Properties

Label 1176.2.k.a.881.8
Level $1176$
Weight $2$
Character 1176.881
Analytic conductor $9.390$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1176,2,Mod(881,1176)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1176, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1176.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 19 x^{14} - 42 x^{13} + 65 x^{12} - 48 x^{11} - 94 x^{10} + 444 x^{9} - 962 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.8
Root \(1.22961 + 1.21986i\) of defining polynomial
Character \(\chi\) \(=\) 1176.881
Dual form 1176.2.k.a.881.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.454941 + 1.67124i) q^{3} +2.80795 q^{5} +(-2.58606 - 1.52063i) q^{9} +5.48072i q^{11} -1.35669i q^{13} +(-1.27745 + 4.69274i) q^{15} -5.77506 q^{17} +1.98578i q^{19} +2.42404i q^{23} +2.88457 q^{25} +(3.71783 - 3.63012i) q^{27} +7.05668i q^{29} +3.55181i q^{31} +(-9.15958 - 2.49340i) q^{33} +4.28755 q^{37} +(2.26735 + 0.617215i) q^{39} -1.81976 q^{41} +11.2288 q^{43} +(-7.26151 - 4.26984i) q^{45} +0.402427 q^{47} +(2.62731 - 9.65149i) q^{51} +6.09794i q^{53} +15.3896i q^{55} +(-3.31870 - 0.903412i) q^{57} -2.56469 q^{59} -5.49426i q^{61} -3.80952i q^{65} -6.90476 q^{67} +(-4.05114 - 1.10279i) q^{69} +2.08251i q^{71} +0.341440i q^{73} +(-1.31231 + 4.82079i) q^{75} -2.38278 q^{79} +(4.37539 + 7.86486i) q^{81} -11.8717 q^{83} -16.2161 q^{85} +(-11.7934 - 3.21037i) q^{87} +1.15314 q^{89} +(-5.93592 - 1.61587i) q^{93} +5.57596i q^{95} -16.0187i q^{97} +(8.33413 - 14.1735i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{9} + 8 q^{15} + 36 q^{25} + 4 q^{37} + 44 q^{39} + 20 q^{43} - 12 q^{51} - 8 q^{57} - 28 q^{67} - 56 q^{79} - 60 q^{81} + 16 q^{85} - 32 q^{93} + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.454941 + 1.67124i −0.262660 + 0.964888i
\(4\) 0 0
\(5\) 2.80795 1.25575 0.627876 0.778313i \(-0.283924\pi\)
0.627876 + 0.778313i \(0.283924\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.58606 1.52063i −0.862019 0.506876i
\(10\) 0 0
\(11\) 5.48072i 1.65250i 0.563304 + 0.826250i \(0.309530\pi\)
−0.563304 + 0.826250i \(0.690470\pi\)
\(12\) 0 0
\(13\) 1.35669i 0.376279i −0.982142 0.188139i \(-0.939754\pi\)
0.982142 0.188139i \(-0.0602457\pi\)
\(14\) 0 0
\(15\) −1.27745 + 4.69274i −0.329836 + 1.21166i
\(16\) 0 0
\(17\) −5.77506 −1.40066 −0.700329 0.713820i \(-0.746963\pi\)
−0.700329 + 0.713820i \(0.746963\pi\)
\(18\) 0 0
\(19\) 1.98578i 0.455569i 0.973712 + 0.227784i \(0.0731481\pi\)
−0.973712 + 0.227784i \(0.926852\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.42404i 0.505447i 0.967539 + 0.252723i \(0.0813263\pi\)
−0.967539 + 0.252723i \(0.918674\pi\)
\(24\) 0 0
\(25\) 2.88457 0.576914
\(26\) 0 0
\(27\) 3.71783 3.63012i 0.715497 0.698616i
\(28\) 0 0
\(29\) 7.05668i 1.31039i 0.755458 + 0.655197i \(0.227414\pi\)
−0.755458 + 0.655197i \(0.772586\pi\)
\(30\) 0 0
\(31\) 3.55181i 0.637925i 0.947767 + 0.318962i \(0.103334\pi\)
−0.947767 + 0.318962i \(0.896666\pi\)
\(32\) 0 0
\(33\) −9.15958 2.49340i −1.59448 0.434046i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.28755 0.704868 0.352434 0.935837i \(-0.385354\pi\)
0.352434 + 0.935837i \(0.385354\pi\)
\(38\) 0 0
\(39\) 2.26735 + 0.617215i 0.363067 + 0.0988335i
\(40\) 0 0
\(41\) −1.81976 −0.284199 −0.142100 0.989852i \(-0.545385\pi\)
−0.142100 + 0.989852i \(0.545385\pi\)
\(42\) 0 0
\(43\) 11.2288 1.71238 0.856188 0.516665i \(-0.172827\pi\)
0.856188 + 0.516665i \(0.172827\pi\)
\(44\) 0 0
\(45\) −7.26151 4.26984i −1.08248 0.636510i
\(46\) 0 0
\(47\) 0.402427 0.0586999 0.0293500 0.999569i \(-0.490656\pi\)
0.0293500 + 0.999569i \(0.490656\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.62731 9.65149i 0.367897 1.35148i
\(52\) 0 0
\(53\) 6.09794i 0.837616i 0.908075 + 0.418808i \(0.137552\pi\)
−0.908075 + 0.418808i \(0.862448\pi\)
\(54\) 0 0
\(55\) 15.3896i 2.07513i
\(56\) 0 0
\(57\) −3.31870 0.903412i −0.439573 0.119660i
\(58\) 0 0
\(59\) −2.56469 −0.333894 −0.166947 0.985966i \(-0.553391\pi\)
−0.166947 + 0.985966i \(0.553391\pi\)
\(60\) 0 0
\(61\) 5.49426i 0.703469i −0.936100 0.351734i \(-0.885592\pi\)
0.936100 0.351734i \(-0.114408\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.80952i 0.472513i
\(66\) 0 0
\(67\) −6.90476 −0.843551 −0.421775 0.906700i \(-0.638593\pi\)
−0.421775 + 0.906700i \(0.638593\pi\)
\(68\) 0 0
\(69\) −4.05114 1.10279i −0.487700 0.132761i
\(70\) 0 0
\(71\) 2.08251i 0.247148i 0.992335 + 0.123574i \(0.0394357\pi\)
−0.992335 + 0.123574i \(0.960564\pi\)
\(72\) 0 0
\(73\) 0.341440i 0.0399626i 0.999800 + 0.0199813i \(0.00636066\pi\)
−0.999800 + 0.0199813i \(0.993639\pi\)
\(74\) 0 0
\(75\) −1.31231 + 4.82079i −0.151532 + 0.556657i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.38278 −0.268084 −0.134042 0.990976i \(-0.542796\pi\)
−0.134042 + 0.990976i \(0.542796\pi\)
\(80\) 0 0
\(81\) 4.37539 + 7.86486i 0.486154 + 0.873873i
\(82\) 0 0
\(83\) −11.8717 −1.30309 −0.651543 0.758611i \(-0.725878\pi\)
−0.651543 + 0.758611i \(0.725878\pi\)
\(84\) 0 0
\(85\) −16.2161 −1.75888
\(86\) 0 0
\(87\) −11.7934 3.21037i −1.26438 0.344188i
\(88\) 0 0
\(89\) 1.15314 0.122233 0.0611164 0.998131i \(-0.480534\pi\)
0.0611164 + 0.998131i \(0.480534\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −5.93592 1.61587i −0.615526 0.167557i
\(94\) 0 0
\(95\) 5.57596i 0.572082i
\(96\) 0 0
\(97\) 16.0187i 1.62645i −0.581950 0.813225i \(-0.697710\pi\)
0.581950 0.813225i \(-0.302290\pi\)
\(98\) 0 0
\(99\) 8.33413 14.1735i 0.837612 1.42449i
\(100\) 0 0
\(101\) 14.6796 1.46068 0.730339 0.683085i \(-0.239362\pi\)
0.730339 + 0.683085i \(0.239362\pi\)
\(102\) 0 0
\(103\) 4.69916i 0.463022i 0.972832 + 0.231511i \(0.0743670\pi\)
−0.972832 + 0.231511i \(0.925633\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.24629i 0.797199i 0.917125 + 0.398600i \(0.130504\pi\)
−0.917125 + 0.398600i \(0.869496\pi\)
\(108\) 0 0
\(109\) 8.82225 0.845019 0.422509 0.906359i \(-0.361149\pi\)
0.422509 + 0.906359i \(0.361149\pi\)
\(110\) 0 0
\(111\) −1.95058 + 7.16550i −0.185141 + 0.680119i
\(112\) 0 0
\(113\) 4.00000i 0.376288i 0.982141 + 0.188144i \(0.0602472\pi\)
−0.982141 + 0.188144i \(0.939753\pi\)
\(114\) 0 0
\(115\) 6.80657i 0.634716i
\(116\) 0 0
\(117\) −2.06302 + 3.50849i −0.190727 + 0.324360i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −19.0383 −1.73076
\(122\) 0 0
\(123\) 0.827885 3.04125i 0.0746479 0.274221i
\(124\) 0 0
\(125\) −5.94002 −0.531291
\(126\) 0 0
\(127\) −6.93769 −0.615620 −0.307810 0.951448i \(-0.599596\pi\)
−0.307810 + 0.951448i \(0.599596\pi\)
\(128\) 0 0
\(129\) −5.10844 + 18.7660i −0.449773 + 1.65225i
\(130\) 0 0
\(131\) −0.237468 −0.0207477 −0.0103739 0.999946i \(-0.503302\pi\)
−0.0103739 + 0.999946i \(0.503302\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 10.4395 10.1932i 0.898486 0.877289i
\(136\) 0 0
\(137\) 11.0721i 0.945955i −0.881075 0.472977i \(-0.843179\pi\)
0.881075 0.472977i \(-0.156821\pi\)
\(138\) 0 0
\(139\) 1.02466i 0.0869108i 0.999055 + 0.0434554i \(0.0138366\pi\)
−0.999055 + 0.0434554i \(0.986163\pi\)
\(140\) 0 0
\(141\) −0.183080 + 0.672550i −0.0154181 + 0.0566389i
\(142\) 0 0
\(143\) 7.43566 0.621801
\(144\) 0 0
\(145\) 19.8148i 1.64553i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 22.0027i 1.80253i 0.433267 + 0.901266i \(0.357361\pi\)
−0.433267 + 0.901266i \(0.642639\pi\)
\(150\) 0 0
\(151\) −7.26735 −0.591409 −0.295704 0.955279i \(-0.595554\pi\)
−0.295704 + 0.955279i \(0.595554\pi\)
\(152\) 0 0
\(153\) 14.9346 + 8.78171i 1.20739 + 0.709959i
\(154\) 0 0
\(155\) 9.97331i 0.801075i
\(156\) 0 0
\(157\) 22.7469i 1.81540i −0.419616 0.907702i \(-0.637835\pi\)
0.419616 0.907702i \(-0.362165\pi\)
\(158\) 0 0
\(159\) −10.1911 2.77420i −0.808206 0.220008i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 18.1336 1.42033 0.710165 0.704035i \(-0.248620\pi\)
0.710165 + 0.704035i \(0.248620\pi\)
\(164\) 0 0
\(165\) −25.7196 7.00135i −2.00227 0.545054i
\(166\) 0 0
\(167\) 24.0942 1.86447 0.932233 0.361858i \(-0.117857\pi\)
0.932233 + 0.361858i \(0.117857\pi\)
\(168\) 0 0
\(169\) 11.1594 0.858414
\(170\) 0 0
\(171\) 3.01963 5.13534i 0.230917 0.392709i
\(172\) 0 0
\(173\) 10.3760 0.788876 0.394438 0.918923i \(-0.370939\pi\)
0.394438 + 0.918923i \(0.370939\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.16678 4.28620i 0.0877006 0.322170i
\(178\) 0 0
\(179\) 13.3855i 1.00048i −0.865887 0.500239i \(-0.833245\pi\)
0.865887 0.500239i \(-0.166755\pi\)
\(180\) 0 0
\(181\) 18.4339i 1.37018i −0.728457 0.685092i \(-0.759762\pi\)
0.728457 0.685092i \(-0.240238\pi\)
\(182\) 0 0
\(183\) 9.18221 + 2.49957i 0.678769 + 0.184773i
\(184\) 0 0
\(185\) 12.0392 0.885140
\(186\) 0 0
\(187\) 31.6515i 2.31459i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.15105i 0.300360i −0.988659 0.150180i \(-0.952015\pi\)
0.988659 0.150180i \(-0.0479853\pi\)
\(192\) 0 0
\(193\) 19.5092 1.40431 0.702153 0.712026i \(-0.252222\pi\)
0.702153 + 0.712026i \(0.252222\pi\)
\(194\) 0 0
\(195\) 6.36661 + 1.73311i 0.455922 + 0.124110i
\(196\) 0 0
\(197\) 3.80952i 0.271417i −0.990749 0.135709i \(-0.956669\pi\)
0.990749 0.135709i \(-0.0433311\pi\)
\(198\) 0 0
\(199\) 6.12369i 0.434097i 0.976161 + 0.217049i \(0.0696430\pi\)
−0.976161 + 0.217049i \(0.930357\pi\)
\(200\) 0 0
\(201\) 3.14126 11.5395i 0.221567 0.813932i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −5.10980 −0.356884
\(206\) 0 0
\(207\) 3.68606 6.26870i 0.256199 0.435705i
\(208\) 0 0
\(209\) −10.8835 −0.752827
\(210\) 0 0
\(211\) 2.93058 0.201750 0.100875 0.994899i \(-0.467836\pi\)
0.100875 + 0.994899i \(0.467836\pi\)
\(212\) 0 0
\(213\) −3.48036 0.947418i −0.238470 0.0649160i
\(214\) 0 0
\(215\) 31.5299 2.15032
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −0.570627 0.155335i −0.0385594 0.0104966i
\(220\) 0 0
\(221\) 7.83499i 0.527038i
\(222\) 0 0
\(223\) 4.61145i 0.308806i −0.988008 0.154403i \(-0.950655\pi\)
0.988008 0.154403i \(-0.0493454\pi\)
\(224\) 0 0
\(225\) −7.45966 4.38635i −0.497311 0.292424i
\(226\) 0 0
\(227\) 17.2469 1.14472 0.572358 0.820004i \(-0.306029\pi\)
0.572358 + 0.820004i \(0.306029\pi\)
\(228\) 0 0
\(229\) 13.3605i 0.882885i −0.897290 0.441443i \(-0.854467\pi\)
0.897290 0.441443i \(-0.145533\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0027i 1.17940i 0.807624 + 0.589698i \(0.200753\pi\)
−0.807624 + 0.589698i \(0.799247\pi\)
\(234\) 0 0
\(235\) 1.12999 0.0737126
\(236\) 0 0
\(237\) 1.08403 3.98220i 0.0704151 0.258671i
\(238\) 0 0
\(239\) 23.6499i 1.52979i −0.644158 0.764893i \(-0.722792\pi\)
0.644158 0.764893i \(-0.277208\pi\)
\(240\) 0 0
\(241\) 4.08272i 0.262991i −0.991317 0.131496i \(-0.958022\pi\)
0.991317 0.131496i \(-0.0419779\pi\)
\(242\) 0 0
\(243\) −15.1346 + 3.73426i −0.970883 + 0.239553i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.69409 0.171421
\(248\) 0 0
\(249\) 5.40091 19.8404i 0.342269 1.25733i
\(250\) 0 0
\(251\) −5.78085 −0.364884 −0.182442 0.983217i \(-0.558400\pi\)
−0.182442 + 0.983217i \(0.558400\pi\)
\(252\) 0 0
\(253\) −13.2855 −0.835251
\(254\) 0 0
\(255\) 7.37735 27.1009i 0.461988 1.69712i
\(256\) 0 0
\(257\) 20.9647 1.30774 0.653871 0.756606i \(-0.273144\pi\)
0.653871 + 0.756606i \(0.273144\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 10.7306 18.2490i 0.664206 1.12958i
\(262\) 0 0
\(263\) 4.99913i 0.308260i 0.988051 + 0.154130i \(0.0492574\pi\)
−0.988051 + 0.154130i \(0.950743\pi\)
\(264\) 0 0
\(265\) 17.1227i 1.05184i
\(266\) 0 0
\(267\) −0.524611 + 1.92717i −0.0321057 + 0.117941i
\(268\) 0 0
\(269\) −15.3520 −0.936031 −0.468015 0.883720i \(-0.655031\pi\)
−0.468015 + 0.883720i \(0.655031\pi\)
\(270\) 0 0
\(271\) 16.7156i 1.01540i 0.861534 + 0.507700i \(0.169504\pi\)
−0.861534 + 0.507700i \(0.830496\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15.8095i 0.953350i
\(276\) 0 0
\(277\) −22.5143 −1.35275 −0.676376 0.736556i \(-0.736451\pi\)
−0.676376 + 0.736556i \(0.736451\pi\)
\(278\) 0 0
\(279\) 5.40098 9.18520i 0.323348 0.549903i
\(280\) 0 0
\(281\) 18.1134i 1.08055i −0.841488 0.540276i \(-0.818320\pi\)
0.841488 0.540276i \(-0.181680\pi\)
\(282\) 0 0
\(283\) 5.78191i 0.343699i 0.985123 + 0.171849i \(0.0549743\pi\)
−0.985123 + 0.171849i \(0.945026\pi\)
\(284\) 0 0
\(285\) −9.31875 2.53673i −0.551995 0.150263i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 16.3513 0.961843
\(290\) 0 0
\(291\) 26.7710 + 7.28755i 1.56934 + 0.427204i
\(292\) 0 0
\(293\) 9.38786 0.548445 0.274222 0.961666i \(-0.411580\pi\)
0.274222 + 0.961666i \(0.411580\pi\)
\(294\) 0 0
\(295\) −7.20151 −0.419288
\(296\) 0 0
\(297\) 19.8957 + 20.3764i 1.15446 + 1.18236i
\(298\) 0 0
\(299\) 3.28868 0.190189
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −6.67836 + 24.5331i −0.383662 + 1.40939i
\(304\) 0 0
\(305\) 15.4276i 0.883382i
\(306\) 0 0
\(307\) 19.7599i 1.12776i 0.825857 + 0.563880i \(0.190692\pi\)
−0.825857 + 0.563880i \(0.809308\pi\)
\(308\) 0 0
\(309\) −7.85341 2.13784i −0.446765 0.121618i
\(310\) 0 0
\(311\) 20.3822 1.15577 0.577884 0.816119i \(-0.303879\pi\)
0.577884 + 0.816119i \(0.303879\pi\)
\(312\) 0 0
\(313\) 7.15882i 0.404641i 0.979319 + 0.202320i \(0.0648482\pi\)
−0.979319 + 0.202320i \(0.935152\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.3324i 0.636489i −0.948009 0.318245i \(-0.896907\pi\)
0.948009 0.318245i \(-0.103093\pi\)
\(318\) 0 0
\(319\) −38.6757 −2.16543
\(320\) 0 0
\(321\) −13.7815 3.75158i −0.769208 0.209393i
\(322\) 0 0
\(323\) 11.4680i 0.638096i
\(324\) 0 0
\(325\) 3.91347i 0.217081i
\(326\) 0 0
\(327\) −4.01360 + 14.7441i −0.221953 + 0.815349i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −18.8277 −1.03486 −0.517431 0.855725i \(-0.673111\pi\)
−0.517431 + 0.855725i \(0.673111\pi\)
\(332\) 0 0
\(333\) −11.0878 6.51976i −0.607610 0.357281i
\(334\) 0 0
\(335\) −19.3882 −1.05929
\(336\) 0 0
\(337\) 28.9739 1.57831 0.789156 0.614193i \(-0.210518\pi\)
0.789156 + 0.614193i \(0.210518\pi\)
\(338\) 0 0
\(339\) −6.68494 1.81976i −0.363076 0.0988360i
\(340\) 0 0
\(341\) −19.4665 −1.05417
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −11.3754 3.09659i −0.612430 0.166715i
\(346\) 0 0
\(347\) 18.0739i 0.970260i −0.874442 0.485130i \(-0.838772\pi\)
0.874442 0.485130i \(-0.161228\pi\)
\(348\) 0 0
\(349\) 12.8624i 0.688510i 0.938876 + 0.344255i \(0.111868\pi\)
−0.938876 + 0.344255i \(0.888132\pi\)
\(350\) 0 0
\(351\) −4.92495 5.04395i −0.262875 0.269226i
\(352\) 0 0
\(353\) 27.2772 1.45182 0.725909 0.687791i \(-0.241419\pi\)
0.725909 + 0.687791i \(0.241419\pi\)
\(354\) 0 0
\(355\) 5.84757i 0.310357i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.892899i 0.0471254i 0.999722 + 0.0235627i \(0.00750094\pi\)
−0.999722 + 0.0235627i \(0.992499\pi\)
\(360\) 0 0
\(361\) 15.0567 0.792457
\(362\) 0 0
\(363\) 8.66131 31.8175i 0.454601 1.66999i
\(364\) 0 0
\(365\) 0.958746i 0.0501831i
\(366\) 0 0
\(367\) 11.0553i 0.577082i 0.957467 + 0.288541i \(0.0931702\pi\)
−0.957467 + 0.288541i \(0.906830\pi\)
\(368\) 0 0
\(369\) 4.70601 + 2.76718i 0.244985 + 0.144054i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 23.1006 1.19611 0.598053 0.801457i \(-0.295941\pi\)
0.598053 + 0.801457i \(0.295941\pi\)
\(374\) 0 0
\(375\) 2.70236 9.92717i 0.139549 0.512637i
\(376\) 0 0
\(377\) 9.57375 0.493073
\(378\) 0 0
\(379\) −23.3938 −1.20166 −0.600830 0.799377i \(-0.705163\pi\)
−0.600830 + 0.799377i \(0.705163\pi\)
\(380\) 0 0
\(381\) 3.15624 11.5945i 0.161699 0.594005i
\(382\) 0 0
\(383\) −23.0277 −1.17666 −0.588331 0.808620i \(-0.700215\pi\)
−0.588331 + 0.808620i \(0.700215\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −29.0383 17.0748i −1.47610 0.867962i
\(388\) 0 0
\(389\) 6.29941i 0.319393i −0.987166 0.159696i \(-0.948948\pi\)
0.987166 0.159696i \(-0.0510515\pi\)
\(390\) 0 0
\(391\) 13.9990i 0.707958i
\(392\) 0 0
\(393\) 0.108034 0.396866i 0.00544960 0.0200192i
\(394\) 0 0
\(395\) −6.69073 −0.336647
\(396\) 0 0
\(397\) 7.25082i 0.363908i 0.983307 + 0.181954i \(0.0582423\pi\)
−0.983307 + 0.181954i \(0.941758\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.6472i 0.681509i 0.940152 + 0.340755i \(0.110682\pi\)
−0.940152 + 0.340755i \(0.889318\pi\)
\(402\) 0 0
\(403\) 4.81872 0.240038
\(404\) 0 0
\(405\) 12.2859 + 22.0841i 0.610489 + 1.09737i
\(406\) 0 0
\(407\) 23.4989i 1.16479i
\(408\) 0 0
\(409\) 13.7759i 0.681176i 0.940213 + 0.340588i \(0.110626\pi\)
−0.940213 + 0.340588i \(0.889374\pi\)
\(410\) 0 0
\(411\) 18.5041 + 5.03716i 0.912741 + 0.248465i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −33.3351 −1.63635
\(416\) 0 0
\(417\) −1.71245 0.466161i −0.0838592 0.0228280i
\(418\) 0 0
\(419\) −6.94914 −0.339488 −0.169744 0.985488i \(-0.554294\pi\)
−0.169744 + 0.985488i \(0.554294\pi\)
\(420\) 0 0
\(421\) −0.349861 −0.0170512 −0.00852560 0.999964i \(-0.502714\pi\)
−0.00852560 + 0.999964i \(0.502714\pi\)
\(422\) 0 0
\(423\) −1.04070 0.611941i −0.0506005 0.0297536i
\(424\) 0 0
\(425\) −16.6586 −0.808059
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.38278 + 12.4267i −0.163322 + 0.599969i
\(430\) 0 0
\(431\) 20.1511i 0.970642i −0.874336 0.485321i \(-0.838703\pi\)
0.874336 0.485321i \(-0.161297\pi\)
\(432\) 0 0
\(433\) 1.42453i 0.0684585i −0.999414 0.0342292i \(-0.989102\pi\)
0.999414 0.0342292i \(-0.0108976\pi\)
\(434\) 0 0
\(435\) −33.1152 9.01456i −1.58775 0.432215i
\(436\) 0 0
\(437\) −4.81360 −0.230266
\(438\) 0 0
\(439\) 2.03852i 0.0972931i 0.998816 + 0.0486465i \(0.0154908\pi\)
−0.998816 + 0.0486465i \(0.984509\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.9039i 0.613082i −0.951857 0.306541i \(-0.900828\pi\)
0.951857 0.306541i \(-0.0991717\pi\)
\(444\) 0 0
\(445\) 3.23796 0.153494
\(446\) 0 0
\(447\) −36.7717 10.0099i −1.73924 0.473453i
\(448\) 0 0
\(449\) 2.49432i 0.117714i −0.998266 0.0588572i \(-0.981254\pi\)
0.998266 0.0588572i \(-0.0187457\pi\)
\(450\) 0 0
\(451\) 9.97362i 0.469639i
\(452\) 0 0
\(453\) 3.30622 12.1455i 0.155340 0.570644i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14.6190 0.683850 0.341925 0.939727i \(-0.388921\pi\)
0.341925 + 0.939727i \(0.388921\pi\)
\(458\) 0 0
\(459\) −21.4707 + 20.9641i −1.00217 + 0.978522i
\(460\) 0 0
\(461\) 2.83467 0.132024 0.0660120 0.997819i \(-0.478972\pi\)
0.0660120 + 0.997819i \(0.478972\pi\)
\(462\) 0 0
\(463\) 14.1594 0.658042 0.329021 0.944323i \(-0.393281\pi\)
0.329021 + 0.944323i \(0.393281\pi\)
\(464\) 0 0
\(465\) −16.6677 4.53727i −0.772948 0.210411i
\(466\) 0 0
\(467\) 9.97618 0.461643 0.230821 0.972996i \(-0.425859\pi\)
0.230821 + 0.972996i \(0.425859\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 38.0155 + 10.3485i 1.75166 + 0.476834i
\(472\) 0 0
\(473\) 61.5419i 2.82970i
\(474\) 0 0
\(475\) 5.72811i 0.262824i
\(476\) 0 0
\(477\) 9.27269 15.7696i 0.424567 0.722041i
\(478\) 0 0
\(479\) −43.5149 −1.98825 −0.994124 0.108244i \(-0.965477\pi\)
−0.994124 + 0.108244i \(0.965477\pi\)
\(480\) 0 0
\(481\) 5.81688i 0.265227i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 44.9796i 2.04242i
\(486\) 0 0
\(487\) 37.1592 1.68384 0.841921 0.539601i \(-0.181425\pi\)
0.841921 + 0.539601i \(0.181425\pi\)
\(488\) 0 0
\(489\) −8.24970 + 30.3055i −0.373064 + 1.37046i
\(490\) 0 0
\(491\) 22.1831i 1.00111i 0.865704 + 0.500556i \(0.166871\pi\)
−0.865704 + 0.500556i \(0.833129\pi\)
\(492\) 0 0
\(493\) 40.7528i 1.83541i
\(494\) 0 0
\(495\) 23.4018 39.7983i 1.05183 1.78880i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 16.6739 0.746426 0.373213 0.927746i \(-0.378256\pi\)
0.373213 + 0.927746i \(0.378256\pi\)
\(500\) 0 0
\(501\) −10.9614 + 40.2671i −0.489721 + 1.79900i
\(502\) 0 0
\(503\) −8.55884 −0.381620 −0.190810 0.981627i \(-0.561111\pi\)
−0.190810 + 0.981627i \(0.561111\pi\)
\(504\) 0 0
\(505\) 41.2196 1.83425
\(506\) 0 0
\(507\) −5.07686 + 18.6500i −0.225471 + 0.828274i
\(508\) 0 0
\(509\) −28.2145 −1.25058 −0.625292 0.780391i \(-0.715020\pi\)
−0.625292 + 0.780391i \(0.715020\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 7.20861 + 7.38278i 0.318268 + 0.325958i
\(514\) 0 0
\(515\) 13.1950i 0.581441i
\(516\) 0 0
\(517\) 2.20559i 0.0970017i
\(518\) 0 0
\(519\) −4.72049 + 17.3408i −0.207206 + 0.761177i
\(520\) 0 0
\(521\) −18.0008 −0.788631 −0.394315 0.918975i \(-0.629018\pi\)
−0.394315 + 0.918975i \(0.629018\pi\)
\(522\) 0 0
\(523\) 13.7466i 0.601099i −0.953766 0.300549i \(-0.902830\pi\)
0.953766 0.300549i \(-0.0971700\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.5119i 0.893514i
\(528\) 0 0
\(529\) 17.1240 0.744523
\(530\) 0 0
\(531\) 6.63243 + 3.89993i 0.287823 + 0.169243i
\(532\) 0 0
\(533\) 2.46886i 0.106938i
\(534\) 0 0
\(535\) 23.1552i 1.00108i
\(536\) 0 0
\(537\) 22.3703 + 6.08960i 0.965350 + 0.262786i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 39.2544 1.68768 0.843839 0.536596i \(-0.180290\pi\)
0.843839 + 0.536596i \(0.180290\pi\)
\(542\) 0 0
\(543\) 30.8075 + 8.38635i 1.32207 + 0.359893i
\(544\) 0 0
\(545\) 24.7724 1.06113
\(546\) 0 0
\(547\) −12.4980 −0.534375 −0.267188 0.963645i \(-0.586094\pi\)
−0.267188 + 0.963645i \(0.586094\pi\)
\(548\) 0 0
\(549\) −8.35473 + 14.2085i −0.356571 + 0.606403i
\(550\) 0 0
\(551\) −14.0130 −0.596974
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −5.47713 + 20.1203i −0.232491 + 0.854061i
\(556\) 0 0
\(557\) 17.8766i 0.757456i −0.925508 0.378728i \(-0.876362\pi\)
0.925508 0.378728i \(-0.123638\pi\)
\(558\) 0 0
\(559\) 15.2340i 0.644331i
\(560\) 0 0
\(561\) 52.8971 + 14.3996i 2.23332 + 0.607950i
\(562\) 0 0
\(563\) 2.73288 0.115177 0.0575885 0.998340i \(-0.481659\pi\)
0.0575885 + 0.998340i \(0.481659\pi\)
\(564\) 0 0
\(565\) 11.2318i 0.472525i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.99730i 0.0837312i −0.999123 0.0418656i \(-0.986670\pi\)
0.999123 0.0418656i \(-0.0133301\pi\)
\(570\) 0 0
\(571\) −2.01456 −0.0843068 −0.0421534 0.999111i \(-0.513422\pi\)
−0.0421534 + 0.999111i \(0.513422\pi\)
\(572\) 0 0
\(573\) 6.93739 + 1.88848i 0.289814 + 0.0788926i
\(574\) 0 0
\(575\) 6.99231i 0.291599i
\(576\) 0 0
\(577\) 25.4264i 1.05852i 0.848461 + 0.529258i \(0.177529\pi\)
−0.848461 + 0.529258i \(0.822471\pi\)
\(578\) 0 0
\(579\) −8.87555 + 32.6045i −0.368855 + 1.35500i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −33.4211 −1.38416
\(584\) 0 0
\(585\) −5.79286 + 9.85165i −0.239505 + 0.407315i
\(586\) 0 0
\(587\) 34.4645 1.42250 0.711251 0.702939i \(-0.248129\pi\)
0.711251 + 0.702939i \(0.248129\pi\)
\(588\) 0 0
\(589\) −7.05312 −0.290619
\(590\) 0 0
\(591\) 6.36661 + 1.73311i 0.261887 + 0.0712905i
\(592\) 0 0
\(593\) 7.24397 0.297474 0.148737 0.988877i \(-0.452479\pi\)
0.148737 + 0.988877i \(0.452479\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10.2341 2.78592i −0.418855 0.114020i
\(598\) 0 0
\(599\) 37.5814i 1.53553i 0.640730 + 0.767766i \(0.278632\pi\)
−0.640730 + 0.767766i \(0.721368\pi\)
\(600\) 0 0
\(601\) 3.78103i 0.154232i 0.997022 + 0.0771158i \(0.0245711\pi\)
−0.997022 + 0.0771158i \(0.975429\pi\)
\(602\) 0 0
\(603\) 17.8561 + 10.4996i 0.727157 + 0.427575i
\(604\) 0 0
\(605\) −53.4586 −2.17340
\(606\) 0 0
\(607\) 27.7536i 1.12648i −0.826292 0.563242i \(-0.809554\pi\)
0.826292 0.563242i \(-0.190446\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.545969i 0.0220876i
\(612\) 0 0
\(613\) −30.7141 −1.24053 −0.620264 0.784393i \(-0.712975\pi\)
−0.620264 + 0.784393i \(0.712975\pi\)
\(614\) 0 0
\(615\) 2.32466 8.53968i 0.0937392 0.344353i
\(616\) 0 0
\(617\) 44.3075i 1.78375i 0.452279 + 0.891877i \(0.350611\pi\)
−0.452279 + 0.891877i \(0.649389\pi\)
\(618\) 0 0
\(619\) 31.6418i 1.27179i −0.771776 0.635895i \(-0.780631\pi\)
0.771776 0.635895i \(-0.219369\pi\)
\(620\) 0 0
\(621\) 8.79954 + 9.01216i 0.353113 + 0.361646i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −31.1021 −1.24408
\(626\) 0 0
\(627\) 4.95135 18.1889i 0.197738 0.726395i
\(628\) 0 0
\(629\) −24.7608 −0.987279
\(630\) 0 0
\(631\) −20.7528 −0.826157 −0.413079 0.910695i \(-0.635547\pi\)
−0.413079 + 0.910695i \(0.635547\pi\)
\(632\) 0 0
\(633\) −1.33324 + 4.89770i −0.0529916 + 0.194666i
\(634\) 0 0
\(635\) −19.4807 −0.773066
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 3.16672 5.38548i 0.125273 0.213046i
\(640\) 0 0
\(641\) 38.1089i 1.50521i −0.658471 0.752606i \(-0.728796\pi\)
0.658471 0.752606i \(-0.271204\pi\)
\(642\) 0 0
\(643\) 29.5791i 1.16648i −0.812298 0.583242i \(-0.801784\pi\)
0.812298 0.583242i \(-0.198216\pi\)
\(644\) 0 0
\(645\) −14.3442 + 52.6939i −0.564804 + 2.07482i
\(646\) 0 0
\(647\) −21.1870 −0.832948 −0.416474 0.909148i \(-0.636734\pi\)
−0.416474 + 0.909148i \(0.636734\pi\)
\(648\) 0 0
\(649\) 14.0563i 0.551760i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26.6214i 1.04178i −0.853625 0.520888i \(-0.825601\pi\)
0.853625 0.520888i \(-0.174399\pi\)
\(654\) 0 0
\(655\) −0.666799 −0.0260540
\(656\) 0 0
\(657\) 0.519203 0.882984i 0.0202560 0.0344485i
\(658\) 0 0
\(659\) 16.3864i 0.638322i 0.947701 + 0.319161i \(0.103401\pi\)
−0.947701 + 0.319161i \(0.896599\pi\)
\(660\) 0 0
\(661\) 18.5014i 0.719622i 0.933025 + 0.359811i \(0.117159\pi\)
−0.933025 + 0.359811i \(0.882841\pi\)
\(662\) 0 0
\(663\) −13.0941 3.56445i −0.508533 0.138432i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −17.1057 −0.662334
\(668\) 0 0
\(669\) 7.70682 + 2.09794i 0.297963 + 0.0811110i
\(670\) 0 0
\(671\) 30.1125 1.16248
\(672\) 0 0
\(673\) −45.4357 −1.75142 −0.875708 0.482841i \(-0.839605\pi\)
−0.875708 + 0.482841i \(0.839605\pi\)
\(674\) 0 0
\(675\) 10.7243 10.4713i 0.412780 0.403041i
\(676\) 0 0
\(677\) 31.7132 1.21884 0.609419 0.792848i \(-0.291403\pi\)
0.609419 + 0.792848i \(0.291403\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −7.84631 + 28.8236i −0.300671 + 1.10452i
\(682\) 0 0
\(683\) 35.9016i 1.37374i 0.726782 + 0.686868i \(0.241015\pi\)
−0.726782 + 0.686868i \(0.758985\pi\)
\(684\) 0 0
\(685\) 31.0899i 1.18788i
\(686\) 0 0
\(687\) 22.3285 + 6.07823i 0.851886 + 0.231899i
\(688\) 0 0
\(689\) 8.27303 0.315177
\(690\) 0 0
\(691\) 25.6822i 0.976999i 0.872564 + 0.488499i \(0.162456\pi\)
−0.872564 + 0.488499i \(0.837544\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.87720i 0.109138i
\(696\) 0 0
\(697\) 10.5092 0.398066
\(698\) 0 0
\(699\) −30.0868 8.19016i −1.13799 0.309780i
\(700\) 0 0
\(701\) 1.29881i 0.0490553i −0.999699 0.0245276i \(-0.992192\pi\)
0.999699 0.0245276i \(-0.00780818\pi\)
\(702\) 0 0
\(703\) 8.51412i 0.321116i
\(704\) 0 0
\(705\) −0.514080 + 1.88848i −0.0193614 + 0.0711244i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −27.7217 −1.04111 −0.520556 0.853828i \(-0.674275\pi\)
−0.520556 + 0.853828i \(0.674275\pi\)
\(710\) 0 0
\(711\) 6.16202 + 3.62333i 0.231094 + 0.135885i
\(712\) 0 0
\(713\) −8.60973 −0.322437
\(714\) 0 0
\(715\) 20.8789 0.780828
\(716\) 0 0
\(717\) 39.5246 + 10.7593i 1.47607 + 0.401814i
\(718\) 0 0
\(719\) −41.8244 −1.55979 −0.779893 0.625912i \(-0.784727\pi\)
−0.779893 + 0.625912i \(0.784727\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 6.82319 + 1.85740i 0.253757 + 0.0690773i
\(724\) 0 0
\(725\) 20.3555i 0.755984i
\(726\) 0 0
\(727\) 2.19295i 0.0813319i 0.999173 + 0.0406660i \(0.0129479\pi\)
−0.999173 + 0.0406660i \(0.987052\pi\)
\(728\) 0 0
\(729\) 0.644508 26.9923i 0.0238707 0.999715i
\(730\) 0 0
\(731\) −64.8470 −2.39845
\(732\) 0 0
\(733\) 20.8828i 0.771323i 0.922640 + 0.385662i \(0.126027\pi\)
−0.922640 + 0.385662i \(0.873973\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 37.8431i 1.39397i
\(738\) 0 0
\(739\) −13.3006 −0.489272 −0.244636 0.969615i \(-0.578668\pi\)
−0.244636 + 0.969615i \(0.578668\pi\)
\(740\) 0 0
\(741\) −1.22565 + 4.50246i −0.0450255 + 0.165402i
\(742\) 0 0
\(743\) 24.8226i 0.910653i −0.890324 0.455327i \(-0.849522\pi\)
0.890324 0.455327i \(-0.150478\pi\)
\(744\) 0 0
\(745\) 61.7824i 2.26353i
\(746\) 0 0
\(747\) 30.7009 + 18.0524i 1.12329 + 0.660503i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −11.9727 −0.436890 −0.218445 0.975849i \(-0.570098\pi\)
−0.218445 + 0.975849i \(0.570098\pi\)
\(752\) 0 0
\(753\) 2.62995 9.66117i 0.0958406 0.352073i
\(754\) 0 0
\(755\) −20.4063 −0.742663
\(756\) 0 0
\(757\) 29.8095 1.08345 0.541723 0.840557i \(-0.317772\pi\)
0.541723 + 0.840557i \(0.317772\pi\)
\(758\) 0 0
\(759\) 6.04411 22.2032i 0.219387 0.805924i
\(760\) 0 0
\(761\) −33.4879 −1.21393 −0.606967 0.794727i \(-0.707614\pi\)
−0.606967 + 0.794727i \(0.707614\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 41.9357 + 24.6586i 1.51619 + 0.891533i
\(766\) 0 0
\(767\) 3.47949i 0.125637i
\(768\) 0 0
\(769\) 19.6491i 0.708566i 0.935138 + 0.354283i \(0.115275\pi\)
−0.935138 + 0.354283i \(0.884725\pi\)
\(770\) 0 0
\(771\) −9.53770 + 35.0370i −0.343492 + 1.26183i
\(772\) 0 0
\(773\) −13.0332 −0.468771 −0.234385 0.972144i \(-0.575308\pi\)
−0.234385 + 0.972144i \(0.575308\pi\)
\(774\) 0 0
\(775\) 10.2455i 0.368028i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.61365i 0.129472i
\(780\) 0 0
\(781\) −11.4136 −0.408412
\(782\) 0 0
\(783\) 25.6166 + 26.2355i 0.915462 + 0.937582i
\(784\) 0 0
\(785\) 63.8722i 2.27970i
\(786\) 0 0
\(787\) 24.3703i 0.868709i −0.900742 0.434354i \(-0.856977\pi\)
0.900742 0.434354i \(-0.143023\pi\)
\(788\) 0 0
\(789\) −8.35473 2.27431i −0.297436 0.0809675i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −7.45403 −0.264700
\(794\) 0 0
\(795\) −28.6160 7.78981i −1.01491 0.276276i
\(796\) 0 0
\(797\) −3.14465 −0.111389 −0.0556947 0.998448i \(-0.517737\pi\)
−0.0556947 + 0.998448i \(0.517737\pi\)
\(798\) 0 0
\(799\) −2.32404 −0.0822186
\(800\) 0 0
\(801\) −2.98209 1.75350i −0.105367 0.0619568i
\(802\) 0 0
\(803\) −1.87134 −0.0660381
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.98427 25.6569i 0.245858 0.903165i
\(808\) 0 0
\(809\) 6.66030i 0.234164i 0.993122 + 0.117082i \(0.0373540\pi\)
−0.993122 + 0.117082i \(0.962646\pi\)
\(810\) 0 0
\(811\) 48.8504i 1.71537i 0.514176 + 0.857685i \(0.328098\pi\)
−0.514176 + 0.857685i \(0.671902\pi\)
\(812\) 0 0
\(813\) −27.9357 7.60460i −0.979747 0.266705i
\(814\) 0 0
\(815\) 50.9181 1.78358
\(816\) 0 0
\(817\) 22.2979i 0.780105i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 40.4880i 1.41304i 0.707693 + 0.706520i \(0.249736\pi\)
−0.707693 + 0.706520i \(0.750264\pi\)
\(822\) 0 0
\(823\) 34.5912 1.20577 0.602886 0.797827i \(-0.294017\pi\)
0.602886 + 0.797827i \(0.294017\pi\)
\(824\) 0 0
\(825\) −26.4214 7.19240i −0.919876 0.250407i
\(826\) 0 0
\(827\) 29.3071i 1.01911i −0.860438 0.509555i \(-0.829810\pi\)
0.860438 0.509555i \(-0.170190\pi\)
\(828\) 0 0
\(829\) 14.7753i 0.513166i −0.966522 0.256583i \(-0.917403\pi\)
0.966522 0.256583i \(-0.0825966\pi\)
\(830\) 0 0
\(831\) 10.2427 37.6267i 0.355314 1.30525i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 67.6553 2.34131
\(836\) 0 0
\(837\) 12.8935 + 13.2050i 0.445665 + 0.456433i
\(838\) 0 0
\(839\) −32.0373 −1.10605 −0.553026 0.833164i \(-0.686527\pi\)
−0.553026 + 0.833164i \(0.686527\pi\)
\(840\) 0 0
\(841\) −20.7968 −0.717131
\(842\) 0 0
\(843\) 30.2717 + 8.24051i 1.04261 + 0.283818i
\(844\) 0 0
\(845\) 31.3350 1.07796
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −9.66293 2.63043i −0.331631 0.0902760i
\(850\) 0 0
\(851\) 10.3932i 0.356274i
\(852\) 0 0
\(853\) 33.1110i 1.13370i 0.823821 + 0.566850i \(0.191838\pi\)
−0.823821 + 0.566850i \(0.808162\pi\)
\(854\) 0 0
\(855\) 8.47896 14.4198i 0.289974 0.493145i
\(856\) 0 0
\(857\) −18.0008 −0.614897 −0.307448 0.951565i \(-0.599475\pi\)
−0.307448 + 0.951565i \(0.599475\pi\)
\(858\) 0 0
\(859\) 26.6860i 0.910514i −0.890360 0.455257i \(-0.849547\pi\)
0.890360 0.455257i \(-0.150453\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.0377i 0.341687i −0.985298 0.170843i \(-0.945351\pi\)
0.985298 0.170843i \(-0.0546492\pi\)
\(864\) 0 0
\(865\) 29.1354 0.990633
\(866\) 0 0
\(867\) −7.43889 + 27.3269i −0.252638 + 0.928071i
\(868\) 0 0
\(869\) 13.0594i 0.443009i
\(870\) 0 0
\(871\) 9.36764i 0.317410i
\(872\) 0 0
\(873\) −24.3584 + 41.4252i −0.824407 + 1.40203i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14.7620 −0.498479 −0.249239 0.968442i \(-0.580181\pi\)
−0.249239 + 0.968442i \(0.580181\pi\)
\(878\) 0 0
\(879\) −4.27092 + 15.6893i −0.144055 + 0.529188i
\(880\) 0 0
\(881\) −4.42345 −0.149030 −0.0745148 0.997220i \(-0.523741\pi\)
−0.0745148 + 0.997220i \(0.523741\pi\)
\(882\) 0 0
\(883\) −10.5403 −0.354711 −0.177355 0.984147i \(-0.556754\pi\)
−0.177355 + 0.984147i \(0.556754\pi\)
\(884\) 0 0
\(885\) 3.27626 12.0354i 0.110130 0.404566i
\(886\) 0 0
\(887\) 9.84051 0.330412 0.165206 0.986259i \(-0.447171\pi\)
0.165206 + 0.986259i \(0.447171\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −43.1051 + 23.9803i −1.44408 + 0.803370i
\(892\) 0 0
\(893\) 0.799130i 0.0267419i
\(894\) 0 0
\(895\) 37.5857i 1.25635i
\(896\) 0 0
\(897\) −1.49615 + 5.49615i −0.0499551 + 0.183511i
\(898\) 0 0
\(899\) −25.0640 −0.835932
\(900\) 0 0
\(901\) 35.2160i 1.17321i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 51.7615i 1.72061i
\(906\) 0 0
\(907\) −8.21218 −0.272681 −0.136340 0.990662i \(-0.543534\pi\)
−0.136340 + 0.990662i \(0.543534\pi\)
\(908\) 0 0
\(909\) −37.9624 22.3222i −1.25913 0.740382i
\(910\) 0 0
\(911\) 44.6131i 1.47810i −0.673652 0.739049i \(-0.735275\pi\)
0.673652 0.739049i \(-0.264725\pi\)
\(912\) 0 0
\(913\) 65.0654i 2.15335i
\(914\) 0 0
\(915\) 25.7832 + 7.01865i 0.852365 + 0.232029i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 30.6443 1.01086 0.505431 0.862867i \(-0.331333\pi\)
0.505431 + 0.862867i \(0.331333\pi\)
\(920\) 0 0
\(921\) −33.0235 8.98961i −1.08816 0.296218i
\(922\) 0 0
\(923\) 2.82532 0.0929966
\(924\) 0 0
\(925\) 12.3677 0.406648
\(926\) 0 0
\(927\) 7.14568 12.1523i 0.234695 0.399134i
\(928\) 0 0
\(929\) −21.4396 −0.703412 −0.351706 0.936111i \(-0.614398\pi\)
−0.351706 + 0.936111i \(0.614398\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −9.27269 + 34.0634i −0.303574 + 1.11519i
\(934\) 0 0
\(935\) 88.8758i 2.90655i
\(936\) 0 0
\(937\) 25.1409i 0.821319i −0.911789 0.410659i \(-0.865299\pi\)
0.911789 0.410659i \(-0.134701\pi\)
\(938\) 0 0
\(939\) −11.9641 3.25684i −0.390433 0.106283i
\(940\) 0 0
\(941\) 52.1196 1.69905 0.849525 0.527549i \(-0.176889\pi\)
0.849525 + 0.527549i \(0.176889\pi\)
\(942\) 0 0
\(943\) 4.41118i 0.143648i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41.4472i 1.34685i −0.739254 0.673427i \(-0.764822\pi\)
0.739254 0.673427i \(-0.235178\pi\)
\(948\) 0 0
\(949\) 0.463230 0.0150371
\(950\) 0 0
\(951\) 18.9391 + 5.15556i 0.614141 + 0.167180i
\(952\) 0 0
\(953\) 29.7579i 0.963952i 0.876184 + 0.481976i \(0.160081\pi\)
−0.876184 + 0.481976i \(0.839919\pi\)
\(954\) 0 0
\(955\) 11.6559i 0.377177i
\(956\) 0 0
\(957\) 17.5952 64.6363i 0.568771 2.08939i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 18.3846 0.593052
\(962\) 0 0
\(963\) 12.5395 21.3254i 0.404081 0.687201i
\(964\) 0 0
\(965\) 54.7809 1.76346
\(966\) 0 0
\(967\) −16.6814 −0.536436 −0.268218 0.963358i \(-0.586435\pi\)
−0.268218 + 0.963358i \(0.586435\pi\)
\(968\) 0 0
\(969\) 19.1657 + 5.21726i 0.615692 + 0.167602i
\(970\) 0 0
\(971\) −51.2931 −1.64607 −0.823037 0.567988i \(-0.807722\pi\)
−0.823037 + 0.567988i \(0.807722\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 6.54034 + 1.78040i 0.209458 + 0.0570184i
\(976\) 0 0
\(977\) 19.2734i 0.616610i −0.951288 0.308305i \(-0.900238\pi\)
0.951288 0.308305i \(-0.0997618\pi\)
\(978\) 0 0
\(979\) 6.32005i 0.201990i
\(980\) 0 0
\(981\) −22.8149 13.4154i −0.728422 0.428319i
\(982\) 0 0
\(983\) −3.71850 −0.118602 −0.0593008 0.998240i \(-0.518887\pi\)
−0.0593008 + 0.998240i \(0.518887\pi\)
\(984\) 0 0
\(985\) 10.6969i 0.340833i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 27.2190i 0.865515i
\(990\) 0 0
\(991\) −50.9829 −1.61952 −0.809762 0.586758i \(-0.800404\pi\)
−0.809762 + 0.586758i \(0.800404\pi\)
\(992\) 0 0
\(993\) 8.56547 31.4654i 0.271817 0.998526i
\(994\) 0 0
\(995\) 17.1950i 0.545118i
\(996\) 0 0
\(997\) 52.7468i 1.67051i −0.549864 0.835254i \(-0.685320\pi\)
0.549864 0.835254i \(-0.314680\pi\)
\(998\) 0 0
\(999\) 15.9404 15.5643i 0.504331 0.492432i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.k.a.881.8 16
3.2 odd 2 inner 1176.2.k.a.881.10 16
4.3 odd 2 2352.2.k.i.881.9 16
7.2 even 3 168.2.u.a.17.3 yes 16
7.3 odd 6 168.2.u.a.89.1 yes 16
7.4 even 3 1176.2.u.b.1097.8 16
7.5 odd 6 1176.2.u.b.521.6 16
7.6 odd 2 inner 1176.2.k.a.881.9 16
12.11 even 2 2352.2.k.i.881.7 16
21.2 odd 6 168.2.u.a.17.1 16
21.5 even 6 1176.2.u.b.521.8 16
21.11 odd 6 1176.2.u.b.1097.6 16
21.17 even 6 168.2.u.a.89.3 yes 16
21.20 even 2 inner 1176.2.k.a.881.7 16
28.3 even 6 336.2.bc.f.257.8 16
28.23 odd 6 336.2.bc.f.17.6 16
28.27 even 2 2352.2.k.i.881.8 16
84.23 even 6 336.2.bc.f.17.8 16
84.59 odd 6 336.2.bc.f.257.6 16
84.83 odd 2 2352.2.k.i.881.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.u.a.17.1 16 21.2 odd 6
168.2.u.a.17.3 yes 16 7.2 even 3
168.2.u.a.89.1 yes 16 7.3 odd 6
168.2.u.a.89.3 yes 16 21.17 even 6
336.2.bc.f.17.6 16 28.23 odd 6
336.2.bc.f.17.8 16 84.23 even 6
336.2.bc.f.257.6 16 84.59 odd 6
336.2.bc.f.257.8 16 28.3 even 6
1176.2.k.a.881.7 16 21.20 even 2 inner
1176.2.k.a.881.8 16 1.1 even 1 trivial
1176.2.k.a.881.9 16 7.6 odd 2 inner
1176.2.k.a.881.10 16 3.2 odd 2 inner
1176.2.u.b.521.6 16 7.5 odd 6
1176.2.u.b.521.8 16 21.5 even 6
1176.2.u.b.1097.6 16 21.11 odd 6
1176.2.u.b.1097.8 16 7.4 even 3
2352.2.k.i.881.7 16 12.11 even 2
2352.2.k.i.881.8 16 28.27 even 2
2352.2.k.i.881.9 16 4.3 odd 2
2352.2.k.i.881.10 16 84.83 odd 2