Properties

Label 117.9.j.a.73.8
Level $117$
Weight $9$
Character 117.73
Analytic conductor $47.663$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,9,Mod(73,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.73"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 117.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,2,0,0,-166] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.6632973772\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} + 13 x^{16} + 10976 x^{15} + 1201625 x^{14} + 122002 x^{13} + 46813351 x^{12} + \cdots + 12\!\cdots\!50 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{16}\cdot 3^{8}\cdot 13^{4} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.8
Root \(18.0289 + 19.0289i\) of defining polynomial
Character \(\chi\) \(=\) 117.73
Dual form 117.9.j.a.109.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(18.0289 + 18.0289i) q^{2} +394.083i q^{4} +(-706.041 - 706.041i) q^{5} +(1701.26 - 1701.26i) q^{7} +(-2489.49 + 2489.49i) q^{8} -25458.3i q^{10} +(-5801.81 + 5801.81i) q^{11} +(-16499.4 + 23313.1i) q^{13} +61343.7 q^{14} +11119.7 q^{16} +134321. i q^{17} +(84022.1 + 84022.1i) q^{19} +(278239. - 278239. i) q^{20} -209201. q^{22} +136494. i q^{23} +606362. i q^{25} +(-717776. + 122845. i) q^{26} +(670437. + 670437. i) q^{28} +958731. q^{29} +(484682. + 484682. i) q^{31} +(837786. + 837786. i) q^{32} +(-2.42165e6 + 2.42165e6i) q^{34} -2.40232e6 q^{35} +(-1.25356e6 + 1.25356e6i) q^{37} +3.02965e6i q^{38} +3.51536e6 q^{40} +(-687708. - 687708. i) q^{41} -3.17073e6i q^{43} +(-2.28640e6 - 2.28640e6i) q^{44} +(-2.46084e6 + 2.46084e6i) q^{46} +(507919. - 507919. i) q^{47} -23757.9i q^{49} +(-1.09320e7 + 1.09320e7i) q^{50} +(-9.18731e6 - 6.50212e6i) q^{52} +8.75734e6 q^{53} +8.19263e6 q^{55} +8.47053e6i q^{56} +(1.72849e7 + 1.72849e7i) q^{58} +(3.35500e6 - 3.35500e6i) q^{59} +3.53900e6 q^{61} +1.74766e7i q^{62} +2.73621e7i q^{64} +(2.81092e7 - 4.81079e6i) q^{65} +(-4.45919e6 - 4.45919e6i) q^{67} -5.29335e7 q^{68} +(-4.33111e7 - 4.33111e7i) q^{70} +(7.29718e6 + 7.29718e6i) q^{71} +(8.69469e6 - 8.69469e6i) q^{73} -4.52008e7 q^{74} +(-3.31117e7 + 3.31117e7i) q^{76} +1.97408e7i q^{77} -5.57116e7 q^{79} +(-7.85098e6 - 7.85098e6i) q^{80} -2.47972e7i q^{82} +(3.21832e6 + 3.21832e6i) q^{83} +(9.48358e7 - 9.48358e7i) q^{85} +(5.71648e7 - 5.71648e7i) q^{86} -2.88871e7i q^{88} +(-4.69400e7 + 4.69400e7i) q^{89} +(1.15920e7 + 6.77313e7i) q^{91} -5.37901e7 q^{92} +1.83144e7 q^{94} -1.18646e8i q^{95} +(-5.15911e7 - 5.15911e7i) q^{97} +(428329. - 428329. i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{2} - 166 q^{5} + 5308 q^{7} - 10464 q^{8} + 31556 q^{11} + 71300 q^{13} + 110260 q^{14} - 522860 q^{16} + 100288 q^{19} - 736268 q^{20} - 977312 q^{22} - 2952238 q^{26} + 4497084 q^{28} + 2479024 q^{29}+ \cdots - 588677614 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 18.0289 + 18.0289i 1.12681 + 1.12681i 0.990693 + 0.136114i \(0.0434612\pi\)
0.136114 + 0.990693i \(0.456539\pi\)
\(3\) 0 0
\(4\) 394.083i 1.53939i
\(5\) −706.041 706.041i −1.12967 1.12967i −0.990231 0.139434i \(-0.955472\pi\)
−0.139434 0.990231i \(-0.544528\pi\)
\(6\) 0 0
\(7\) 1701.26 1701.26i 0.708562 0.708562i −0.257670 0.966233i \(-0.582955\pi\)
0.966233 + 0.257670i \(0.0829549\pi\)
\(8\) −2489.49 + 2489.49i −0.607786 + 0.607786i
\(9\) 0 0
\(10\) 25458.3i 2.54583i
\(11\) −5801.81 + 5801.81i −0.396271 + 0.396271i −0.876916 0.480644i \(-0.840403\pi\)
0.480644 + 0.876916i \(0.340403\pi\)
\(12\) 0 0
\(13\) −16499.4 + 23313.1i −0.577689 + 0.816257i
\(14\) 61343.7 1.59683
\(15\) 0 0
\(16\) 11119.7 0.169674
\(17\) 134321.i 1.60823i 0.594477 + 0.804113i \(0.297359\pi\)
−0.594477 + 0.804113i \(0.702641\pi\)
\(18\) 0 0
\(19\) 84022.1 + 84022.1i 0.644732 + 0.644732i 0.951715 0.306983i \(-0.0993196\pi\)
−0.306983 + 0.951715i \(0.599320\pi\)
\(20\) 278239. 278239.i 1.73899 1.73899i
\(21\) 0 0
\(22\) −209201. −0.893043
\(23\) 136494.i 0.487757i 0.969806 + 0.243878i \(0.0784198\pi\)
−0.969806 + 0.243878i \(0.921580\pi\)
\(24\) 0 0
\(25\) 606362.i 1.55229i
\(26\) −717776. + 122845.i −1.57071 + 0.268821i
\(27\) 0 0
\(28\) 670437. + 670437.i 1.09075 + 1.09075i
\(29\) 958731. 1.35552 0.677758 0.735285i \(-0.262952\pi\)
0.677758 + 0.735285i \(0.262952\pi\)
\(30\) 0 0
\(31\) 484682. + 484682.i 0.524819 + 0.524819i 0.919023 0.394204i \(-0.128980\pi\)
−0.394204 + 0.919023i \(0.628980\pi\)
\(32\) 837786. + 837786.i 0.798975 + 0.798975i
\(33\) 0 0
\(34\) −2.42165e6 + 2.42165e6i −1.81216 + 1.81216i
\(35\) −2.40232e6 −1.60088
\(36\) 0 0
\(37\) −1.25356e6 + 1.25356e6i −0.668867 + 0.668867i −0.957454 0.288587i \(-0.906815\pi\)
0.288587 + 0.957454i \(0.406815\pi\)
\(38\) 3.02965e6i 1.45298i
\(39\) 0 0
\(40\) 3.51536e6 1.37319
\(41\) −687708. 687708.i −0.243371 0.243371i 0.574872 0.818243i \(-0.305052\pi\)
−0.818243 + 0.574872i \(0.805052\pi\)
\(42\) 0 0
\(43\) 3.17073e6i 0.927439i −0.885982 0.463720i \(-0.846514\pi\)
0.885982 0.463720i \(-0.153486\pi\)
\(44\) −2.28640e6 2.28640e6i −0.610015 0.610015i
\(45\) 0 0
\(46\) −2.46084e6 + 2.46084e6i −0.549608 + 0.549608i
\(47\) 507919. 507919.i 0.104089 0.104089i −0.653145 0.757233i \(-0.726551\pi\)
0.757233 + 0.653145i \(0.226551\pi\)
\(48\) 0 0
\(49\) 23757.9i 0.00412120i
\(50\) −1.09320e7 + 1.09320e7i −1.74913 + 1.74913i
\(51\) 0 0
\(52\) −9.18731e6 6.50212e6i −1.25654 0.889287i
\(53\) 8.75734e6 1.10986 0.554931 0.831896i \(-0.312745\pi\)
0.554931 + 0.831896i \(0.312745\pi\)
\(54\) 0 0
\(55\) 8.19263e6 0.895308
\(56\) 8.47053e6i 0.861308i
\(57\) 0 0
\(58\) 1.72849e7 + 1.72849e7i 1.52741 + 1.52741i
\(59\) 3.35500e6 3.35500e6i 0.276875 0.276875i −0.554985 0.831860i \(-0.687276\pi\)
0.831860 + 0.554985i \(0.187276\pi\)
\(60\) 0 0
\(61\) 3.53900e6 0.255600 0.127800 0.991800i \(-0.459208\pi\)
0.127800 + 0.991800i \(0.459208\pi\)
\(62\) 1.74766e7i 1.18274i
\(63\) 0 0
\(64\) 2.73621e7i 1.63091i
\(65\) 2.81092e7 4.81079e6i 1.57469 0.269503i
\(66\) 0 0
\(67\) −4.45919e6 4.45919e6i −0.221287 0.221287i 0.587753 0.809040i \(-0.300013\pi\)
−0.809040 + 0.587753i \(0.800013\pi\)
\(68\) −5.29335e7 −2.47568
\(69\) 0 0
\(70\) −4.33111e7 4.33111e7i −1.80388 1.80388i
\(71\) 7.29718e6 + 7.29718e6i 0.287158 + 0.287158i 0.835956 0.548797i \(-0.184914\pi\)
−0.548797 + 0.835956i \(0.684914\pi\)
\(72\) 0 0
\(73\) 8.69469e6 8.69469e6i 0.306170 0.306170i −0.537252 0.843422i \(-0.680538\pi\)
0.843422 + 0.537252i \(0.180538\pi\)
\(74\) −4.52008e7 −1.50737
\(75\) 0 0
\(76\) −3.31117e7 + 3.31117e7i −0.992492 + 0.992492i
\(77\) 1.97408e7i 0.561566i
\(78\) 0 0
\(79\) −5.57116e7 −1.43033 −0.715167 0.698954i \(-0.753649\pi\)
−0.715167 + 0.698954i \(0.753649\pi\)
\(80\) −7.85098e6 7.85098e6i −0.191674 0.191674i
\(81\) 0 0
\(82\) 2.47972e7i 0.548464i
\(83\) 3.21832e6 + 3.21832e6i 0.0678136 + 0.0678136i 0.740200 0.672387i \(-0.234731\pi\)
−0.672387 + 0.740200i \(0.734731\pi\)
\(84\) 0 0
\(85\) 9.48358e7 9.48358e7i 1.81676 1.81676i
\(86\) 5.71648e7 5.71648e7i 1.04505 1.04505i
\(87\) 0 0
\(88\) 2.88871e7i 0.481696i
\(89\) −4.69400e7 + 4.69400e7i −0.748141 + 0.748141i −0.974130 0.225989i \(-0.927439\pi\)
0.225989 + 0.974130i \(0.427439\pi\)
\(90\) 0 0
\(91\) 1.15920e7 + 6.77313e7i 0.169041 + 0.987698i
\(92\) −5.37901e7 −0.750847
\(93\) 0 0
\(94\) 1.83144e7 0.234575
\(95\) 1.18646e8i 1.45666i
\(96\) 0 0
\(97\) −5.15911e7 5.15911e7i −0.582757 0.582757i 0.352903 0.935660i \(-0.385195\pi\)
−0.935660 + 0.352903i \(0.885195\pi\)
\(98\) 428329. 428329.i 0.00464379 0.00464379i
\(99\) 0 0
\(100\) −2.38957e8 −2.38957
\(101\) 1.34398e8i 1.29154i 0.763531 + 0.645771i \(0.223464\pi\)
−0.763531 + 0.645771i \(0.776536\pi\)
\(102\) 0 0
\(103\) 1.40184e8i 1.24552i 0.782415 + 0.622758i \(0.213988\pi\)
−0.782415 + 0.622758i \(0.786012\pi\)
\(104\) −1.69628e7 9.91128e7i −0.144999 0.847220i
\(105\) 0 0
\(106\) 1.57885e8 + 1.57885e8i 1.25060 + 1.25060i
\(107\) −2.20841e8 −1.68479 −0.842394 0.538863i \(-0.818854\pi\)
−0.842394 + 0.538863i \(0.818854\pi\)
\(108\) 0 0
\(109\) 3.84233e7 + 3.84233e7i 0.272200 + 0.272200i 0.829985 0.557785i \(-0.188349\pi\)
−0.557785 + 0.829985i \(0.688349\pi\)
\(110\) 1.47704e8 + 1.47704e8i 1.00884 + 1.00884i
\(111\) 0 0
\(112\) 1.89175e7 1.89175e7i 0.120224 0.120224i
\(113\) −1.23741e7 −0.0758924 −0.0379462 0.999280i \(-0.512082\pi\)
−0.0379462 + 0.999280i \(0.512082\pi\)
\(114\) 0 0
\(115\) 9.63706e7 9.63706e7i 0.551002 0.551002i
\(116\) 3.77820e8i 2.08667i
\(117\) 0 0
\(118\) 1.20974e8 0.623970
\(119\) 2.28514e8 + 2.28514e8i 1.13953 + 1.13953i
\(120\) 0 0
\(121\) 1.47037e8i 0.685938i
\(122\) 6.38043e7 + 6.38043e7i 0.288012 + 0.288012i
\(123\) 0 0
\(124\) −1.91005e8 + 1.91005e8i −0.807900 + 0.807900i
\(125\) 1.52319e8 1.52319e8i 0.623900 0.623900i
\(126\) 0 0
\(127\) 5.22219e7i 0.200742i −0.994950 0.100371i \(-0.967997\pi\)
0.994950 0.100371i \(-0.0320029\pi\)
\(128\) −2.78835e8 + 2.78835e8i −1.03874 + 1.03874i
\(129\) 0 0
\(130\) 5.93512e8 + 4.20046e8i 2.07805 + 1.47070i
\(131\) 3.48669e8 1.18394 0.591968 0.805961i \(-0.298351\pi\)
0.591968 + 0.805961i \(0.298351\pi\)
\(132\) 0 0
\(133\) 2.85886e8 0.913665
\(134\) 1.60789e8i 0.498696i
\(135\) 0 0
\(136\) −3.34390e8 3.34390e8i −0.977456 0.977456i
\(137\) 1.37365e8 1.37365e8i 0.389937 0.389937i −0.484728 0.874665i \(-0.661081\pi\)
0.874665 + 0.484728i \(0.161081\pi\)
\(138\) 0 0
\(139\) 1.43378e7 0.0384081 0.0192040 0.999816i \(-0.493887\pi\)
0.0192040 + 0.999816i \(0.493887\pi\)
\(140\) 9.46712e8i 2.46437i
\(141\) 0 0
\(142\) 2.63120e8i 0.647144i
\(143\) −3.95322e7 2.30984e8i −0.0945380 0.552381i
\(144\) 0 0
\(145\) −6.76903e8 6.76903e8i −1.53128 1.53128i
\(146\) 3.13511e8 0.689989
\(147\) 0 0
\(148\) −4.94009e8 4.94009e8i −1.02965 1.02965i
\(149\) −3.31091e8 3.31091e8i −0.671742 0.671742i 0.286376 0.958117i \(-0.407550\pi\)
−0.958117 + 0.286376i \(0.907550\pi\)
\(150\) 0 0
\(151\) −5.37699e7 + 5.37699e7i −0.103426 + 0.103426i −0.756926 0.653500i \(-0.773300\pi\)
0.653500 + 0.756926i \(0.273300\pi\)
\(152\) −4.18344e8 −0.783717
\(153\) 0 0
\(154\) −3.55904e8 + 3.55904e8i −0.632776 + 0.632776i
\(155\) 6.84410e8i 1.18574i
\(156\) 0 0
\(157\) 1.02886e9 1.69339 0.846695 0.532079i \(-0.178589\pi\)
0.846695 + 0.532079i \(0.178589\pi\)
\(158\) −1.00442e9 1.00442e9i −1.61171 1.61171i
\(159\) 0 0
\(160\) 1.18302e9i 1.80515i
\(161\) 2.32212e8 + 2.32212e8i 0.345606 + 0.345606i
\(162\) 0 0
\(163\) −1.25745e7 + 1.25745e7i −0.0178131 + 0.0178131i −0.715957 0.698144i \(-0.754009\pi\)
0.698144 + 0.715957i \(0.254009\pi\)
\(164\) 2.71014e8 2.71014e8i 0.374642 0.374642i
\(165\) 0 0
\(166\) 1.16046e8i 0.152826i
\(167\) −3.77091e8 + 3.77091e8i −0.484820 + 0.484820i −0.906667 0.421847i \(-0.861382\pi\)
0.421847 + 0.906667i \(0.361382\pi\)
\(168\) 0 0
\(169\) −2.71273e8 7.69303e8i −0.332552 0.943085i
\(170\) 3.41957e9 4.09427
\(171\) 0 0
\(172\) 1.24953e9 1.42769
\(173\) 1.73349e8i 0.193525i −0.995307 0.0967626i \(-0.969151\pi\)
0.995307 0.0967626i \(-0.0308488\pi\)
\(174\) 0 0
\(175\) 1.03158e9 + 1.03158e9i 1.09989 + 1.09989i
\(176\) −6.45146e7 + 6.45146e7i −0.0672368 + 0.0672368i
\(177\) 0 0
\(178\) −1.69256e9 −1.68602
\(179\) 9.54514e8i 0.929759i 0.885374 + 0.464879i \(0.153902\pi\)
−0.885374 + 0.464879i \(0.846098\pi\)
\(180\) 0 0
\(181\) 1.88245e8i 0.175391i −0.996147 0.0876957i \(-0.972050\pi\)
0.996147 0.0876957i \(-0.0279503\pi\)
\(182\) −1.01213e9 + 1.43011e9i −0.922468 + 1.30342i
\(183\) 0 0
\(184\) −3.39801e8 3.39801e8i −0.296452 0.296452i
\(185\) 1.77014e9 1.51119
\(186\) 0 0
\(187\) −7.79303e8 7.79303e8i −0.637294 0.637294i
\(188\) 2.00162e8 + 2.00162e8i 0.160233 + 0.160233i
\(189\) 0 0
\(190\) 2.13906e9 2.13906e9i 1.64138 1.64138i
\(191\) −2.55263e8 −0.191802 −0.0959011 0.995391i \(-0.530573\pi\)
−0.0959011 + 0.995391i \(0.530573\pi\)
\(192\) 0 0
\(193\) 1.53214e9 1.53214e9i 1.10425 1.10425i 0.110360 0.993892i \(-0.464800\pi\)
0.993892 0.110360i \(-0.0352005\pi\)
\(194\) 1.86026e9i 1.31331i
\(195\) 0 0
\(196\) 9.36259e6 0.00634412
\(197\) −8.98261e8 8.98261e8i −0.596400 0.596400i 0.342953 0.939353i \(-0.388573\pi\)
−0.939353 + 0.342953i \(0.888573\pi\)
\(198\) 0 0
\(199\) 2.75599e9i 1.75738i 0.477393 + 0.878690i \(0.341582\pi\)
−0.477393 + 0.878690i \(0.658418\pi\)
\(200\) −1.50953e9 1.50953e9i −0.943458 0.943458i
\(201\) 0 0
\(202\) −2.42306e9 + 2.42306e9i −1.45532 + 1.45532i
\(203\) 1.63105e9 1.63105e9i 0.960468 0.960468i
\(204\) 0 0
\(205\) 9.71099e8i 0.549855i
\(206\) −2.52736e9 + 2.52736e9i −1.40346 + 1.40346i
\(207\) 0 0
\(208\) −1.83468e8 + 2.59236e8i −0.0980185 + 0.138497i
\(209\) −9.74960e8 −0.510977
\(210\) 0 0
\(211\) 1.56783e9 0.790986 0.395493 0.918469i \(-0.370574\pi\)
0.395493 + 0.918469i \(0.370574\pi\)
\(212\) 3.45112e9i 1.70851i
\(213\) 0 0
\(214\) −3.98153e9 3.98153e9i −1.89843 1.89843i
\(215\) −2.23867e9 + 2.23867e9i −1.04770 + 1.04770i
\(216\) 0 0
\(217\) 1.64914e9 0.743734
\(218\) 1.38546e9i 0.613435i
\(219\) 0 0
\(220\) 3.22858e9i 1.37823i
\(221\) −3.13143e9 2.21620e9i −1.31273 0.929054i
\(222\) 0 0
\(223\) 1.60070e8 + 1.60070e8i 0.0647278 + 0.0647278i 0.738730 0.674002i \(-0.235426\pi\)
−0.674002 + 0.738730i \(0.735426\pi\)
\(224\) 2.85058e9 1.13225
\(225\) 0 0
\(226\) −2.23091e8 2.23091e8i −0.0855161 0.0855161i
\(227\) 9.32258e8 + 9.32258e8i 0.351102 + 0.351102i 0.860519 0.509418i \(-0.170139\pi\)
−0.509418 + 0.860519i \(0.670139\pi\)
\(228\) 0 0
\(229\) 2.70819e9 2.70819e9i 0.984774 0.984774i −0.0151117 0.999886i \(-0.504810\pi\)
0.999886 + 0.0151117i \(0.00481040\pi\)
\(230\) 3.47491e9 1.24175
\(231\) 0 0
\(232\) −2.38675e9 + 2.38675e9i −0.823863 + 0.823863i
\(233\) 7.96832e8i 0.270360i −0.990821 0.135180i \(-0.956839\pi\)
0.990821 0.135180i \(-0.0431613\pi\)
\(234\) 0 0
\(235\) −7.17223e8 −0.235170
\(236\) 1.32215e9 + 1.32215e9i 0.426218 + 0.426218i
\(237\) 0 0
\(238\) 8.23972e9i 2.56806i
\(239\) −3.81412e9 3.81412e9i −1.16897 1.16897i −0.982452 0.186518i \(-0.940280\pi\)
−0.186518 0.982452i \(-0.559720\pi\)
\(240\) 0 0
\(241\) −2.16281e9 + 2.16281e9i −0.641135 + 0.641135i −0.950835 0.309699i \(-0.899772\pi\)
0.309699 + 0.950835i \(0.399772\pi\)
\(242\) −2.65091e9 + 2.65091e9i −0.772920 + 0.772920i
\(243\) 0 0
\(244\) 1.39466e9i 0.393468i
\(245\) −1.67740e7 + 1.67740e7i −0.00465557 + 0.00465557i
\(246\) 0 0
\(247\) −3.34513e9 + 5.72506e8i −0.898721 + 0.153813i
\(248\) −2.41322e9 −0.637955
\(249\) 0 0
\(250\) 5.49230e9 1.40603
\(251\) 2.83257e9i 0.713651i 0.934171 + 0.356825i \(0.116141\pi\)
−0.934171 + 0.356825i \(0.883859\pi\)
\(252\) 0 0
\(253\) −7.91914e8 7.91914e8i −0.193284 0.193284i
\(254\) 9.41504e8 9.41504e8i 0.226197 0.226197i
\(255\) 0 0
\(256\) −3.04950e9 −0.710017
\(257\) 2.21483e9i 0.507700i 0.967244 + 0.253850i \(0.0816970\pi\)
−0.967244 + 0.253850i \(0.918303\pi\)
\(258\) 0 0
\(259\) 4.26528e9i 0.947868i
\(260\) 1.89585e9 + 1.10774e10i 0.414869 + 2.42406i
\(261\) 0 0
\(262\) 6.28613e9 + 6.28613e9i 1.33407 + 1.33407i
\(263\) −3.78189e8 −0.0790471 −0.0395235 0.999219i \(-0.512584\pi\)
−0.0395235 + 0.999219i \(0.512584\pi\)
\(264\) 0 0
\(265\) −6.18304e9 6.18304e9i −1.25377 1.25377i
\(266\) 5.15422e9 + 5.15422e9i 1.02952 + 1.02952i
\(267\) 0 0
\(268\) 1.75729e9 1.75729e9i 0.340647 0.340647i
\(269\) −9.08136e8 −0.173437 −0.0867185 0.996233i \(-0.527638\pi\)
−0.0867185 + 0.996233i \(0.527638\pi\)
\(270\) 0 0
\(271\) −4.72790e9 + 4.72790e9i −0.876579 + 0.876579i −0.993179 0.116600i \(-0.962801\pi\)
0.116600 + 0.993179i \(0.462801\pi\)
\(272\) 1.49361e9i 0.272874i
\(273\) 0 0
\(274\) 4.95309e9 0.878767
\(275\) −3.51800e9 3.51800e9i −0.615127 0.615127i
\(276\) 0 0
\(277\) 1.59344e8i 0.0270655i 0.999908 + 0.0135328i \(0.00430775\pi\)
−0.999908 + 0.0135328i \(0.995692\pi\)
\(278\) 2.58494e8 + 2.58494e8i 0.0432785 + 0.0432785i
\(279\) 0 0
\(280\) 5.98054e9 5.98054e9i 0.972990 0.972990i
\(281\) 8.53572e9 8.53572e9i 1.36904 1.36904i 0.507217 0.861818i \(-0.330674\pi\)
0.861818 0.507217i \(-0.169326\pi\)
\(282\) 0 0
\(283\) 1.14991e10i 1.79275i −0.443298 0.896374i \(-0.646192\pi\)
0.443298 0.896374i \(-0.353808\pi\)
\(284\) −2.87569e9 + 2.87569e9i −0.442048 + 0.442048i
\(285\) 0 0
\(286\) 3.45168e9 4.87712e9i 0.515901 0.728953i
\(287\) −2.33994e9 −0.344887
\(288\) 0 0
\(289\) −1.10663e10 −1.58639
\(290\) 2.44077e10i 3.45091i
\(291\) 0 0
\(292\) 3.42643e9 + 3.42643e9i 0.471314 + 0.471314i
\(293\) −9.30877e9 + 9.30877e9i −1.26305 + 1.26305i −0.313448 + 0.949605i \(0.601484\pi\)
−0.949605 + 0.313448i \(0.898516\pi\)
\(294\) 0 0
\(295\) −4.73753e9 −0.625552
\(296\) 6.24147e9i 0.813056i
\(297\) 0 0
\(298\) 1.19384e10i 1.51385i
\(299\) −3.18211e9 2.25207e9i −0.398135 0.281772i
\(300\) 0 0
\(301\) −5.39423e9 5.39423e9i −0.657149 0.657149i
\(302\) −1.93882e9 −0.233083
\(303\) 0 0
\(304\) 9.34303e8 + 9.34303e8i 0.109394 + 0.109394i
\(305\) −2.49868e9 2.49868e9i −0.288743 0.288743i
\(306\) 0 0
\(307\) −3.72592e9 + 3.72592e9i −0.419450 + 0.419450i −0.885014 0.465564i \(-0.845851\pi\)
0.465564 + 0.885014i \(0.345851\pi\)
\(308\) −7.77950e9 −0.864468
\(309\) 0 0
\(310\) 1.23392e10 1.23392e10i 1.33610 1.33610i
\(311\) 5.30331e9i 0.566898i −0.958987 0.283449i \(-0.908521\pi\)
0.958987 0.283449i \(-0.0914787\pi\)
\(312\) 0 0
\(313\) 1.14891e10 1.19704 0.598521 0.801107i \(-0.295755\pi\)
0.598521 + 0.801107i \(0.295755\pi\)
\(314\) 1.85492e10 + 1.85492e10i 1.90812 + 1.90812i
\(315\) 0 0
\(316\) 2.19550e10i 2.20184i
\(317\) −3.70571e9 3.70571e9i −0.366973 0.366973i 0.499399 0.866372i \(-0.333554\pi\)
−0.866372 + 0.499399i \(0.833554\pi\)
\(318\) 0 0
\(319\) −5.56238e9 + 5.56238e9i −0.537152 + 0.537152i
\(320\) 1.93187e10 1.93187e10i 1.84238 1.84238i
\(321\) 0 0
\(322\) 8.37306e9i 0.778863i
\(323\) −1.12859e10 + 1.12859e10i −1.03687 + 1.03687i
\(324\) 0 0
\(325\) −1.41362e10 1.00046e10i −1.26707 0.896739i
\(326\) −4.53408e8 −0.0401438
\(327\) 0 0
\(328\) 3.42408e9 0.295835
\(329\) 1.72820e9i 0.147506i
\(330\) 0 0
\(331\) 8.91506e8 + 8.91506e8i 0.0742698 + 0.0742698i 0.743266 0.668996i \(-0.233276\pi\)
−0.668996 + 0.743266i \(0.733276\pi\)
\(332\) −1.26829e9 + 1.26829e9i −0.104391 + 0.104391i
\(333\) 0 0
\(334\) −1.35971e10 −1.09260
\(335\) 6.29674e9i 0.499961i
\(336\) 0 0
\(337\) 2.86060e8i 0.0221788i 0.999939 + 0.0110894i \(0.00352993\pi\)
−0.999939 + 0.0110894i \(0.996470\pi\)
\(338\) 8.97895e9 1.87605e10i 0.687953 1.43740i
\(339\) 0 0
\(340\) 3.73732e10 + 3.73732e10i 2.79669 + 2.79669i
\(341\) −5.62406e9 −0.415942
\(342\) 0 0
\(343\) 9.76700e9 + 9.76700e9i 0.705642 + 0.705642i
\(344\) 7.89350e9 + 7.89350e9i 0.563684 + 0.563684i
\(345\) 0 0
\(346\) 3.12530e9 3.12530e9i 0.218065 0.218065i
\(347\) 2.29430e10 1.58246 0.791230 0.611519i \(-0.209441\pi\)
0.791230 + 0.611519i \(0.209441\pi\)
\(348\) 0 0
\(349\) −8.38687e9 + 8.38687e9i −0.565325 + 0.565325i −0.930815 0.365490i \(-0.880901\pi\)
0.365490 + 0.930815i \(0.380901\pi\)
\(350\) 3.71965e10i 2.47873i
\(351\) 0 0
\(352\) −9.72135e9 −0.633222
\(353\) −1.24878e10 1.24878e10i −0.804245 0.804245i 0.179511 0.983756i \(-0.442548\pi\)
−0.983756 + 0.179511i \(0.942548\pi\)
\(354\) 0 0
\(355\) 1.03042e10i 0.648786i
\(356\) −1.84983e10 1.84983e10i −1.15168 1.15168i
\(357\) 0 0
\(358\) −1.72088e10 + 1.72088e10i −1.04766 + 1.04766i
\(359\) 1.89252e10 1.89252e10i 1.13936 1.13936i 0.150799 0.988564i \(-0.451815\pi\)
0.988564 0.150799i \(-0.0481846\pi\)
\(360\) 0 0
\(361\) 2.86415e9i 0.168642i
\(362\) 3.39385e9 3.39385e9i 0.197632 0.197632i
\(363\) 0 0
\(364\) −2.66918e10 + 4.56820e9i −1.52045 + 0.260219i
\(365\) −1.22776e10 −0.691739
\(366\) 0 0
\(367\) 6.23990e9 0.343964 0.171982 0.985100i \(-0.444983\pi\)
0.171982 + 0.985100i \(0.444983\pi\)
\(368\) 1.51778e9i 0.0827595i
\(369\) 0 0
\(370\) 3.19136e10 + 3.19136e10i 1.70282 + 1.70282i
\(371\) 1.48985e10 1.48985e10i 0.786406 0.786406i
\(372\) 0 0
\(373\) −2.96446e9 −0.153148 −0.0765739 0.997064i \(-0.524398\pi\)
−0.0765739 + 0.997064i \(0.524398\pi\)
\(374\) 2.81000e10i 1.43621i
\(375\) 0 0
\(376\) 2.52892e9i 0.126527i
\(377\) −1.58185e10 + 2.23510e10i −0.783066 + 1.10645i
\(378\) 0 0
\(379\) 1.71245e10 + 1.71245e10i 0.829970 + 0.829970i 0.987512 0.157542i \(-0.0503571\pi\)
−0.157542 + 0.987512i \(0.550357\pi\)
\(380\) 4.67564e10 2.24237
\(381\) 0 0
\(382\) −4.60211e9 4.60211e9i −0.216124 0.216124i
\(383\) −1.46047e10 1.46047e10i −0.678732 0.678732i 0.280982 0.959713i \(-0.409340\pi\)
−0.959713 + 0.280982i \(0.909340\pi\)
\(384\) 0 0
\(385\) 1.39378e10 1.39378e10i 0.634382 0.634382i
\(386\) 5.52455e10 2.48856
\(387\) 0 0
\(388\) 2.03312e10 2.03312e10i 0.897089 0.897089i
\(389\) 2.88195e10i 1.25860i 0.777162 + 0.629301i \(0.216659\pi\)
−0.777162 + 0.629301i \(0.783341\pi\)
\(390\) 0 0
\(391\) −1.83340e10 −0.784423
\(392\) 5.91450e7 + 5.91450e7i 0.00250480 + 0.00250480i
\(393\) 0 0
\(394\) 3.23893e10i 1.34406i
\(395\) 3.93347e10 + 3.93347e10i 1.61580 + 1.61580i
\(396\) 0 0
\(397\) 1.55229e10 1.55229e10i 0.624902 0.624902i −0.321879 0.946781i \(-0.604314\pi\)
0.946781 + 0.321879i \(0.104314\pi\)
\(398\) −4.96875e10 + 4.96875e10i −1.98023 + 1.98023i
\(399\) 0 0
\(400\) 6.74258e9i 0.263382i
\(401\) 2.81886e10 2.81886e10i 1.09017 1.09017i 0.0946646 0.995509i \(-0.469822\pi\)
0.995509 0.0946646i \(-0.0301779\pi\)
\(402\) 0 0
\(403\) −1.92964e10 + 3.30251e9i −0.731570 + 0.125205i
\(404\) −5.29642e10 −1.98818
\(405\) 0 0
\(406\) 5.88121e10 2.16452
\(407\) 1.45459e10i 0.530106i
\(408\) 0 0
\(409\) −1.87784e10 1.87784e10i −0.671066 0.671066i 0.286896 0.957962i \(-0.407377\pi\)
−0.957962 + 0.286896i \(0.907377\pi\)
\(410\) −1.75079e10 + 1.75079e10i −0.619581 + 0.619581i
\(411\) 0 0
\(412\) −5.52441e10 −1.91733
\(413\) 1.14154e10i 0.392367i
\(414\) 0 0
\(415\) 4.54453e9i 0.153213i
\(416\) −3.33543e10 + 5.70847e9i −1.11373 + 0.190610i
\(417\) 0 0
\(418\) −1.75775e10 1.75775e10i −0.575773 0.575773i
\(419\) −5.34767e10 −1.73503 −0.867517 0.497407i \(-0.834286\pi\)
−0.867517 + 0.497407i \(0.834286\pi\)
\(420\) 0 0
\(421\) 2.38177e10 + 2.38177e10i 0.758180 + 0.758180i 0.975991 0.217811i \(-0.0698916\pi\)
−0.217811 + 0.975991i \(0.569892\pi\)
\(422\) 2.82663e10 + 2.82663e10i 0.891289 + 0.891289i
\(423\) 0 0
\(424\) −2.18013e10 + 2.18013e10i −0.674558 + 0.674558i
\(425\) −8.14470e10 −2.49643
\(426\) 0 0
\(427\) 6.02075e9 6.02075e9i 0.181109 0.181109i
\(428\) 8.70298e10i 2.59354i
\(429\) 0 0
\(430\) −8.07214e10 −2.36110
\(431\) −3.39333e10 3.39333e10i −0.983370 0.983370i 0.0164943 0.999864i \(-0.494749\pi\)
−0.999864 + 0.0164943i \(0.994749\pi\)
\(432\) 0 0
\(433\) 6.21384e10i 1.76770i 0.467771 + 0.883849i \(0.345057\pi\)
−0.467771 + 0.883849i \(0.654943\pi\)
\(434\) 2.97321e10 + 2.97321e10i 0.838045 + 0.838045i
\(435\) 0 0
\(436\) −1.51420e10 + 1.51420e10i −0.419022 + 0.419022i
\(437\) −1.14685e10 + 1.14685e10i −0.314472 + 0.314472i
\(438\) 0 0
\(439\) 7.19465e10i 1.93710i −0.248822 0.968549i \(-0.580043\pi\)
0.248822 0.968549i \(-0.419957\pi\)
\(440\) −2.03955e10 + 2.03955e10i −0.544155 + 0.544155i
\(441\) 0 0
\(442\) −1.65006e10 9.64121e10i −0.432325 2.52605i
\(443\) 2.02774e10 0.526499 0.263249 0.964728i \(-0.415206\pi\)
0.263249 + 0.964728i \(0.415206\pi\)
\(444\) 0 0
\(445\) 6.62832e10 1.69030
\(446\) 5.77178e9i 0.145871i
\(447\) 0 0
\(448\) 4.65500e10 + 4.65500e10i 1.15560 + 1.15560i
\(449\) −7.54656e9 + 7.54656e9i −0.185679 + 0.185679i −0.793825 0.608146i \(-0.791914\pi\)
0.608146 + 0.793825i \(0.291914\pi\)
\(450\) 0 0
\(451\) 7.97990e9 0.192882
\(452\) 4.87641e9i 0.116828i
\(453\) 0 0
\(454\) 3.36152e10i 0.791247i
\(455\) 3.96367e10 5.60055e10i 0.924808 1.30673i
\(456\) 0 0
\(457\) −7.97853e9 7.97853e9i −0.182919 0.182919i 0.609708 0.792626i \(-0.291287\pi\)
−0.792626 + 0.609708i \(0.791287\pi\)
\(458\) 9.76513e10 2.21930
\(459\) 0 0
\(460\) 3.79780e10 + 3.79780e10i 0.848206 + 0.848206i
\(461\) 3.37578e10 + 3.37578e10i 0.747430 + 0.747430i 0.973996 0.226565i \(-0.0727497\pi\)
−0.226565 + 0.973996i \(0.572750\pi\)
\(462\) 0 0
\(463\) 2.56807e9 2.56807e9i 0.0558835 0.0558835i −0.678613 0.734496i \(-0.737419\pi\)
0.734496 + 0.678613i \(0.237419\pi\)
\(464\) 1.06608e10 0.229995
\(465\) 0 0
\(466\) 1.43660e10 1.43660e10i 0.304644 0.304644i
\(467\) 6.24287e10i 1.31255i 0.754521 + 0.656276i \(0.227869\pi\)
−0.754521 + 0.656276i \(0.772131\pi\)
\(468\) 0 0
\(469\) −1.51725e10 −0.313592
\(470\) −1.29307e10 1.29307e10i −0.264992 0.264992i
\(471\) 0 0
\(472\) 1.67045e10i 0.336561i
\(473\) 1.83960e10 + 1.83960e10i 0.367518 + 0.367518i
\(474\) 0 0
\(475\) −5.09478e10 + 5.09478e10i −1.00081 + 1.00081i
\(476\) −9.00536e10 + 9.00536e10i −1.75418 + 1.75418i
\(477\) 0 0
\(478\) 1.37529e11i 2.63441i
\(479\) 5.07009e10 5.07009e10i 0.963104 0.963104i −0.0362388 0.999343i \(-0.511538\pi\)
0.999343 + 0.0362388i \(0.0115377\pi\)
\(480\) 0 0
\(481\) −8.54149e9 4.99075e10i −0.159571 0.932365i
\(482\) −7.79861e10 −1.44487
\(483\) 0 0
\(484\) −5.79448e10 −1.05592
\(485\) 7.28508e10i 1.31664i
\(486\) 0 0
\(487\) −1.81769e10 1.81769e10i −0.323150 0.323150i 0.526824 0.849974i \(-0.323383\pi\)
−0.849974 + 0.526824i \(0.823383\pi\)
\(488\) −8.81030e9 + 8.81030e9i −0.155350 + 0.155350i
\(489\) 0 0
\(490\) −6.04835e8 −0.0104919
\(491\) 1.13568e11i 1.95402i −0.213184 0.977012i \(-0.568383\pi\)
0.213184 0.977012i \(-0.431617\pi\)
\(492\) 0 0
\(493\) 1.28777e11i 2.17998i
\(494\) −7.06307e10 4.99873e10i −1.18600 0.839367i
\(495\) 0 0
\(496\) 5.38953e9 + 5.38953e9i 0.0890480 + 0.0890480i
\(497\) 2.48288e10 0.406939
\(498\) 0 0
\(499\) 5.85848e9 + 5.85848e9i 0.0944894 + 0.0944894i 0.752771 0.658282i \(-0.228717\pi\)
−0.658282 + 0.752771i \(0.728717\pi\)
\(500\) 6.00265e10 + 6.00265e10i 0.960423 + 0.960423i
\(501\) 0 0
\(502\) −5.10682e10 + 5.10682e10i −0.804147 + 0.804147i
\(503\) −8.18123e10 −1.27805 −0.639023 0.769188i \(-0.720661\pi\)
−0.639023 + 0.769188i \(0.720661\pi\)
\(504\) 0 0
\(505\) 9.48908e10 9.48908e10i 1.45901 1.45901i
\(506\) 2.85547e10i 0.435588i
\(507\) 0 0
\(508\) 2.05798e10 0.309019
\(509\) 6.63020e10 + 6.63020e10i 0.987770 + 0.987770i 0.999926 0.0121563i \(-0.00386957\pi\)
−0.0121563 + 0.999926i \(0.503870\pi\)
\(510\) 0 0
\(511\) 2.95838e10i 0.433881i
\(512\) 1.64027e10 + 1.64027e10i 0.238690 + 0.238690i
\(513\) 0 0
\(514\) −3.99309e10 + 3.99309e10i −0.572080 + 0.572080i
\(515\) 9.89755e10 9.89755e10i 1.40702 1.40702i
\(516\) 0 0
\(517\) 5.89370e9i 0.0824946i
\(518\) −7.68983e10 + 7.68983e10i −1.06806 + 1.06806i
\(519\) 0 0
\(520\) −5.80012e10 + 8.19541e10i −0.793275 + 1.12088i
\(521\) 8.77167e9 0.119051 0.0595253 0.998227i \(-0.481041\pi\)
0.0595253 + 0.998227i \(0.481041\pi\)
\(522\) 0 0
\(523\) −8.20061e10 −1.09607 −0.548037 0.836454i \(-0.684625\pi\)
−0.548037 + 0.836454i \(0.684625\pi\)
\(524\) 1.37405e11i 1.82254i
\(525\) 0 0
\(526\) −6.81834e9 6.81834e9i −0.0890708 0.0890708i
\(527\) −6.51027e10 + 6.51027e10i −0.844028 + 0.844028i
\(528\) 0 0
\(529\) 5.96803e10 0.762093
\(530\) 2.22947e11i 2.82552i
\(531\) 0 0
\(532\) 1.12663e11i 1.40648i
\(533\) 2.73794e10 4.68588e9i 0.339246 0.0580607i
\(534\) 0 0
\(535\) 1.55923e11 + 1.55923e11i 1.90325 + 1.90325i
\(536\) 2.22022e10 0.268990
\(537\) 0 0
\(538\) −1.63727e10 1.63727e10i −0.195430 0.195430i
\(539\) 1.37839e8 + 1.37839e8i 0.00163311 + 0.00163311i
\(540\) 0 0
\(541\) 6.06619e10 6.06619e10i 0.708153 0.708153i −0.257994 0.966147i \(-0.583061\pi\)
0.966147 + 0.257994i \(0.0830614\pi\)
\(542\) −1.70478e11 −1.97547
\(543\) 0 0
\(544\) −1.12532e11 + 1.12532e11i −1.28493 + 1.28493i
\(545\) 5.42569e10i 0.614991i
\(546\) 0 0
\(547\) 1.54001e10 0.172018 0.0860090 0.996294i \(-0.472589\pi\)
0.0860090 + 0.996294i \(0.472589\pi\)
\(548\) 5.41333e10 + 5.41333e10i 0.600264 + 0.600264i
\(549\) 0 0
\(550\) 1.26851e11i 1.38626i
\(551\) 8.05546e10 + 8.05546e10i 0.873944 + 0.873944i
\(552\) 0 0
\(553\) −9.47798e10 + 9.47798e10i −1.01348 + 1.01348i
\(554\) −2.87280e9 + 2.87280e9i −0.0304976 + 0.0304976i
\(555\) 0 0
\(556\) 5.65027e9i 0.0591249i
\(557\) −4.93168e10 + 4.93168e10i −0.512359 + 0.512359i −0.915248 0.402890i \(-0.868006\pi\)
0.402890 + 0.915248i \(0.368006\pi\)
\(558\) 0 0
\(559\) 7.39196e10 + 5.23150e10i 0.757029 + 0.535771i
\(560\) −2.67131e10 −0.271627
\(561\) 0 0
\(562\) 3.07779e11 3.08528
\(563\) 5.82242e10i 0.579522i 0.957099 + 0.289761i \(0.0935758\pi\)
−0.957099 + 0.289761i \(0.906424\pi\)
\(564\) 0 0
\(565\) 8.73659e9 + 8.73659e9i 0.0857330 + 0.0857330i
\(566\) 2.07317e11 2.07317e11i 2.02008 2.02008i
\(567\) 0 0
\(568\) −3.63325e10 −0.349061
\(569\) 1.06030e11i 1.01154i 0.862669 + 0.505768i \(0.168791\pi\)
−0.862669 + 0.505768i \(0.831209\pi\)
\(570\) 0 0
\(571\) 9.54463e10i 0.897872i −0.893564 0.448936i \(-0.851803\pi\)
0.893564 0.448936i \(-0.148197\pi\)
\(572\) 9.10271e10 1.55790e10i 0.850328 0.145531i
\(573\) 0 0
\(574\) −4.21865e10 4.21865e10i −0.388621 0.388621i
\(575\) −8.27650e10 −0.757139
\(576\) 0 0
\(577\) −8.36851e9 8.36851e9i −0.0754997 0.0754997i 0.668349 0.743848i \(-0.267001\pi\)
−0.743848 + 0.668349i \(0.767001\pi\)
\(578\) −1.99513e11 1.99513e11i −1.78756 1.78756i
\(579\) 0 0
\(580\) 2.66756e11 2.66756e11i 2.35723 2.35723i
\(581\) 1.09504e10 0.0961003
\(582\) 0 0
\(583\) −5.08084e10 + 5.08084e10i −0.439807 + 0.439807i
\(584\) 4.32907e10i 0.372171i
\(585\) 0 0
\(586\) −3.35654e11 −2.84643
\(587\) 1.12403e11 + 1.12403e11i 0.946731 + 0.946731i 0.998651 0.0519204i \(-0.0165342\pi\)
−0.0519204 + 0.998651i \(0.516534\pi\)
\(588\) 0 0
\(589\) 8.14479e10i 0.676735i
\(590\) −8.54125e10 8.54125e10i −0.704877 0.704877i
\(591\) 0 0
\(592\) −1.39393e10 + 1.39393e10i −0.113489 + 0.113489i
\(593\) 8.34367e10 8.34367e10i 0.674743 0.674743i −0.284063 0.958806i \(-0.591682\pi\)
0.958806 + 0.284063i \(0.0916825\pi\)
\(594\) 0 0
\(595\) 3.22681e11i 2.57457i
\(596\) 1.30477e11 1.30477e11i 1.03407 1.03407i
\(597\) 0 0
\(598\) −1.67676e10 9.79723e10i −0.131119 0.766123i
\(599\) −2.58135e10 −0.200512 −0.100256 0.994962i \(-0.531966\pi\)
−0.100256 + 0.994962i \(0.531966\pi\)
\(600\) 0 0
\(601\) −1.14049e11 −0.874162 −0.437081 0.899422i \(-0.643988\pi\)
−0.437081 + 0.899422i \(0.643988\pi\)
\(602\) 1.94504e11i 1.48096i
\(603\) 0 0
\(604\) −2.11898e10 2.11898e10i −0.159213 0.159213i
\(605\) 1.03814e11 1.03814e11i 0.774880 0.774880i
\(606\) 0 0
\(607\) −1.31365e9 −0.00967668 −0.00483834 0.999988i \(-0.501540\pi\)
−0.00483834 + 0.999988i \(0.501540\pi\)
\(608\) 1.40785e11i 1.03025i
\(609\) 0 0
\(610\) 9.00969e10i 0.650715i
\(611\) 3.46084e9 + 2.02215e10i 0.0248323 + 0.145094i
\(612\) 0 0
\(613\) 6.67181e10 + 6.67181e10i 0.472500 + 0.472500i 0.902723 0.430223i \(-0.141565\pi\)
−0.430223 + 0.902723i \(0.641565\pi\)
\(614\) −1.34349e11 −0.945278
\(615\) 0 0
\(616\) −4.91444e10 4.91444e10i −0.341312 0.341312i
\(617\) 1.24710e11 + 1.24710e11i 0.860519 + 0.860519i 0.991398 0.130880i \(-0.0417801\pi\)
−0.130880 + 0.991398i \(0.541780\pi\)
\(618\) 0 0
\(619\) 5.75160e10 5.75160e10i 0.391766 0.391766i −0.483551 0.875316i \(-0.660653\pi\)
0.875316 + 0.483551i \(0.160653\pi\)
\(620\) 2.69714e11 1.82531
\(621\) 0 0
\(622\) 9.56128e10 9.56128e10i 0.638785 0.638785i
\(623\) 1.59714e11i 1.06021i
\(624\) 0 0
\(625\) 2.17730e10 0.142692
\(626\) 2.07136e11 + 2.07136e11i 1.34884 + 1.34884i
\(627\) 0 0
\(628\) 4.05456e11i 2.60678i
\(629\) −1.68380e11 1.68380e11i −1.07569 1.07569i
\(630\) 0 0
\(631\) 1.45885e11 1.45885e11i 0.920223 0.920223i −0.0768214 0.997045i \(-0.524477\pi\)
0.997045 + 0.0768214i \(0.0244771\pi\)
\(632\) 1.38693e11 1.38693e11i 0.869336 0.869336i
\(633\) 0 0
\(634\) 1.33620e11i 0.827015i
\(635\) −3.68708e10 + 3.68708e10i −0.226771 + 0.226771i
\(636\) 0 0
\(637\) 5.53871e8 + 3.91990e8i 0.00336396 + 0.00238077i
\(638\) −2.00567e11 −1.21053
\(639\) 0 0
\(640\) 3.93738e11 2.34686
\(641\) 5.42742e10i 0.321486i −0.986996 0.160743i \(-0.948611\pi\)
0.986996 0.160743i \(-0.0513890\pi\)
\(642\) 0 0
\(643\) 1.17827e11 + 1.17827e11i 0.689287 + 0.689287i 0.962074 0.272787i \(-0.0879456\pi\)
−0.272787 + 0.962074i \(0.587946\pi\)
\(644\) −9.15109e10 + 9.15109e10i −0.532022 + 0.532022i
\(645\) 0 0
\(646\) −4.06945e11 −2.33671
\(647\) 2.59864e11i 1.48296i −0.670977 0.741479i \(-0.734125\pi\)
0.670977 0.741479i \(-0.265875\pi\)
\(648\) 0 0
\(649\) 3.89301e10i 0.219435i
\(650\) −7.44884e10 4.35232e11i −0.417287 2.43819i
\(651\) 0 0
\(652\) −4.95539e9 4.95539e9i −0.0274212 0.0274212i
\(653\) 2.92048e11 1.60621 0.803105 0.595838i \(-0.203180\pi\)
0.803105 + 0.595838i \(0.203180\pi\)
\(654\) 0 0
\(655\) −2.46175e11 2.46175e11i −1.33745 1.33745i
\(656\) −7.64713e9 7.64713e9i −0.0412936 0.0412936i
\(657\) 0 0
\(658\) 3.11576e10 3.11576e10i 0.166211 0.166211i
\(659\) −1.68819e11 −0.895115 −0.447557 0.894255i \(-0.647706\pi\)
−0.447557 + 0.894255i \(0.647706\pi\)
\(660\) 0 0
\(661\) −1.99672e11 + 1.99672e11i −1.04595 + 1.04595i −0.0470593 + 0.998892i \(0.514985\pi\)
−0.998892 + 0.0470593i \(0.985015\pi\)
\(662\) 3.21458e10i 0.167375i
\(663\) 0 0
\(664\) −1.60239e10 −0.0824323
\(665\) −2.01847e11 2.01847e11i −1.03214 1.03214i
\(666\) 0 0
\(667\) 1.30861e11i 0.661162i
\(668\) −1.48605e11 1.48605e11i −0.746325 0.746325i
\(669\) 0 0
\(670\) −1.13523e11 + 1.13523e11i −0.563360 + 0.563360i
\(671\) −2.05326e10 + 2.05326e10i −0.101287 + 0.101287i
\(672\) 0 0
\(673\) 1.11564e11i 0.543828i −0.962321 0.271914i \(-0.912343\pi\)
0.962321 0.271914i \(-0.0876567\pi\)
\(674\) −5.15735e9 + 5.15735e9i −0.0249912 + 0.0249912i
\(675\) 0 0
\(676\) 3.03170e11 1.06904e11i 1.45177 0.511926i
\(677\) 2.36899e10 0.112774 0.0563869 0.998409i \(-0.482042\pi\)
0.0563869 + 0.998409i \(0.482042\pi\)
\(678\) 0 0
\(679\) −1.75539e11 −0.825840
\(680\) 4.72186e11i 2.20840i
\(681\) 0 0
\(682\) −1.01396e11 1.01396e11i −0.468686 0.468686i
\(683\) 1.10040e11 1.10040e11i 0.505673 0.505673i −0.407522 0.913195i \(-0.633607\pi\)
0.913195 + 0.407522i \(0.133607\pi\)
\(684\) 0 0
\(685\) −1.93971e11 −0.880996
\(686\) 3.52177e11i 1.59025i
\(687\) 0 0
\(688\) 3.52577e10i 0.157362i
\(689\) −1.44491e11 + 2.04161e11i −0.641155 + 0.905933i
\(690\) 0 0
\(691\) 9.26218e10 + 9.26218e10i 0.406257 + 0.406257i 0.880431 0.474174i \(-0.157253\pi\)
−0.474174 + 0.880431i \(0.657253\pi\)
\(692\) 6.83140e10 0.297910
\(693\) 0 0
\(694\) 4.13638e11 + 4.13638e11i 1.78313 + 1.78313i
\(695\) −1.01231e10 1.01231e10i −0.0433883 0.0433883i
\(696\) 0 0
\(697\) 9.23733e10 9.23733e10i 0.391395 0.391395i
\(698\) −3.02412e11 −1.27402
\(699\) 0 0
\(700\) −4.06528e11 + 4.06528e11i −1.69316 + 1.69316i
\(701\) 9.17227e10i 0.379844i 0.981799 + 0.189922i \(0.0608234\pi\)
−0.981799 + 0.189922i \(0.939177\pi\)
\(702\) 0 0
\(703\) −2.10654e11 −0.862480
\(704\) −1.58750e11 1.58750e11i −0.646282 0.646282i
\(705\) 0 0
\(706\) 4.50284e11i 1.81246i
\(707\) 2.28646e11 + 2.28646e11i 0.915138 + 0.915138i
\(708\) 0 0
\(709\) −7.57204e10 + 7.57204e10i −0.299659 + 0.299659i −0.840880 0.541221i \(-0.817962\pi\)
0.541221 + 0.840880i \(0.317962\pi\)
\(710\) 1.85774e11 1.85774e11i 0.731056 0.731056i
\(711\) 0 0
\(712\) 2.33713e11i 0.909419i
\(713\) −6.61563e10 + 6.61563e10i −0.255984 + 0.255984i
\(714\) 0 0
\(715\) −1.35173e11 + 1.90996e11i −0.517209 + 0.730802i
\(716\) −3.76158e11 −1.43126
\(717\) 0 0
\(718\) 6.82401e11 2.56769
\(719\) 1.51493e11i 0.566861i 0.958993 + 0.283430i \(0.0914725\pi\)
−0.958993 + 0.283430i \(0.908528\pi\)
\(720\) 0 0
\(721\) 2.38489e11 + 2.38489e11i 0.882526 + 0.882526i
\(722\) 5.16375e10 5.16375e10i 0.190028 0.190028i
\(723\) 0 0
\(724\) 7.41841e10 0.269995
\(725\) 5.81338e11i 2.10415i
\(726\) 0 0
\(727\) 3.09159e11i 1.10674i 0.832937 + 0.553368i \(0.186658\pi\)
−0.832937 + 0.553368i \(0.813342\pi\)
\(728\) −1.97475e11 1.39758e11i −0.703049 0.497568i
\(729\) 0 0
\(730\) −2.21352e11 2.21352e11i −0.779456 0.779456i
\(731\) 4.25895e11 1.49153
\(732\) 0 0
\(733\) −3.53287e11 3.53287e11i −1.22380 1.22380i −0.966269 0.257533i \(-0.917090\pi\)
−0.257533 0.966269i \(-0.582910\pi\)
\(734\) 1.12499e11 + 1.12499e11i 0.387581 + 0.387581i
\(735\) 0 0
\(736\) −1.14353e11 + 1.14353e11i −0.389705 + 0.389705i
\(737\) 5.17427e10 0.175380
\(738\) 0 0
\(739\) 1.74930e11 1.74930e11i 0.586524 0.586524i −0.350164 0.936688i \(-0.613874\pi\)
0.936688 + 0.350164i \(0.113874\pi\)
\(740\) 6.97581e11i 2.32631i
\(741\) 0 0
\(742\) 5.37208e11 1.77226
\(743\) −1.82265e11 1.82265e11i −0.598066 0.598066i 0.341732 0.939798i \(-0.388987\pi\)
−0.939798 + 0.341732i \(0.888987\pi\)
\(744\) 0 0
\(745\) 4.67528e11i 1.51769i
\(746\) −5.34461e10 5.34461e10i −0.172568 0.172568i
\(747\) 0 0
\(748\) 3.07110e11 3.07110e11i 0.981042 0.981042i
\(749\) −3.75708e11 + 3.75708e11i −1.19378 + 1.19378i
\(750\) 0 0
\(751\) 4.21734e11i 1.32580i 0.748706 + 0.662902i \(0.230675\pi\)
−0.748706 + 0.662902i \(0.769325\pi\)
\(752\) 5.64792e9 5.64792e9i 0.0176611 0.0176611i
\(753\) 0 0
\(754\) −6.88154e11 + 1.17775e11i −2.12912 + 0.364391i
\(755\) 7.59274e10 0.233674
\(756\) 0 0
\(757\) −1.34616e11 −0.409932 −0.204966 0.978769i \(-0.565708\pi\)
−0.204966 + 0.978769i \(0.565708\pi\)
\(758\) 6.17474e11i 1.87043i
\(759\) 0 0
\(760\) 2.95368e11 + 2.95368e11i 0.885338 + 0.885338i
\(761\) −2.98532e9 + 2.98532e9i −0.00890126 + 0.00890126i −0.711543 0.702642i \(-0.752004\pi\)
0.702642 + 0.711543i \(0.252004\pi\)
\(762\) 0 0
\(763\) 1.30736e11 0.385742
\(764\) 1.00595e11i 0.295258i
\(765\) 0 0
\(766\) 5.26614e11i 1.52960i
\(767\) 2.28601e10 + 1.33571e11i 0.0660537 + 0.385949i
\(768\) 0 0
\(769\) −4.30116e11 4.30116e11i −1.22993 1.22993i −0.963990 0.265939i \(-0.914318\pi\)
−0.265939 0.963990i \(-0.585682\pi\)
\(770\) 5.02566e11 1.42965
\(771\) 0 0
\(772\) 6.03789e11 + 6.03789e11i 1.69987 + 1.69987i
\(773\) −8.08122e10 8.08122e10i −0.226339 0.226339i 0.584823 0.811161i \(-0.301164\pi\)
−0.811161 + 0.584823i \(0.801164\pi\)
\(774\) 0 0
\(775\) −2.93893e11 + 2.93893e11i −0.814670 + 0.814670i
\(776\) 2.56871e11 0.708383
\(777\) 0 0
\(778\) −5.19585e11 + 5.19585e11i −1.41820 + 1.41820i
\(779\) 1.15565e11i 0.313818i
\(780\) 0 0
\(781\) −8.46736e10 −0.227585
\(782\) −3.30542e11 3.30542e11i −0.883893 0.883893i
\(783\) 0 0
\(784\) 2.64181e8i 0.000699259i
\(785\) −7.26416e11 7.26416e11i −1.91296 1.91296i
\(786\) 0 0
\(787\) 3.45600e11 3.45600e11i 0.900896 0.900896i −0.0946180 0.995514i \(-0.530163\pi\)
0.995514 + 0.0946180i \(0.0301630\pi\)
\(788\) 3.53990e11 3.53990e11i 0.918091 0.918091i
\(789\) 0 0
\(790\) 1.41832e12i 3.64138i
\(791\) −2.10515e10 + 2.10515e10i −0.0537745 + 0.0537745i
\(792\) 0 0
\(793\) −5.83912e10 + 8.25052e10i −0.147657 + 0.208636i
\(794\) 5.59724e11 1.40829
\(795\) 0 0
\(796\) −1.08609e12 −2.70529
\(797\) 3.23312e11i 0.801287i −0.916234 0.400644i \(-0.868787\pi\)
0.916234 0.400644i \(-0.131213\pi\)
\(798\) 0 0
\(799\) 6.82240e10 + 6.82240e10i 0.167398 + 0.167398i
\(800\) −5.08002e11 + 5.08002e11i −1.24024 + 1.24024i
\(801\) 0 0
\(802\) 1.01642e12 2.45683
\(803\) 1.00890e11i 0.242653i
\(804\) 0 0
\(805\) 3.27902e11i 0.780838i
\(806\) −4.07433e11 2.88352e11i −0.965420 0.683255i
\(807\) 0 0
\(808\) −3.34584e11 3.34584e11i −0.784981 0.784981i
\(809\) −6.43334e10 −0.150190 −0.0750952 0.997176i \(-0.523926\pi\)
−0.0750952 + 0.997176i \(0.523926\pi\)
\(810\) 0 0
\(811\) 1.97439e11 + 1.97439e11i 0.456404 + 0.456404i 0.897473 0.441069i \(-0.145401\pi\)
−0.441069 + 0.897473i \(0.645401\pi\)
\(812\) 6.42769e11 + 6.42769e11i 1.47853 + 1.47853i
\(813\) 0 0
\(814\) 2.62247e11 2.62247e11i 0.597327 0.597327i
\(815\) 1.77562e10 0.0402457
\(816\) 0 0
\(817\) 2.66411e11 2.66411e11i 0.597949 0.597949i
\(818\) 6.77108e11i 1.51232i
\(819\) 0 0
\(820\) −3.82694e11 −0.846440
\(821\) 2.21288e11 + 2.21288e11i 0.487063 + 0.487063i 0.907378 0.420315i \(-0.138081\pi\)
−0.420315 + 0.907378i \(0.638081\pi\)
\(822\) 0 0
\(823\) 2.35397e11i 0.513101i −0.966531 0.256550i \(-0.917414\pi\)
0.966531 0.256550i \(-0.0825859\pi\)
\(824\) −3.48986e11 3.48986e11i −0.757006 0.757006i
\(825\) 0 0
\(826\) 2.05808e11 2.05808e11i 0.442121 0.442121i
\(827\) 5.32581e11 5.32581e11i 1.13858 1.13858i 0.149874 0.988705i \(-0.452113\pi\)
0.988705 0.149874i \(-0.0478869\pi\)
\(828\) 0 0
\(829\) 7.96173e11i 1.68574i −0.538121 0.842868i \(-0.680866\pi\)
0.538121 0.842868i \(-0.319134\pi\)
\(830\) 8.19329e10 8.19329e10i 0.172642 0.172642i
\(831\) 0 0
\(832\) −6.37896e11 4.51457e11i −1.33124 0.942156i
\(833\) 3.19117e9 0.00662782
\(834\) 0 0
\(835\) 5.32483e11 1.09537
\(836\) 3.84215e11i 0.786592i
\(837\) 0 0
\(838\) −9.64126e11 9.64126e11i −1.95505 1.95505i
\(839\) −7.78054e10 + 7.78054e10i −0.157023 + 0.157023i −0.781246 0.624223i \(-0.785416\pi\)
0.624223 + 0.781246i \(0.285416\pi\)
\(840\) 0 0
\(841\) 4.18919e11 0.837425
\(842\) 8.58816e11i 1.70864i
\(843\) 0 0
\(844\) 6.17855e11i 1.21763i
\(845\) −3.51630e11 + 7.34689e11i −0.689698 + 1.44104i
\(846\) 0 0
\(847\) 2.50148e11 + 2.50148e11i 0.486030 + 0.486030i
\(848\) 9.73793e10 0.188314
\(849\) 0 0
\(850\) −1.46840e12 1.46840e12i −2.81299 2.81299i
\(851\) −1.71105e11 1.71105e11i −0.326245 0.326245i
\(852\) 0 0
\(853\) −4.02094e10 + 4.02094e10i −0.0759506 + 0.0759506i −0.744062 0.668111i \(-0.767103\pi\)
0.668111 + 0.744062i \(0.267103\pi\)
\(854\) 2.17095e11 0.408149
\(855\) 0 0
\(856\) 5.49782e11 5.49782e11i 1.02399 1.02399i
\(857\) 8.03555e11i 1.48968i −0.667245 0.744839i \(-0.732526\pi\)
0.667245 0.744839i \(-0.267474\pi\)
\(858\) 0 0
\(859\) 6.03941e11 1.10923 0.554615 0.832107i \(-0.312866\pi\)
0.554615 + 0.832107i \(0.312866\pi\)
\(860\) −8.82220e11 8.82220e11i −1.61281 1.61281i
\(861\) 0 0
\(862\) 1.22356e12i 2.21614i
\(863\) −7.14366e11 7.14366e11i −1.28789 1.28789i −0.936068 0.351818i \(-0.885564\pi\)
−0.351818 0.936068i \(-0.614436\pi\)
\(864\) 0 0
\(865\) −1.22392e11 + 1.22392e11i −0.218619 + 0.218619i
\(866\) −1.12029e12 + 1.12029e12i −1.99186 + 1.99186i
\(867\) 0 0
\(868\) 6.49897e11i 1.14490i
\(869\) 3.23228e11 3.23228e11i 0.566800 0.566800i
\(870\) 0 0
\(871\) 1.77531e11 3.03838e10i 0.308462 0.0527922i
\(872\) −1.91309e11 −0.330879
\(873\) 0 0
\(874\) −4.13530e11 −0.708699
\(875\) 5.18269e11i 0.884144i
\(876\) 0 0
\(877\) 5.61395e11 + 5.61395e11i 0.949008 + 0.949008i 0.998762 0.0497532i \(-0.0158435\pi\)
−0.0497532 + 0.998762i \(0.515843\pi\)
\(878\) 1.29712e12 1.29712e12i 2.18274 2.18274i
\(879\) 0 0
\(880\) 9.10998e10 0.151910
\(881\) 1.38278e11i 0.229536i −0.993392 0.114768i \(-0.963388\pi\)
0.993392 0.114768i \(-0.0366125\pi\)
\(882\) 0 0
\(883\) 6.30093e11i 1.03648i −0.855235 0.518241i \(-0.826587\pi\)
0.855235 0.518241i \(-0.173413\pi\)
\(884\) 8.73369e11 1.23405e12i 1.43017 2.02079i
\(885\) 0 0
\(886\) 3.65579e11 + 3.65579e11i 0.593263 + 0.593263i
\(887\) 7.83211e11 1.26527 0.632637 0.774449i \(-0.281973\pi\)
0.632637 + 0.774449i \(0.281973\pi\)
\(888\) 0 0
\(889\) −8.88429e10 8.88429e10i −0.142238 0.142238i
\(890\) 1.19501e12 + 1.19501e12i 1.90464 + 1.90464i
\(891\) 0 0
\(892\) −6.30809e10 + 6.30809e10i −0.0996411 + 0.0996411i
\(893\) 8.53528e10 0.134218
\(894\) 0 0
\(895\) 6.73926e11 6.73926e11i 1.05032 1.05032i
\(896\) 9.48742e11i 1.47203i
\(897\) 0 0
\(898\) −2.72112e11 −0.418450
\(899\) 4.64679e11 + 4.64679e11i 0.711401 + 0.711401i
\(900\) 0 0
\(901\) 1.17629e12i 1.78491i
\(902\) 1.43869e11 + 1.43869e11i 0.217341 + 0.217341i
\(903\) 0 0
\(904\) 3.08051e10 3.08051e10i 0.0461263 0.0461263i
\(905\) −1.32908e11 + 1.32908e11i −0.198134 + 0.198134i
\(906\) 0 0
\(907\) 4.86298e10i 0.0718577i 0.999354 + 0.0359288i \(0.0114390\pi\)
−0.999354 + 0.0359288i \(0.988561\pi\)
\(908\) −3.67387e11 + 3.67387e11i −0.540481 + 0.540481i
\(909\) 0 0
\(910\) 1.72432e12 2.95112e11i 2.51451 0.430349i
\(911\) −5.89747e10 −0.0856234 −0.0428117 0.999083i \(-0.513632\pi\)
−0.0428117 + 0.999083i \(0.513632\pi\)
\(912\) 0 0
\(913\) −3.73442e10 −0.0537452
\(914\) 2.87688e11i 0.412228i
\(915\) 0 0
\(916\) 1.06725e12 + 1.06725e12i 1.51595 + 1.51595i
\(917\) 5.93177e11 5.93177e11i 0.838893 0.838893i
\(918\) 0 0
\(919\) −1.20228e12 −1.68556 −0.842781 0.538257i \(-0.819083\pi\)
−0.842781 + 0.538257i \(0.819083\pi\)
\(920\) 4.79827e11i 0.669782i
\(921\) 0 0
\(922\) 1.21723e12i 1.68442i
\(923\) −2.90519e11 + 4.97212e10i −0.400283 + 0.0685070i
\(924\) 0 0
\(925\) −7.60114e11 7.60114e11i −1.03827 1.03827i
\(926\) 9.25992e10 0.125940
\(927\) 0 0
\(928\) 8.03211e11 + 8.03211e11i 1.08302 + 1.08302i
\(929\) 5.36726e11 + 5.36726e11i 0.720593 + 0.720593i 0.968726 0.248133i \(-0.0798170\pi\)
−0.248133 + 0.968726i \(0.579817\pi\)
\(930\) 0 0
\(931\) 1.99619e9 1.99619e9i 0.00265707 0.00265707i
\(932\) 3.14018e11 0.416189
\(933\) 0 0
\(934\) −1.12552e12 + 1.12552e12i −1.47899 + 1.47899i
\(935\) 1.10044e12i 1.43986i
\(936\) 0 0
\(937\) 5.61778e11 0.728796 0.364398 0.931243i \(-0.381275\pi\)
0.364398 + 0.931243i \(0.381275\pi\)
\(938\) −2.73543e11 2.73543e11i −0.353357 0.353357i
\(939\) 0 0
\(940\) 2.82646e11i 0.362018i
\(941\) 5.81505e11 + 5.81505e11i 0.741643 + 0.741643i 0.972894 0.231251i \(-0.0742820\pi\)
−0.231251 + 0.972894i \(0.574282\pi\)
\(942\) 0 0
\(943\) 9.38682e10 9.38682e10i 0.118706 0.118706i
\(944\) 3.73066e10 3.73066e10i 0.0469784 0.0469784i
\(945\) 0 0
\(946\) 6.63319e11i 0.828243i
\(947\) −5.95719e11 + 5.95719e11i −0.740698 + 0.740698i −0.972712 0.232014i \(-0.925468\pi\)
0.232014 + 0.972712i \(0.425468\pi\)
\(948\) 0 0
\(949\) 5.92435e10 + 3.46157e11i 0.0730426 + 0.426784i
\(950\) −1.83707e12 −2.25544
\(951\) 0 0
\(952\) −1.13777e12 −1.38518
\(953\) 5.10820e11i 0.619293i 0.950852 + 0.309646i \(0.100211\pi\)
−0.950852 + 0.309646i \(0.899789\pi\)
\(954\) 0 0
\(955\) 1.80226e11 + 1.80226e11i 0.216672 + 0.216672i
\(956\) 1.50308e12 1.50308e12i 1.79950 1.79950i
\(957\) 0 0
\(958\) 1.82816e12 2.17047
\(959\) 4.67387e11i 0.552589i
\(960\) 0 0
\(961\) 3.83058e11i 0.449129i
\(962\) 7.45785e11 1.05377e12i 0.870789 1.23040i
\(963\) 0 0
\(964\) −8.52326e11 8.52326e11i −0.986956 0.986956i
\(965\) −2.16350e12 −2.49487
\(966\) 0 0
\(967\) −3.84454e11 3.84454e11i −0.439682 0.439682i 0.452223 0.891905i \(-0.350631\pi\)
−0.891905 + 0.452223i \(0.850631\pi\)
\(968\) −3.66047e11 3.66047e11i −0.416903 0.416903i
\(969\) 0 0
\(970\) −1.31342e12 + 1.31342e12i −1.48360 + 1.48360i
\(971\) −5.37749e11 −0.604926 −0.302463 0.953161i \(-0.597809\pi\)
−0.302463 + 0.953161i \(0.597809\pi\)
\(972\) 0 0
\(973\) 2.43922e10 2.43922e10i 0.0272145 0.0272145i
\(974\) 6.55419e11i 0.728255i
\(975\) 0 0
\(976\) 3.93527e10 0.0433686
\(977\) 8.39362e10 + 8.39362e10i 0.0921237 + 0.0921237i 0.751667 0.659543i \(-0.229250\pi\)
−0.659543 + 0.751667i \(0.729250\pi\)
\(978\) 0 0
\(979\) 5.44674e11i 0.592934i
\(980\) −6.61037e9 6.61037e9i −0.00716673 0.00716673i
\(981\) 0 0
\(982\) 2.04751e12 2.04751e12i 2.20181 2.20181i
\(983\) −2.54267e11 + 2.54267e11i −0.272318 + 0.272318i −0.830033 0.557715i \(-0.811678\pi\)
0.557715 + 0.830033i \(0.311678\pi\)
\(984\) 0 0
\(985\) 1.26842e12i 1.34746i
\(986\) −2.32172e12 + 2.32172e12i −2.45641 + 2.45641i
\(987\) 0 0
\(988\) −2.25615e11 1.31826e12i −0.236778 1.38348i
\(989\) 4.32787e11 0.452365
\(990\) 0 0
\(991\) −1.73726e12 −1.80123 −0.900615 0.434617i \(-0.856884\pi\)
−0.900615 + 0.434617i \(0.856884\pi\)
\(992\) 8.12119e11i 0.838635i
\(993\) 0 0
\(994\) 4.47635e11 + 4.47635e11i 0.458542 + 0.458542i
\(995\) 1.94584e12 1.94584e12i 1.98525 1.98525i
\(996\) 0 0
\(997\) 1.32018e12 1.33614 0.668072 0.744096i \(-0.267120\pi\)
0.668072 + 0.744096i \(0.267120\pi\)
\(998\) 2.11244e11i 0.212943i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.9.j.a.73.8 18
3.2 odd 2 13.9.d.a.8.2 yes 18
13.5 odd 4 inner 117.9.j.a.109.8 18
39.5 even 4 13.9.d.a.5.2 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.9.d.a.5.2 18 39.5 even 4
13.9.d.a.8.2 yes 18 3.2 odd 2
117.9.j.a.73.8 18 1.1 even 1 trivial
117.9.j.a.109.8 18 13.5 odd 4 inner