Properties

Label 1176.3.bq
Level $1176$
Weight $3$
Character orbit 1176.bq
Rep. character $\chi_{1176}(43,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $1344$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1176.bq (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 392 \)
Character field: \(\Q(\zeta_{14})\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1176, [\chi])\).

Total New Old
Modular forms 2712 1344 1368
Cusp forms 2664 1344 1320
Eisenstein series 48 0 48

Trace form

\( 1344 q - 12 q^{8} - 672 q^{9} - 36 q^{10} - 22 q^{14} - 48 q^{16} - 164 q^{20} + 12 q^{22} + 90 q^{24} + 1120 q^{25} + 92 q^{26} + 272 q^{28} + 48 q^{30} + 100 q^{32} + 244 q^{34} - 96 q^{35} - 8 q^{38}+ \cdots + 712 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1176, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(1176, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1176, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(392, [\chi])\)\(^{\oplus 2}\)