0.724815 + 0.688943i \(0.758075\pi\)
\(984\) 0 0
\(985\) −11.4022 −0.363304
\(986\) 0 0
\(987\) −17.0835 −0.543774
\(988\) 0 0
\(989\) −55.9835 −1.78017
\(990\) 0 0
\(991\) −29.4118 −0.934298 −0.467149 0.884179i \(-0.654719\pi\)
−0.467149 + 0.884179i \(0.654719\pi\)
\(992\) 0 0
\(993\) 9.92337 0.314909
\(994\) 0 0
\(995\) 26.0661 0.826352
\(996\) 0 0
\(997\) −14.2290 −0.450637 −0.225319 0.974285i \(-0.572342\pi\)
−0.225319 + 0.974285i \(0.572342\pi\)
\(998\) 0 0
\(999\) −5.63578 −0.178308
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1184.2.a.p.1.6 yes 8
4.3 odd 2 inner 1184.2.a.p.1.3 8
8.3 odd 2 2368.2.a.bj.1.6 8
8.5 even 2 2368.2.a.bj.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1184.2.a.p.1.3 8 4.3 odd 2 inner
1184.2.a.p.1.6 yes 8 1.1 even 1 trivial
2368.2.a.bj.1.3 8 8.5 even 2
2368.2.a.bj.1.6 8 8.3 odd 2