Properties

Label 1176.2.k.b.881.13
Level $1176$
Weight $2$
Character 1176.881
Analytic conductor $9.390$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1176,2,Mod(881,1176)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1176, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1176.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.13
Character \(\chi\) \(=\) 1176.881
Dual form 1176.2.k.b.881.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0935860 - 1.72952i) q^{3} +3.34363 q^{5} +(-2.98248 - 0.323718i) q^{9} +3.53079i q^{11} -5.57150i q^{13} +(0.312917 - 5.78288i) q^{15} +0.803762 q^{17} -0.615091i q^{19} -8.47981i q^{23} +6.17985 q^{25} +(-0.838995 + 5.12797i) q^{27} -7.09383i q^{29} +3.25217i q^{31} +(6.10657 + 0.330432i) q^{33} +7.31658 q^{37} +(-9.63603 - 0.521414i) q^{39} +10.8204 q^{41} -6.16756 q^{43} +(-9.97232 - 1.08239i) q^{45} +7.19094 q^{47} +(0.0752209 - 1.39012i) q^{51} -2.45137i q^{53} +11.8056i q^{55} +(-1.06381 - 0.0575639i) q^{57} -8.40304 q^{59} +2.68141i q^{61} -18.6290i q^{65} -4.00789 q^{67} +(-14.6660 - 0.793591i) q^{69} +6.75843i q^{71} +10.9705i q^{73} +(0.578348 - 10.6882i) q^{75} -9.97718 q^{79} +(8.79041 + 1.93097i) q^{81} +11.6052 q^{83} +2.68748 q^{85} +(-12.2689 - 0.663883i) q^{87} -9.76545 q^{89} +(5.62470 + 0.304358i) q^{93} -2.05664i q^{95} -13.7962i q^{97} +(1.14298 - 10.5305i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 16 q^{15} + 8 q^{25} + 16 q^{37} - 64 q^{39} + 16 q^{43} + 48 q^{51} + 48 q^{57} + 16 q^{67} + 80 q^{81} - 64 q^{85} - 32 q^{93} - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0935860 1.72952i 0.0540319 0.998539i
\(4\) 0 0
\(5\) 3.34363 1.49532 0.747658 0.664084i \(-0.231178\pi\)
0.747658 + 0.664084i \(0.231178\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.98248 0.323718i −0.994161 0.107906i
\(10\) 0 0
\(11\) 3.53079i 1.06457i 0.846565 + 0.532286i \(0.178667\pi\)
−0.846565 + 0.532286i \(0.821333\pi\)
\(12\) 0 0
\(13\) 5.57150i 1.54526i −0.634859 0.772628i \(-0.718942\pi\)
0.634859 0.772628i \(-0.281058\pi\)
\(14\) 0 0
\(15\) 0.312917 5.78288i 0.0807948 1.49313i
\(16\) 0 0
\(17\) 0.803762 0.194941 0.0974705 0.995238i \(-0.468925\pi\)
0.0974705 + 0.995238i \(0.468925\pi\)
\(18\) 0 0
\(19\) 0.615091i 0.141111i −0.997508 0.0705557i \(-0.977523\pi\)
0.997508 0.0705557i \(-0.0224773\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.47981i 1.76816i −0.467334 0.884081i \(-0.654785\pi\)
0.467334 0.884081i \(-0.345215\pi\)
\(24\) 0 0
\(25\) 6.17985 1.23597
\(26\) 0 0
\(27\) −0.838995 + 5.12797i −0.161465 + 0.986878i
\(28\) 0 0
\(29\) 7.09383i 1.31729i −0.752453 0.658646i \(-0.771130\pi\)
0.752453 0.658646i \(-0.228870\pi\)
\(30\) 0 0
\(31\) 3.25217i 0.584107i 0.956402 + 0.292054i \(0.0943386\pi\)
−0.956402 + 0.292054i \(0.905661\pi\)
\(32\) 0 0
\(33\) 6.10657 + 0.330432i 1.06302 + 0.0575208i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.31658 1.20284 0.601420 0.798933i \(-0.294602\pi\)
0.601420 + 0.798933i \(0.294602\pi\)
\(38\) 0 0
\(39\) −9.63603 0.521414i −1.54300 0.0834931i
\(40\) 0 0
\(41\) 10.8204 1.68986 0.844928 0.534881i \(-0.179643\pi\)
0.844928 + 0.534881i \(0.179643\pi\)
\(42\) 0 0
\(43\) −6.16756 −0.940544 −0.470272 0.882521i \(-0.655844\pi\)
−0.470272 + 0.882521i \(0.655844\pi\)
\(44\) 0 0
\(45\) −9.97232 1.08239i −1.48659 0.161354i
\(46\) 0 0
\(47\) 7.19094 1.04891 0.524453 0.851439i \(-0.324270\pi\)
0.524453 + 0.851439i \(0.324270\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.0752209 1.39012i 0.0105330 0.194656i
\(52\) 0 0
\(53\) 2.45137i 0.336721i −0.985725 0.168361i \(-0.946153\pi\)
0.985725 0.168361i \(-0.0538473\pi\)
\(54\) 0 0
\(55\) 11.8056i 1.59187i
\(56\) 0 0
\(57\) −1.06381 0.0575639i −0.140905 0.00762452i
\(58\) 0 0
\(59\) −8.40304 −1.09398 −0.546992 0.837138i \(-0.684227\pi\)
−0.546992 + 0.837138i \(0.684227\pi\)
\(60\) 0 0
\(61\) 2.68141i 0.343319i 0.985156 + 0.171660i \(0.0549130\pi\)
−0.985156 + 0.171660i \(0.945087\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 18.6290i 2.31065i
\(66\) 0 0
\(67\) −4.00789 −0.489642 −0.244821 0.969568i \(-0.578729\pi\)
−0.244821 + 0.969568i \(0.578729\pi\)
\(68\) 0 0
\(69\) −14.6660 0.793591i −1.76558 0.0955372i
\(70\) 0 0
\(71\) 6.75843i 0.802078i 0.916061 + 0.401039i \(0.131351\pi\)
−0.916061 + 0.401039i \(0.868649\pi\)
\(72\) 0 0
\(73\) 10.9705i 1.28400i 0.766703 + 0.642002i \(0.221896\pi\)
−0.766703 + 0.642002i \(0.778104\pi\)
\(74\) 0 0
\(75\) 0.578348 10.6882i 0.0667819 1.23417i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −9.97718 −1.12252 −0.561260 0.827639i \(-0.689683\pi\)
−0.561260 + 0.827639i \(0.689683\pi\)
\(80\) 0 0
\(81\) 8.79041 + 1.93097i 0.976713 + 0.214552i
\(82\) 0 0
\(83\) 11.6052 1.27383 0.636916 0.770933i \(-0.280210\pi\)
0.636916 + 0.770933i \(0.280210\pi\)
\(84\) 0 0
\(85\) 2.68748 0.291498
\(86\) 0 0
\(87\) −12.2689 0.663883i −1.31537 0.0711758i
\(88\) 0 0
\(89\) −9.76545 −1.03514 −0.517568 0.855642i \(-0.673162\pi\)
−0.517568 + 0.855642i \(0.673162\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 5.62470 + 0.304358i 0.583254 + 0.0315604i
\(94\) 0 0
\(95\) 2.05664i 0.211006i
\(96\) 0 0
\(97\) 13.7962i 1.40079i −0.713755 0.700395i \(-0.753007\pi\)
0.713755 0.700395i \(-0.246993\pi\)
\(98\) 0 0
\(99\) 1.14298 10.5305i 0.114874 1.05836i
\(100\) 0 0
\(101\) −3.74267 −0.372409 −0.186205 0.982511i \(-0.559619\pi\)
−0.186205 + 0.982511i \(0.559619\pi\)
\(102\) 0 0
\(103\) 7.47003i 0.736044i 0.929817 + 0.368022i \(0.119965\pi\)
−0.929817 + 0.368022i \(0.880035\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.19165i 0.598570i −0.954164 0.299285i \(-0.903252\pi\)
0.954164 0.299285i \(-0.0967481\pi\)
\(108\) 0 0
\(109\) 3.15393 0.302091 0.151046 0.988527i \(-0.451736\pi\)
0.151046 + 0.988527i \(0.451736\pi\)
\(110\) 0 0
\(111\) 0.684730 12.6542i 0.0649917 1.20108i
\(112\) 0 0
\(113\) 9.03372i 0.849821i 0.905235 + 0.424911i \(0.139694\pi\)
−0.905235 + 0.424911i \(0.860306\pi\)
\(114\) 0 0
\(115\) 28.3533i 2.64396i
\(116\) 0 0
\(117\) −1.80359 + 16.6169i −0.166742 + 1.53623i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.46644 −0.133313
\(122\) 0 0
\(123\) 1.01263 18.7140i 0.0913061 1.68739i
\(124\) 0 0
\(125\) 3.94500 0.352851
\(126\) 0 0
\(127\) 17.1353 1.52051 0.760257 0.649622i \(-0.225073\pi\)
0.760257 + 0.649622i \(0.225073\pi\)
\(128\) 0 0
\(129\) −0.577197 + 10.6669i −0.0508194 + 0.939170i
\(130\) 0 0
\(131\) 6.31011 0.551317 0.275658 0.961256i \(-0.411104\pi\)
0.275658 + 0.961256i \(0.411104\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.80529 + 17.1460i −0.241441 + 1.47570i
\(136\) 0 0
\(137\) 6.49594i 0.554986i 0.960728 + 0.277493i \(0.0895035\pi\)
−0.960728 + 0.277493i \(0.910497\pi\)
\(138\) 0 0
\(139\) 4.41953i 0.374859i 0.982278 + 0.187430i \(0.0600157\pi\)
−0.982278 + 0.187430i \(0.939984\pi\)
\(140\) 0 0
\(141\) 0.672972 12.4369i 0.0566744 1.04737i
\(142\) 0 0
\(143\) 19.6718 1.64504
\(144\) 0 0
\(145\) 23.7191i 1.96977i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.55652i 0.291362i 0.989332 + 0.145681i \(0.0465373\pi\)
−0.989332 + 0.145681i \(0.953463\pi\)
\(150\) 0 0
\(151\) −17.5979 −1.43210 −0.716050 0.698049i \(-0.754052\pi\)
−0.716050 + 0.698049i \(0.754052\pi\)
\(152\) 0 0
\(153\) −2.39721 0.260192i −0.193803 0.0210353i
\(154\) 0 0
\(155\) 10.8741i 0.873425i
\(156\) 0 0
\(157\) 1.13406i 0.0905077i −0.998976 0.0452539i \(-0.985590\pi\)
0.998976 0.0452539i \(-0.0144097\pi\)
\(158\) 0 0
\(159\) −4.23969 0.229414i −0.336229 0.0181937i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −19.8818 −1.55727 −0.778633 0.627479i \(-0.784087\pi\)
−0.778633 + 0.627479i \(0.784087\pi\)
\(164\) 0 0
\(165\) 20.4181 + 1.10484i 1.58955 + 0.0860118i
\(166\) 0 0
\(167\) 2.40572 0.186160 0.0930802 0.995659i \(-0.470329\pi\)
0.0930802 + 0.995659i \(0.470329\pi\)
\(168\) 0 0
\(169\) −18.0416 −1.38782
\(170\) 0 0
\(171\) −0.199116 + 1.83450i −0.0152268 + 0.140288i
\(172\) 0 0
\(173\) 1.15099 0.0875079 0.0437540 0.999042i \(-0.486068\pi\)
0.0437540 + 0.999042i \(0.486068\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −0.786407 + 14.5332i −0.0591100 + 1.09238i
\(178\) 0 0
\(179\) 18.6044i 1.39056i 0.718738 + 0.695281i \(0.244720\pi\)
−0.718738 + 0.695281i \(0.755280\pi\)
\(180\) 0 0
\(181\) 13.1502i 0.977450i 0.872438 + 0.488725i \(0.162538\pi\)
−0.872438 + 0.488725i \(0.837462\pi\)
\(182\) 0 0
\(183\) 4.63756 + 0.250942i 0.342818 + 0.0185502i
\(184\) 0 0
\(185\) 24.4639 1.79862
\(186\) 0 0
\(187\) 2.83791i 0.207529i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.05936i 0.366083i 0.983105 + 0.183041i \(0.0585942\pi\)
−0.983105 + 0.183041i \(0.941406\pi\)
\(192\) 0 0
\(193\) −17.1986 −1.23798 −0.618990 0.785398i \(-0.712458\pi\)
−0.618990 + 0.785398i \(0.712458\pi\)
\(194\) 0 0
\(195\) −32.2193 1.74342i −2.30727 0.124849i
\(196\) 0 0
\(197\) 17.0069i 1.21169i 0.795583 + 0.605844i \(0.207165\pi\)
−0.795583 + 0.605844i \(0.792835\pi\)
\(198\) 0 0
\(199\) 8.06593i 0.571779i 0.958263 + 0.285889i \(0.0922890\pi\)
−0.958263 + 0.285889i \(0.907711\pi\)
\(200\) 0 0
\(201\) −0.375082 + 6.93173i −0.0264563 + 0.488926i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 36.1792 2.52687
\(206\) 0 0
\(207\) −2.74506 + 25.2909i −0.190795 + 1.75784i
\(208\) 0 0
\(209\) 2.17175 0.150223
\(210\) 0 0
\(211\) −9.66474 −0.665348 −0.332674 0.943042i \(-0.607951\pi\)
−0.332674 + 0.943042i \(0.607951\pi\)
\(212\) 0 0
\(213\) 11.6888 + 0.632494i 0.800906 + 0.0433378i
\(214\) 0 0
\(215\) −20.6220 −1.40641
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 18.9738 + 1.02669i 1.28213 + 0.0693772i
\(220\) 0 0
\(221\) 4.47816i 0.301234i
\(222\) 0 0
\(223\) 12.3980i 0.830232i 0.909769 + 0.415116i \(0.136259\pi\)
−0.909769 + 0.415116i \(0.863741\pi\)
\(224\) 0 0
\(225\) −18.4313 2.00053i −1.22875 0.133369i
\(226\) 0 0
\(227\) 22.9204 1.52128 0.760641 0.649173i \(-0.224885\pi\)
0.760641 + 0.649173i \(0.224885\pi\)
\(228\) 0 0
\(229\) 8.91504i 0.589123i 0.955633 + 0.294561i \(0.0951735\pi\)
−0.955633 + 0.294561i \(0.904826\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.0482i 1.31340i 0.754152 + 0.656699i \(0.228048\pi\)
−0.754152 + 0.656699i \(0.771952\pi\)
\(234\) 0 0
\(235\) 24.0438 1.56845
\(236\) 0 0
\(237\) −0.933724 + 17.2557i −0.0606519 + 1.12088i
\(238\) 0 0
\(239\) 6.54949i 0.423652i −0.977307 0.211826i \(-0.932059\pi\)
0.977307 0.211826i \(-0.0679409\pi\)
\(240\) 0 0
\(241\) 15.0266i 0.967947i 0.875083 + 0.483973i \(0.160807\pi\)
−0.875083 + 0.483973i \(0.839193\pi\)
\(242\) 0 0
\(243\) 4.16230 15.0225i 0.267012 0.963693i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.42698 −0.218053
\(248\) 0 0
\(249\) 1.08608 20.0714i 0.0688275 1.27197i
\(250\) 0 0
\(251\) 10.2682 0.648123 0.324062 0.946036i \(-0.394951\pi\)
0.324062 + 0.946036i \(0.394951\pi\)
\(252\) 0 0
\(253\) 29.9404 1.88234
\(254\) 0 0
\(255\) 0.251511 4.64806i 0.0157502 0.291073i
\(256\) 0 0
\(257\) 9.05973 0.565130 0.282565 0.959248i \(-0.408815\pi\)
0.282565 + 0.959248i \(0.408815\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −2.29640 + 21.1572i −0.142144 + 1.30960i
\(262\) 0 0
\(263\) 16.9461i 1.04494i −0.852657 0.522470i \(-0.825010\pi\)
0.852657 0.522470i \(-0.174990\pi\)
\(264\) 0 0
\(265\) 8.19646i 0.503505i
\(266\) 0 0
\(267\) −0.913909 + 16.8895i −0.0559303 + 1.03362i
\(268\) 0 0
\(269\) 18.5118 1.12868 0.564341 0.825542i \(-0.309130\pi\)
0.564341 + 0.825542i \(0.309130\pi\)
\(270\) 0 0
\(271\) 6.78659i 0.412256i 0.978525 + 0.206128i \(0.0660863\pi\)
−0.978525 + 0.206128i \(0.933914\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 21.8197i 1.31578i
\(276\) 0 0
\(277\) −8.70920 −0.523285 −0.261642 0.965165i \(-0.584264\pi\)
−0.261642 + 0.965165i \(0.584264\pi\)
\(278\) 0 0
\(279\) 1.05279 9.69955i 0.0630286 0.580697i
\(280\) 0 0
\(281\) 11.7672i 0.701972i 0.936381 + 0.350986i \(0.114154\pi\)
−0.936381 + 0.350986i \(0.885846\pi\)
\(282\) 0 0
\(283\) 1.46990i 0.0873767i 0.999045 + 0.0436884i \(0.0139109\pi\)
−0.999045 + 0.0436884i \(0.986089\pi\)
\(284\) 0 0
\(285\) −3.55699 0.192472i −0.210698 0.0114011i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.3540 −0.961998
\(290\) 0 0
\(291\) −23.8608 1.29113i −1.39874 0.0756874i
\(292\) 0 0
\(293\) 14.4559 0.844523 0.422261 0.906474i \(-0.361236\pi\)
0.422261 + 0.906474i \(0.361236\pi\)
\(294\) 0 0
\(295\) −28.0967 −1.63585
\(296\) 0 0
\(297\) −18.1058 2.96231i −1.05060 0.171891i
\(298\) 0 0
\(299\) −47.2453 −2.73226
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −0.350261 + 6.47302i −0.0201220 + 0.371865i
\(304\) 0 0
\(305\) 8.96564i 0.513371i
\(306\) 0 0
\(307\) 7.50958i 0.428594i −0.976769 0.214297i \(-0.931254\pi\)
0.976769 0.214297i \(-0.0687461\pi\)
\(308\) 0 0
\(309\) 12.9196 + 0.699090i 0.734969 + 0.0397698i
\(310\) 0 0
\(311\) 0.0307314 0.00174262 0.000871308 1.00000i \(-0.499723\pi\)
0.000871308 1.00000i \(0.499723\pi\)
\(312\) 0 0
\(313\) 4.45310i 0.251704i −0.992049 0.125852i \(-0.959834\pi\)
0.992049 0.125852i \(-0.0401664\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.54231i 0.367453i −0.982977 0.183726i \(-0.941184\pi\)
0.982977 0.183726i \(-0.0588161\pi\)
\(318\) 0 0
\(319\) 25.0468 1.40235
\(320\) 0 0
\(321\) −10.7086 0.579452i −0.597695 0.0323419i
\(322\) 0 0
\(323\) 0.494387i 0.0275084i
\(324\) 0 0
\(325\) 34.4311i 1.90989i
\(326\) 0 0
\(327\) 0.295163 5.45478i 0.0163226 0.301650i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2.45365 −0.134865 −0.0674324 0.997724i \(-0.521481\pi\)
−0.0674324 + 0.997724i \(0.521481\pi\)
\(332\) 0 0
\(333\) −21.8216 2.36851i −1.19582 0.129793i
\(334\) 0 0
\(335\) −13.4009 −0.732169
\(336\) 0 0
\(337\) −4.26290 −0.232215 −0.116108 0.993237i \(-0.537042\pi\)
−0.116108 + 0.993237i \(0.537042\pi\)
\(338\) 0 0
\(339\) 15.6240 + 0.845430i 0.848580 + 0.0459175i
\(340\) 0 0
\(341\) −11.4827 −0.621824
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −49.0377 2.65347i −2.64010 0.142858i
\(346\) 0 0
\(347\) 15.8736i 0.852142i −0.904690 0.426071i \(-0.859897\pi\)
0.904690 0.426071i \(-0.140103\pi\)
\(348\) 0 0
\(349\) 27.2794i 1.46024i −0.683322 0.730118i \(-0.739465\pi\)
0.683322 0.730118i \(-0.260535\pi\)
\(350\) 0 0
\(351\) 28.5705 + 4.67446i 1.52498 + 0.249504i
\(352\) 0 0
\(353\) −22.4639 −1.19563 −0.597816 0.801634i \(-0.703965\pi\)
−0.597816 + 0.801634i \(0.703965\pi\)
\(354\) 0 0
\(355\) 22.5977i 1.19936i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 25.3300i 1.33686i −0.743773 0.668432i \(-0.766966\pi\)
0.743773 0.668432i \(-0.233034\pi\)
\(360\) 0 0
\(361\) 18.6217 0.980088
\(362\) 0 0
\(363\) −0.137239 + 2.53625i −0.00720316 + 0.133118i
\(364\) 0 0
\(365\) 36.6814i 1.91999i
\(366\) 0 0
\(367\) 21.7825i 1.13704i 0.822671 + 0.568518i \(0.192483\pi\)
−0.822671 + 0.568518i \(0.807517\pi\)
\(368\) 0 0
\(369\) −32.2715 3.50274i −1.67999 0.182345i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 9.10573 0.471477 0.235738 0.971817i \(-0.424249\pi\)
0.235738 + 0.971817i \(0.424249\pi\)
\(374\) 0 0
\(375\) 0.369196 6.82295i 0.0190652 0.352336i
\(376\) 0 0
\(377\) −39.5233 −2.03555
\(378\) 0 0
\(379\) 34.6413 1.77941 0.889703 0.456540i \(-0.150911\pi\)
0.889703 + 0.456540i \(0.150911\pi\)
\(380\) 0 0
\(381\) 1.60363 29.6359i 0.0821563 1.51829i
\(382\) 0 0
\(383\) 30.0473 1.53535 0.767673 0.640842i \(-0.221414\pi\)
0.767673 + 0.640842i \(0.221414\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 18.3946 + 1.99655i 0.935052 + 0.101490i
\(388\) 0 0
\(389\) 16.7660i 0.850072i 0.905177 + 0.425036i \(0.139739\pi\)
−0.905177 + 0.425036i \(0.860261\pi\)
\(390\) 0 0
\(391\) 6.81575i 0.344687i
\(392\) 0 0
\(393\) 0.590538 10.9135i 0.0297887 0.550511i
\(394\) 0 0
\(395\) −33.3600 −1.67852
\(396\) 0 0
\(397\) 16.2443i 0.815279i −0.913143 0.407639i \(-0.866352\pi\)
0.913143 0.407639i \(-0.133648\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 20.7920i 1.03830i 0.854683 + 0.519151i \(0.173752\pi\)
−0.854683 + 0.519151i \(0.826248\pi\)
\(402\) 0 0
\(403\) 18.1195 0.902595
\(404\) 0 0
\(405\) 29.3919 + 6.45643i 1.46049 + 0.320823i
\(406\) 0 0
\(407\) 25.8333i 1.28051i
\(408\) 0 0
\(409\) 7.69676i 0.380580i 0.981728 + 0.190290i \(0.0609428\pi\)
−0.981728 + 0.190290i \(0.939057\pi\)
\(410\) 0 0
\(411\) 11.2349 + 0.607929i 0.554175 + 0.0299869i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 38.8033 1.90478
\(416\) 0 0
\(417\) 7.64366 + 0.413606i 0.374312 + 0.0202544i
\(418\) 0 0
\(419\) 25.7986 1.26034 0.630171 0.776456i \(-0.282985\pi\)
0.630171 + 0.776456i \(0.282985\pi\)
\(420\) 0 0
\(421\) 12.1973 0.594459 0.297229 0.954806i \(-0.403937\pi\)
0.297229 + 0.954806i \(0.403937\pi\)
\(422\) 0 0
\(423\) −21.4469 2.32784i −1.04278 0.113183i
\(424\) 0 0
\(425\) 4.96713 0.240941
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.84100 34.0227i 0.0888844 1.64263i
\(430\) 0 0
\(431\) 13.0024i 0.626306i −0.949703 0.313153i \(-0.898615\pi\)
0.949703 0.313153i \(-0.101385\pi\)
\(432\) 0 0
\(433\) 2.87672i 0.138246i −0.997608 0.0691232i \(-0.977980\pi\)
0.997608 0.0691232i \(-0.0220202\pi\)
\(434\) 0 0
\(435\) −41.0228 2.21978i −1.96689 0.106430i
\(436\) 0 0
\(437\) −5.21585 −0.249508
\(438\) 0 0
\(439\) 22.3517i 1.06679i 0.845867 + 0.533394i \(0.179084\pi\)
−0.845867 + 0.533394i \(0.820916\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.9382i 0.899781i 0.893084 + 0.449891i \(0.148537\pi\)
−0.893084 + 0.449891i \(0.851463\pi\)
\(444\) 0 0
\(445\) −32.6520 −1.54785
\(446\) 0 0
\(447\) 6.15108 + 0.332841i 0.290936 + 0.0157428i
\(448\) 0 0
\(449\) 39.4278i 1.86071i −0.366658 0.930356i \(-0.619498\pi\)
0.366658 0.930356i \(-0.380502\pi\)
\(450\) 0 0
\(451\) 38.2043i 1.79897i
\(452\) 0 0
\(453\) −1.64692 + 30.4360i −0.0773791 + 1.43001i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −38.0098 −1.77802 −0.889012 0.457884i \(-0.848607\pi\)
−0.889012 + 0.457884i \(0.848607\pi\)
\(458\) 0 0
\(459\) −0.674353 + 4.12167i −0.0314761 + 0.192383i
\(460\) 0 0
\(461\) −7.70698 −0.358950 −0.179475 0.983763i \(-0.557440\pi\)
−0.179475 + 0.983763i \(0.557440\pi\)
\(462\) 0 0
\(463\) −36.4771 −1.69523 −0.847617 0.530608i \(-0.821964\pi\)
−0.847617 + 0.530608i \(0.821964\pi\)
\(464\) 0 0
\(465\) 18.8069 + 1.01766i 0.872149 + 0.0471928i
\(466\) 0 0
\(467\) 31.2288 1.44510 0.722549 0.691319i \(-0.242970\pi\)
0.722549 + 0.691319i \(0.242970\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.96138 0.106132i −0.0903755 0.00489030i
\(472\) 0 0
\(473\) 21.7763i 1.00128i
\(474\) 0 0
\(475\) 3.80117i 0.174410i
\(476\) 0 0
\(477\) −0.793551 + 7.31116i −0.0363342 + 0.334755i
\(478\) 0 0
\(479\) 16.6401 0.760307 0.380154 0.924923i \(-0.375871\pi\)
0.380154 + 0.924923i \(0.375871\pi\)
\(480\) 0 0
\(481\) 40.7644i 1.85869i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 46.1293i 2.09463i
\(486\) 0 0
\(487\) 8.49622 0.385000 0.192500 0.981297i \(-0.438340\pi\)
0.192500 + 0.981297i \(0.438340\pi\)
\(488\) 0 0
\(489\) −1.86066 + 34.3861i −0.0841421 + 1.55499i
\(490\) 0 0
\(491\) 21.6613i 0.977561i −0.872407 0.488781i \(-0.837442\pi\)
0.872407 0.488781i \(-0.162558\pi\)
\(492\) 0 0
\(493\) 5.70176i 0.256794i
\(494\) 0 0
\(495\) 3.82169 35.2101i 0.171772 1.58258i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13.2488 0.593100 0.296550 0.955017i \(-0.404164\pi\)
0.296550 + 0.955017i \(0.404164\pi\)
\(500\) 0 0
\(501\) 0.225142 4.16075i 0.0100586 0.185889i
\(502\) 0 0
\(503\) 0.808467 0.0360478 0.0180239 0.999838i \(-0.494263\pi\)
0.0180239 + 0.999838i \(0.494263\pi\)
\(504\) 0 0
\(505\) −12.5141 −0.556869
\(506\) 0 0
\(507\) −1.68844 + 31.2034i −0.0749864 + 1.38579i
\(508\) 0 0
\(509\) −5.95966 −0.264157 −0.132079 0.991239i \(-0.542165\pi\)
−0.132079 + 0.991239i \(0.542165\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 3.15417 + 0.516058i 0.139260 + 0.0227845i
\(514\) 0 0
\(515\) 24.9770i 1.10062i
\(516\) 0 0
\(517\) 25.3897i 1.11664i
\(518\) 0 0
\(519\) 0.107716 1.99066i 0.00472822 0.0873801i
\(520\) 0 0
\(521\) −25.0692 −1.09830 −0.549151 0.835723i \(-0.685049\pi\)
−0.549151 + 0.835723i \(0.685049\pi\)
\(522\) 0 0
\(523\) 8.54452i 0.373626i −0.982396 0.186813i \(-0.940184\pi\)
0.982396 0.186813i \(-0.0598158\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.61397i 0.113866i
\(528\) 0 0
\(529\) −48.9071 −2.12640
\(530\) 0 0
\(531\) 25.0619 + 2.72021i 1.08760 + 0.118047i
\(532\) 0 0
\(533\) 60.2856i 2.61126i
\(534\) 0 0
\(535\) 20.7026i 0.895051i
\(536\) 0 0
\(537\) 32.1768 + 1.74112i 1.38853 + 0.0751347i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 18.2099 0.782906 0.391453 0.920198i \(-0.371973\pi\)
0.391453 + 0.920198i \(0.371973\pi\)
\(542\) 0 0
\(543\) 22.7436 + 1.23068i 0.976022 + 0.0528135i
\(544\) 0 0
\(545\) 10.5456 0.451722
\(546\) 0 0
\(547\) 6.72942 0.287729 0.143865 0.989597i \(-0.454047\pi\)
0.143865 + 0.989597i \(0.454047\pi\)
\(548\) 0 0
\(549\) 0.868020 7.99726i 0.0370462 0.341315i
\(550\) 0 0
\(551\) −4.36335 −0.185885
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.28948 42.3109i 0.0971831 1.79600i
\(556\) 0 0
\(557\) 26.0369i 1.10322i 0.834102 + 0.551610i \(0.185986\pi\)
−0.834102 + 0.551610i \(0.814014\pi\)
\(558\) 0 0
\(559\) 34.3626i 1.45338i
\(560\) 0 0
\(561\) 4.90823 + 0.265589i 0.207226 + 0.0112132i
\(562\) 0 0
\(563\) −11.4784 −0.483757 −0.241879 0.970307i \(-0.577764\pi\)
−0.241879 + 0.970307i \(0.577764\pi\)
\(564\) 0 0
\(565\) 30.2054i 1.27075i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.66559i 0.363280i −0.983365 0.181640i \(-0.941859\pi\)
0.983365 0.181640i \(-0.0581406\pi\)
\(570\) 0 0
\(571\) 13.7659 0.576084 0.288042 0.957618i \(-0.406996\pi\)
0.288042 + 0.957618i \(0.406996\pi\)
\(572\) 0 0
\(573\) 8.75028 + 0.473486i 0.365548 + 0.0197801i
\(574\) 0 0
\(575\) 52.4040i 2.18540i
\(576\) 0 0
\(577\) 5.80268i 0.241569i −0.992679 0.120784i \(-0.961459\pi\)
0.992679 0.120784i \(-0.0385410\pi\)
\(578\) 0 0
\(579\) −1.60955 + 29.7453i −0.0668905 + 1.23617i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8.65525 0.358464
\(584\) 0 0
\(585\) −6.03055 + 55.5608i −0.249333 + 2.29716i
\(586\) 0 0
\(587\) −43.7617 −1.80624 −0.903120 0.429388i \(-0.858729\pi\)
−0.903120 + 0.429388i \(0.858729\pi\)
\(588\) 0 0
\(589\) 2.00038 0.0824242
\(590\) 0 0
\(591\) 29.4137 + 1.59160i 1.20992 + 0.0654698i
\(592\) 0 0
\(593\) 7.81402 0.320884 0.160442 0.987045i \(-0.448708\pi\)
0.160442 + 0.987045i \(0.448708\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 13.9502 + 0.754858i 0.570944 + 0.0308943i
\(598\) 0 0
\(599\) 4.93318i 0.201564i −0.994909 0.100782i \(-0.967866\pi\)
0.994909 0.100782i \(-0.0321345\pi\)
\(600\) 0 0
\(601\) 16.9723i 0.692314i 0.938177 + 0.346157i \(0.112514\pi\)
−0.938177 + 0.346157i \(0.887486\pi\)
\(602\) 0 0
\(603\) 11.9535 + 1.29743i 0.486783 + 0.0528352i
\(604\) 0 0
\(605\) −4.90324 −0.199345
\(606\) 0 0
\(607\) 16.9118i 0.686427i −0.939257 0.343214i \(-0.888485\pi\)
0.939257 0.343214i \(-0.111515\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 40.0643i 1.62083i
\(612\) 0 0
\(613\) −4.26984 −0.172457 −0.0862285 0.996275i \(-0.527482\pi\)
−0.0862285 + 0.996275i \(0.527482\pi\)
\(614\) 0 0
\(615\) 3.38587 62.5728i 0.136531 2.52318i
\(616\) 0 0
\(617\) 2.71133i 0.109154i 0.998510 + 0.0545770i \(0.0173810\pi\)
−0.998510 + 0.0545770i \(0.982619\pi\)
\(618\) 0 0
\(619\) 13.3992i 0.538559i −0.963062 0.269279i \(-0.913215\pi\)
0.963062 0.269279i \(-0.0867855\pi\)
\(620\) 0 0
\(621\) 43.4842 + 7.11452i 1.74496 + 0.285496i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −17.7087 −0.708347
\(626\) 0 0
\(627\) 0.203246 3.75609i 0.00811685 0.150004i
\(628\) 0 0
\(629\) 5.88079 0.234483
\(630\) 0 0
\(631\) −23.2980 −0.927479 −0.463739 0.885972i \(-0.653493\pi\)
−0.463739 + 0.885972i \(0.653493\pi\)
\(632\) 0 0
\(633\) −0.904485 + 16.7154i −0.0359500 + 0.664376i
\(634\) 0 0
\(635\) 57.2942 2.27365
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2.18782 20.1569i 0.0865490 0.797395i
\(640\) 0 0
\(641\) 27.3946i 1.08202i −0.841016 0.541010i \(-0.818042\pi\)
0.841016 0.541010i \(-0.181958\pi\)
\(642\) 0 0
\(643\) 44.6514i 1.76088i −0.474156 0.880441i \(-0.657247\pi\)
0.474156 0.880441i \(-0.342753\pi\)
\(644\) 0 0
\(645\) −1.92993 + 35.6662i −0.0759910 + 1.40436i
\(646\) 0 0
\(647\) −27.8564 −1.09515 −0.547575 0.836757i \(-0.684449\pi\)
−0.547575 + 0.836757i \(0.684449\pi\)
\(648\) 0 0
\(649\) 29.6693i 1.16462i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 45.6201i 1.78525i 0.450799 + 0.892625i \(0.351139\pi\)
−0.450799 + 0.892625i \(0.648861\pi\)
\(654\) 0 0
\(655\) 21.0987 0.824393
\(656\) 0 0
\(657\) 3.55136 32.7195i 0.138552 1.27651i
\(658\) 0 0
\(659\) 26.2506i 1.02258i −0.859409 0.511289i \(-0.829168\pi\)
0.859409 0.511289i \(-0.170832\pi\)
\(660\) 0 0
\(661\) 32.7790i 1.27495i −0.770470 0.637477i \(-0.779978\pi\)
0.770470 0.637477i \(-0.220022\pi\)
\(662\) 0 0
\(663\) −7.74507 0.419093i −0.300794 0.0162762i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −60.1543 −2.32919
\(668\) 0 0
\(669\) 21.4426 + 1.16028i 0.829019 + 0.0448590i
\(670\) 0 0
\(671\) −9.46749 −0.365488
\(672\) 0 0
\(673\) 16.0001 0.616759 0.308379 0.951263i \(-0.400213\pi\)
0.308379 + 0.951263i \(0.400213\pi\)
\(674\) 0 0
\(675\) −5.18487 + 31.6901i −0.199566 + 1.21975i
\(676\) 0 0
\(677\) 47.0589 1.80862 0.904310 0.426876i \(-0.140386\pi\)
0.904310 + 0.426876i \(0.140386\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 2.14503 39.6413i 0.0821977 1.51906i
\(682\) 0 0
\(683\) 16.8998i 0.646652i 0.946288 + 0.323326i \(0.104801\pi\)
−0.946288 + 0.323326i \(0.895199\pi\)
\(684\) 0 0
\(685\) 21.7200i 0.829879i
\(686\) 0 0
\(687\) 15.4187 + 0.834323i 0.588262 + 0.0318314i
\(688\) 0 0
\(689\) −13.6578 −0.520321
\(690\) 0 0
\(691\) 24.9992i 0.951013i 0.879712 + 0.475507i \(0.157735\pi\)
−0.879712 + 0.475507i \(0.842265\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.7773i 0.560533i
\(696\) 0 0
\(697\) 8.69699 0.329422
\(698\) 0 0
\(699\) 34.6737 + 1.87623i 1.31148 + 0.0709654i
\(700\) 0 0
\(701\) 13.6579i 0.515850i −0.966165 0.257925i \(-0.916961\pi\)
0.966165 0.257925i \(-0.0830388\pi\)
\(702\) 0 0
\(703\) 4.50036i 0.169734i
\(704\) 0 0
\(705\) 2.25017 41.5843i 0.0847462 1.56616i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −23.4268 −0.879814 −0.439907 0.898043i \(-0.644989\pi\)
−0.439907 + 0.898043i \(0.644989\pi\)
\(710\) 0 0
\(711\) 29.7568 + 3.22979i 1.11597 + 0.121127i
\(712\) 0 0
\(713\) 27.5778 1.03280
\(714\) 0 0
\(715\) 65.7751 2.45985
\(716\) 0 0
\(717\) −11.3275 0.612941i −0.423033 0.0228907i
\(718\) 0 0
\(719\) −26.5505 −0.990167 −0.495084 0.868845i \(-0.664863\pi\)
−0.495084 + 0.868845i \(0.664863\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 25.9888 + 1.40628i 0.966533 + 0.0523000i
\(724\) 0 0
\(725\) 43.8389i 1.62813i
\(726\) 0 0
\(727\) 18.8035i 0.697385i −0.937237 0.348693i \(-0.886626\pi\)
0.937237 0.348693i \(-0.113374\pi\)
\(728\) 0 0
\(729\) −25.5922 8.60469i −0.947858 0.318692i
\(730\) 0 0
\(731\) −4.95725 −0.183351
\(732\) 0 0
\(733\) 16.2120i 0.598804i 0.954127 + 0.299402i \(0.0967871\pi\)
−0.954127 + 0.299402i \(0.903213\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.1510i 0.521259i
\(738\) 0 0
\(739\) −37.3329 −1.37331 −0.686656 0.726982i \(-0.740922\pi\)
−0.686656 + 0.726982i \(0.740922\pi\)
\(740\) 0 0
\(741\) −0.320717 + 5.92703i −0.0117818 + 0.217735i
\(742\) 0 0
\(743\) 9.87946i 0.362442i 0.983442 + 0.181221i \(0.0580050\pi\)
−0.983442 + 0.181221i \(0.941995\pi\)
\(744\) 0 0
\(745\) 11.8917i 0.435678i
\(746\) 0 0
\(747\) −34.6122 3.75680i −1.26639 0.137454i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −21.0332 −0.767513 −0.383756 0.923434i \(-0.625370\pi\)
−0.383756 + 0.923434i \(0.625370\pi\)
\(752\) 0 0
\(753\) 0.960960 17.7591i 0.0350193 0.647177i
\(754\) 0 0
\(755\) −58.8410 −2.14144
\(756\) 0 0
\(757\) −26.4152 −0.960076 −0.480038 0.877248i \(-0.659377\pi\)
−0.480038 + 0.877248i \(0.659377\pi\)
\(758\) 0 0
\(759\) 2.80200 51.7825i 0.101706 1.87959i
\(760\) 0 0
\(761\) 9.24248 0.335039 0.167520 0.985869i \(-0.446424\pi\)
0.167520 + 0.985869i \(0.446424\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −8.01537 0.869986i −0.289796 0.0314544i
\(766\) 0 0
\(767\) 46.8176i 1.69048i
\(768\) 0 0
\(769\) 1.52391i 0.0549536i −0.999622 0.0274768i \(-0.991253\pi\)
0.999622 0.0274768i \(-0.00874724\pi\)
\(770\) 0 0
\(771\) 0.847863 15.6690i 0.0305351 0.564305i
\(772\) 0 0
\(773\) −23.5055 −0.845433 −0.422716 0.906262i \(-0.638923\pi\)
−0.422716 + 0.906262i \(0.638923\pi\)
\(774\) 0 0
\(775\) 20.0979i 0.721939i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.65550i 0.238458i
\(780\) 0 0
\(781\) −23.8626 −0.853869
\(782\) 0 0
\(783\) 36.3770 + 5.95169i 1.30001 + 0.212696i
\(784\) 0 0
\(785\) 3.79187i 0.135338i
\(786\) 0 0
\(787\) 18.1870i 0.648295i −0.946007 0.324147i \(-0.894923\pi\)
0.946007 0.324147i \(-0.105077\pi\)
\(788\) 0 0
\(789\) −29.3086 1.58592i −1.04341 0.0564601i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 14.9395 0.530517
\(794\) 0 0
\(795\) −14.1760 0.767074i −0.502769 0.0272053i
\(796\) 0 0
\(797\) −27.9561 −0.990256 −0.495128 0.868820i \(-0.664879\pi\)
−0.495128 + 0.868820i \(0.664879\pi\)
\(798\) 0 0
\(799\) 5.77981 0.204475
\(800\) 0 0
\(801\) 29.1253 + 3.16125i 1.02909 + 0.111697i
\(802\) 0 0
\(803\) −38.7346 −1.36692
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.73244 32.0165i 0.0609848 1.12703i
\(808\) 0 0
\(809\) 3.44368i 0.121073i −0.998166 0.0605367i \(-0.980719\pi\)
0.998166 0.0605367i \(-0.0192812\pi\)
\(810\) 0 0
\(811\) 14.3286i 0.503144i −0.967839 0.251572i \(-0.919052\pi\)
0.967839 0.251572i \(-0.0809475\pi\)
\(812\) 0 0
\(813\) 11.7376 + 0.635130i 0.411654 + 0.0222750i
\(814\) 0 0
\(815\) −66.4775 −2.32861
\(816\) 0 0
\(817\) 3.79361i 0.132722i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11.2673i 0.393231i −0.980481 0.196615i \(-0.937005\pi\)
0.980481 0.196615i \(-0.0629950\pi\)
\(822\) 0 0
\(823\) −5.56223 −0.193887 −0.0969437 0.995290i \(-0.530907\pi\)
−0.0969437 + 0.995290i \(0.530907\pi\)
\(824\) 0 0
\(825\) 37.7377 + 2.04202i 1.31386 + 0.0710941i
\(826\) 0 0
\(827\) 35.5033i 1.23457i 0.786739 + 0.617285i \(0.211768\pi\)
−0.786739 + 0.617285i \(0.788232\pi\)
\(828\) 0 0
\(829\) 4.04828i 0.140603i 0.997526 + 0.0703013i \(0.0223961\pi\)
−0.997526 + 0.0703013i \(0.977604\pi\)
\(830\) 0 0
\(831\) −0.815059 + 15.0627i −0.0282741 + 0.522520i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 8.04385 0.278369
\(836\) 0 0
\(837\) −16.6770 2.72856i −0.576443 0.0943127i
\(838\) 0 0
\(839\) −16.0096 −0.552712 −0.276356 0.961055i \(-0.589127\pi\)
−0.276356 + 0.961055i \(0.589127\pi\)
\(840\) 0 0
\(841\) −21.3225 −0.735257
\(842\) 0 0
\(843\) 20.3516 + 1.10124i 0.700947 + 0.0379289i
\(844\) 0 0
\(845\) −60.3245 −2.07523
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 2.54223 + 0.137562i 0.0872491 + 0.00472113i
\(850\) 0 0
\(851\) 62.0432i 2.12681i
\(852\) 0 0
\(853\) 30.8458i 1.05614i 0.849201 + 0.528070i \(0.177084\pi\)
−0.849201 + 0.528070i \(0.822916\pi\)
\(854\) 0 0
\(855\) −0.665769 + 6.13388i −0.0227688 + 0.209774i
\(856\) 0 0
\(857\) −3.35224 −0.114510 −0.0572552 0.998360i \(-0.518235\pi\)
−0.0572552 + 0.998360i \(0.518235\pi\)
\(858\) 0 0
\(859\) 24.2441i 0.827199i −0.910459 0.413599i \(-0.864271\pi\)
0.910459 0.413599i \(-0.135729\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 14.4740i 0.492700i 0.969181 + 0.246350i \(0.0792313\pi\)
−0.969181 + 0.246350i \(0.920769\pi\)
\(864\) 0 0
\(865\) 3.84847 0.130852
\(866\) 0 0
\(867\) −1.53050 + 28.2845i −0.0519786 + 0.960593i
\(868\) 0 0
\(869\) 35.2273i 1.19500i
\(870\) 0 0
\(871\) 22.3300i 0.756622i
\(872\) 0 0
\(873\) −4.46607 + 41.1469i −0.151154 + 1.39261i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 44.7027 1.50950 0.754752 0.656010i \(-0.227757\pi\)
0.754752 + 0.656010i \(0.227757\pi\)
\(878\) 0 0
\(879\) 1.35287 25.0018i 0.0456312 0.843289i
\(880\) 0 0
\(881\) −13.4140 −0.451929 −0.225964 0.974136i \(-0.572553\pi\)
−0.225964 + 0.974136i \(0.572553\pi\)
\(882\) 0 0
\(883\) −38.1278 −1.28310 −0.641552 0.767080i \(-0.721709\pi\)
−0.641552 + 0.767080i \(0.721709\pi\)
\(884\) 0 0
\(885\) −2.62945 + 48.5938i −0.0883881 + 1.63346i
\(886\) 0 0
\(887\) 56.2789 1.88966 0.944831 0.327559i \(-0.106226\pi\)
0.944831 + 0.327559i \(0.106226\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −6.81783 + 31.0371i −0.228406 + 1.03978i
\(892\) 0 0
\(893\) 4.42308i 0.148013i
\(894\) 0 0
\(895\) 62.2064i 2.07933i
\(896\) 0 0
\(897\) −4.42149 + 81.7117i −0.147629 + 2.72827i
\(898\) 0 0
\(899\) 23.0704 0.769440
\(900\) 0 0
\(901\) 1.97032i 0.0656408i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 43.9695i 1.46160i
\(906\) 0 0
\(907\) 18.5207 0.614969 0.307485 0.951553i \(-0.400513\pi\)
0.307485 + 0.951553i \(0.400513\pi\)
\(908\) 0 0
\(909\) 11.1624 + 1.21157i 0.370235 + 0.0401852i
\(910\) 0 0
\(911\) 38.9950i 1.29196i 0.763354 + 0.645981i \(0.223551\pi\)
−0.763354 + 0.645981i \(0.776449\pi\)
\(912\) 0 0
\(913\) 40.9753i 1.35608i
\(914\) 0 0
\(915\) 15.5063 + 0.839059i 0.512621 + 0.0277384i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 47.0708 1.55272 0.776362 0.630288i \(-0.217063\pi\)
0.776362 + 0.630288i \(0.217063\pi\)
\(920\) 0 0
\(921\) −12.9880 0.702791i −0.427968 0.0231578i
\(922\) 0 0
\(923\) 37.6546 1.23942
\(924\) 0 0
\(925\) 45.2154 1.48667
\(926\) 0 0
\(927\) 2.41818 22.2792i 0.0794235 0.731746i
\(928\) 0 0
\(929\) −33.2785 −1.09183 −0.545917 0.837839i \(-0.683819\pi\)
−0.545917 + 0.837839i \(0.683819\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0.00287603 0.0531505i 9.41568e−5 0.00174007i
\(934\) 0 0
\(935\) 9.48892i 0.310321i
\(936\) 0 0
\(937\) 20.0613i 0.655376i −0.944786 0.327688i \(-0.893731\pi\)
0.944786 0.327688i \(-0.106269\pi\)
\(938\) 0 0
\(939\) −7.70172 0.416748i −0.251336 0.0136000i
\(940\) 0 0
\(941\) −12.4078 −0.404483 −0.202241 0.979336i \(-0.564823\pi\)
−0.202241 + 0.979336i \(0.564823\pi\)
\(942\) 0 0
\(943\) 91.7545i 2.98794i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.7424i 0.674039i 0.941498 + 0.337019i \(0.109419\pi\)
−0.941498 + 0.337019i \(0.890581\pi\)
\(948\) 0 0
\(949\) 61.1224 1.98412
\(950\) 0 0
\(951\) −11.3151 0.612269i −0.366916 0.0198542i
\(952\) 0 0
\(953\) 19.7250i 0.638957i 0.947594 + 0.319478i \(0.103508\pi\)
−0.947594 + 0.319478i \(0.896492\pi\)
\(954\) 0 0
\(955\) 16.9166i 0.547410i
\(956\) 0 0
\(957\) 2.34403 43.3190i 0.0757717 1.40030i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 20.4234 0.658819
\(962\) 0 0
\(963\) −2.00435 + 18.4665i −0.0645892 + 0.595075i
\(964\) 0 0
\(965\) −57.5057 −1.85117
\(966\) 0 0
\(967\) −41.3604 −1.33006 −0.665031 0.746816i \(-0.731582\pi\)
−0.665031 + 0.746816i \(0.731582\pi\)
\(968\) 0 0
\(969\) −0.855052 0.0462677i −0.0274682 0.00148633i
\(970\) 0 0
\(971\) −18.9841 −0.609229 −0.304615 0.952476i \(-0.598528\pi\)
−0.304615 + 0.952476i \(0.598528\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −59.5492 3.22227i −1.90710 0.103195i
\(976\) 0 0
\(977\) 37.3298i 1.19429i 0.802134 + 0.597144i \(0.203698\pi\)
−0.802134 + 0.597144i \(0.796302\pi\)
\(978\) 0 0
\(979\) 34.4797i 1.10198i
\(980\) 0 0
\(981\) −9.40653 1.02098i −0.300328 0.0325975i
\(982\) 0 0
\(983\) 6.64713 0.212010 0.106005 0.994366i \(-0.466194\pi\)
0.106005 + 0.994366i \(0.466194\pi\)
\(984\) 0 0
\(985\) 56.8646i 1.81186i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 52.2997i 1.66303i
\(990\) 0 0
\(991\) −38.6422 −1.22751 −0.613755 0.789496i \(-0.710342\pi\)
−0.613755 + 0.789496i \(0.710342\pi\)
\(992\) 0 0
\(993\) −0.229627 + 4.24364i −0.00728701 + 0.134668i
\(994\) 0 0
\(995\) 26.9695i 0.854990i
\(996\) 0 0
\(997\) 20.7492i 0.657135i 0.944480 + 0.328568i \(0.106566\pi\)
−0.944480 + 0.328568i \(0.893434\pi\)
\(998\) 0 0
\(999\) −6.13858 + 37.5192i −0.194216 + 1.18706i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.k.b.881.13 yes 24
3.2 odd 2 inner 1176.2.k.b.881.11 24
4.3 odd 2 2352.2.k.j.881.12 24
7.2 even 3 1176.2.u.c.521.20 48
7.3 odd 6 1176.2.u.c.1097.22 48
7.4 even 3 1176.2.u.c.1097.3 48
7.5 odd 6 1176.2.u.c.521.5 48
7.6 odd 2 inner 1176.2.k.b.881.12 yes 24
12.11 even 2 2352.2.k.j.881.14 24
21.2 odd 6 1176.2.u.c.521.22 48
21.5 even 6 1176.2.u.c.521.3 48
21.11 odd 6 1176.2.u.c.1097.5 48
21.17 even 6 1176.2.u.c.1097.20 48
21.20 even 2 inner 1176.2.k.b.881.14 yes 24
28.27 even 2 2352.2.k.j.881.13 24
84.83 odd 2 2352.2.k.j.881.11 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1176.2.k.b.881.11 24 3.2 odd 2 inner
1176.2.k.b.881.12 yes 24 7.6 odd 2 inner
1176.2.k.b.881.13 yes 24 1.1 even 1 trivial
1176.2.k.b.881.14 yes 24 21.20 even 2 inner
1176.2.u.c.521.3 48 21.5 even 6
1176.2.u.c.521.5 48 7.5 odd 6
1176.2.u.c.521.20 48 7.2 even 3
1176.2.u.c.521.22 48 21.2 odd 6
1176.2.u.c.1097.3 48 7.4 even 3
1176.2.u.c.1097.5 48 21.11 odd 6
1176.2.u.c.1097.20 48 21.17 even 6
1176.2.u.c.1097.22 48 7.3 odd 6
2352.2.k.j.881.11 24 84.83 odd 2
2352.2.k.j.881.12 24 4.3 odd 2
2352.2.k.j.881.13 24 28.27 even 2
2352.2.k.j.881.14 24 12.11 even 2