Properties

Label 1176.3
Level 1176
Weight 3
Dimension 30276
Nonzero newspaces 24
Sturm bound 225792
Trace bound 8

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(225792\)
Trace bound: \(8\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(1176))\).

Total New Old
Modular forms 76704 30664 46040
Cusp forms 73824 30276 43548
Eisenstein series 2880 388 2492

Trace form

\( 30276 q + 2 q^{2} - 28 q^{3} - 72 q^{4} - 44 q^{6} - 72 q^{7} - 4 q^{8} - 16 q^{9} - 72 q^{10} + 16 q^{11} - 14 q^{12} + 20 q^{13} - 90 q^{15} - 28 q^{16} - 104 q^{17} + 32 q^{18} - 360 q^{19} - 432 q^{20}+ \cdots - 560 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(1176))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1176.3.d \(\chi_{1176}(785, \cdot)\) 1176.3.d.a 2 1
1176.3.d.b 2
1176.3.d.c 2
1176.3.d.d 8
1176.3.d.e 12
1176.3.d.f 16
1176.3.d.g 16
1176.3.d.h 24
1176.3.e \(\chi_{1176}(587, \cdot)\) n/a 312 1
1176.3.f \(\chi_{1176}(97, \cdot)\) 1176.3.f.a 8 1
1176.3.f.b 8
1176.3.f.c 8
1176.3.f.d 16
1176.3.g \(\chi_{1176}(883, \cdot)\) n/a 164 1
1176.3.l \(\chi_{1176}(685, \cdot)\) n/a 160 1
1176.3.m \(\chi_{1176}(295, \cdot)\) None 0 1
1176.3.n \(\chi_{1176}(197, \cdot)\) n/a 318 1
1176.3.o \(\chi_{1176}(1175, \cdot)\) None 0 1
1176.3.r \(\chi_{1176}(215, \cdot)\) None 0 2
1176.3.s \(\chi_{1176}(557, \cdot)\) n/a 624 2
1176.3.w \(\chi_{1176}(79, \cdot)\) None 0 2
1176.3.x \(\chi_{1176}(325, \cdot)\) n/a 320 2
1176.3.y \(\chi_{1176}(67, \cdot)\) n/a 320 2
1176.3.z \(\chi_{1176}(313, \cdot)\) 1176.3.z.a 8 2
1176.3.z.b 8
1176.3.z.c 8
1176.3.z.d 8
1176.3.z.e 8
1176.3.z.f 8
1176.3.z.g 16
1176.3.z.h 16
1176.3.be \(\chi_{1176}(227, \cdot)\) n/a 624 2
1176.3.bf \(\chi_{1176}(569, \cdot)\) n/a 160 2
1176.3.bi \(\chi_{1176}(167, \cdot)\) None 0 6
1176.3.bj \(\chi_{1176}(29, \cdot)\) n/a 2664 6
1176.3.bk \(\chi_{1176}(127, \cdot)\) None 0 6
1176.3.bl \(\chi_{1176}(13, \cdot)\) n/a 1344 6
1176.3.bq \(\chi_{1176}(43, \cdot)\) n/a 1344 6
1176.3.br \(\chi_{1176}(265, \cdot)\) n/a 336 6
1176.3.bs \(\chi_{1176}(83, \cdot)\) n/a 2664 6
1176.3.bt \(\chi_{1176}(113, \cdot)\) n/a 672 6
1176.3.bx \(\chi_{1176}(65, \cdot)\) n/a 1344 12
1176.3.by \(\chi_{1176}(59, \cdot)\) n/a 5328 12
1176.3.cd \(\chi_{1176}(73, \cdot)\) n/a 672 12
1176.3.ce \(\chi_{1176}(163, \cdot)\) n/a 2688 12
1176.3.cf \(\chi_{1176}(61, \cdot)\) n/a 2688 12
1176.3.cg \(\chi_{1176}(151, \cdot)\) None 0 12
1176.3.ck \(\chi_{1176}(53, \cdot)\) n/a 5328 12
1176.3.cl \(\chi_{1176}(47, \cdot)\) None 0 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(1176))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(1176)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 18}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 16}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(168))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(196))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(294))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(392))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(588))\)\(^{\oplus 2}\)