Properties

Label 1176.3.bx
Level $1176$
Weight $3$
Character orbit 1176.bx
Rep. character $\chi_{1176}(65,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $1344$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1176.bx (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 147 \)
Character field: \(\Q(\zeta_{42})\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1176, [\chi])\).

Total New Old
Modular forms 5472 1344 4128
Cusp forms 5280 1344 3936
Eisenstein series 192 0 192

Trace form

\( 1344 q - 12 q^{7} + 64 q^{9} + 8 q^{13} - 16 q^{19} - 60 q^{21} - 572 q^{25} + 24 q^{27} + 36 q^{31} - 32 q^{33} + 144 q^{37} - 12 q^{39} + 224 q^{43} + 196 q^{45} + 56 q^{49} + 60 q^{51} + 252 q^{55} + 128 q^{57}+ \cdots - 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1176, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(1176, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1176, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(588, [\chi])\)\(^{\oplus 2}\)