Properties

Label 117.6.a.c.1.2
Level $117$
Weight $6$
Character 117.1
Self dual yes
Analytic conductor $18.765$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,6,Mod(1,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 117.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.7649069181\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 117.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.56155 q^{2} -11.1922 q^{4} +103.462 q^{5} +126.309 q^{7} -197.024 q^{8} +471.948 q^{10} +14.8296 q^{11} -169.000 q^{13} +576.164 q^{14} -540.582 q^{16} +1051.12 q^{17} -213.723 q^{19} -1157.97 q^{20} +67.6458 q^{22} +4231.16 q^{23} +7579.41 q^{25} -770.902 q^{26} -1413.68 q^{28} +504.955 q^{29} +4783.58 q^{31} +3838.86 q^{32} +4794.75 q^{34} +13068.2 q^{35} -4635.74 q^{37} -974.911 q^{38} -20384.5 q^{40} -7944.15 q^{41} -8516.41 q^{43} -165.976 q^{44} +19300.7 q^{46} -24921.2 q^{47} -853.113 q^{49} +34573.9 q^{50} +1891.49 q^{52} +7808.46 q^{53} +1534.30 q^{55} -24885.8 q^{56} +2303.38 q^{58} +37337.5 q^{59} -18172.2 q^{61} +21820.5 q^{62} +34809.8 q^{64} -17485.1 q^{65} -34559.9 q^{67} -11764.4 q^{68} +59611.1 q^{70} -41255.7 q^{71} -1056.42 q^{73} -21146.2 q^{74} +2392.04 q^{76} +1873.10 q^{77} -47719.3 q^{79} -55929.8 q^{80} -36237.7 q^{82} +74799.0 q^{83} +108751. q^{85} -38848.0 q^{86} -2921.78 q^{88} -9799.26 q^{89} -21346.2 q^{91} -47356.1 q^{92} -113679. q^{94} -22112.3 q^{95} -138432. q^{97} -3891.52 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{2} - 43 q^{4} + 42 q^{5} - 36 q^{7} - 225 q^{8} + 445 q^{10} + 376 q^{11} - 338 q^{13} + 505 q^{14} + 465 q^{16} + 2630 q^{17} - 312 q^{19} + 797 q^{20} + 226 q^{22} + 2624 q^{23} + 8232 q^{25}+ \cdots + 290 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.56155 0.806376 0.403188 0.915117i \(-0.367902\pi\)
0.403188 + 0.915117i \(0.367902\pi\)
\(3\) 0 0
\(4\) −11.1922 −0.349757
\(5\) 103.462 1.85079 0.925393 0.379008i \(-0.123735\pi\)
0.925393 + 0.379008i \(0.123735\pi\)
\(6\) 0 0
\(7\) 126.309 0.974290 0.487145 0.873321i \(-0.338038\pi\)
0.487145 + 0.873321i \(0.338038\pi\)
\(8\) −197.024 −1.08841
\(9\) 0 0
\(10\) 471.948 1.49243
\(11\) 14.8296 0.0369527 0.0184764 0.999829i \(-0.494118\pi\)
0.0184764 + 0.999829i \(0.494118\pi\)
\(12\) 0 0
\(13\) −169.000 −0.277350
\(14\) 576.164 0.785644
\(15\) 0 0
\(16\) −540.582 −0.527912
\(17\) 1051.12 0.882126 0.441063 0.897476i \(-0.354602\pi\)
0.441063 + 0.897476i \(0.354602\pi\)
\(18\) 0 0
\(19\) −213.723 −0.135821 −0.0679107 0.997691i \(-0.521633\pi\)
−0.0679107 + 0.997691i \(0.521633\pi\)
\(20\) −1157.97 −0.647326
\(21\) 0 0
\(22\) 67.6458 0.0297978
\(23\) 4231.16 1.66778 0.833892 0.551928i \(-0.186108\pi\)
0.833892 + 0.551928i \(0.186108\pi\)
\(24\) 0 0
\(25\) 7579.41 2.42541
\(26\) −770.902 −0.223649
\(27\) 0 0
\(28\) −1413.68 −0.340765
\(29\) 504.955 0.111495 0.0557477 0.998445i \(-0.482246\pi\)
0.0557477 + 0.998445i \(0.482246\pi\)
\(30\) 0 0
\(31\) 4783.58 0.894022 0.447011 0.894528i \(-0.352488\pi\)
0.447011 + 0.894528i \(0.352488\pi\)
\(32\) 3838.86 0.662716
\(33\) 0 0
\(34\) 4794.75 0.711325
\(35\) 13068.2 1.80320
\(36\) 0 0
\(37\) −4635.74 −0.556692 −0.278346 0.960481i \(-0.589786\pi\)
−0.278346 + 0.960481i \(0.589786\pi\)
\(38\) −974.911 −0.109523
\(39\) 0 0
\(40\) −20384.5 −2.01442
\(41\) −7944.15 −0.738054 −0.369027 0.929419i \(-0.620309\pi\)
−0.369027 + 0.929419i \(0.620309\pi\)
\(42\) 0 0
\(43\) −8516.41 −0.702401 −0.351201 0.936300i \(-0.614226\pi\)
−0.351201 + 0.936300i \(0.614226\pi\)
\(44\) −165.976 −0.0129245
\(45\) 0 0
\(46\) 19300.7 1.34486
\(47\) −24921.2 −1.64560 −0.822801 0.568330i \(-0.807590\pi\)
−0.822801 + 0.568330i \(0.807590\pi\)
\(48\) 0 0
\(49\) −853.113 −0.0507594
\(50\) 34573.9 1.95579
\(51\) 0 0
\(52\) 1891.49 0.0970052
\(53\) 7808.46 0.381835 0.190917 0.981606i \(-0.438854\pi\)
0.190917 + 0.981606i \(0.438854\pi\)
\(54\) 0 0
\(55\) 1534.30 0.0683916
\(56\) −24885.8 −1.06043
\(57\) 0 0
\(58\) 2303.38 0.0899073
\(59\) 37337.5 1.39642 0.698209 0.715894i \(-0.253980\pi\)
0.698209 + 0.715894i \(0.253980\pi\)
\(60\) 0 0
\(61\) −18172.2 −0.625292 −0.312646 0.949870i \(-0.601215\pi\)
−0.312646 + 0.949870i \(0.601215\pi\)
\(62\) 21820.5 0.720918
\(63\) 0 0
\(64\) 34809.8 1.06231
\(65\) −17485.1 −0.513316
\(66\) 0 0
\(67\) −34559.9 −0.940559 −0.470279 0.882518i \(-0.655847\pi\)
−0.470279 + 0.882518i \(0.655847\pi\)
\(68\) −11764.4 −0.308530
\(69\) 0 0
\(70\) 59611.1 1.45406
\(71\) −41255.7 −0.971265 −0.485632 0.874163i \(-0.661411\pi\)
−0.485632 + 0.874163i \(0.661411\pi\)
\(72\) 0 0
\(73\) −1056.42 −0.0232022 −0.0116011 0.999933i \(-0.503693\pi\)
−0.0116011 + 0.999933i \(0.503693\pi\)
\(74\) −21146.2 −0.448903
\(75\) 0 0
\(76\) 2392.04 0.0475045
\(77\) 1873.10 0.0360027
\(78\) 0 0
\(79\) −47719.3 −0.860253 −0.430126 0.902769i \(-0.641531\pi\)
−0.430126 + 0.902769i \(0.641531\pi\)
\(80\) −55929.8 −0.977053
\(81\) 0 0
\(82\) −36237.7 −0.595149
\(83\) 74799.0 1.19179 0.595896 0.803061i \(-0.296797\pi\)
0.595896 + 0.803061i \(0.296797\pi\)
\(84\) 0 0
\(85\) 108751. 1.63263
\(86\) −38848.0 −0.566400
\(87\) 0 0
\(88\) −2921.78 −0.0402198
\(89\) −9799.26 −0.131135 −0.0655675 0.997848i \(-0.520886\pi\)
−0.0655675 + 0.997848i \(0.520886\pi\)
\(90\) 0 0
\(91\) −21346.2 −0.270219
\(92\) −47356.1 −0.583320
\(93\) 0 0
\(94\) −113679. −1.32697
\(95\) −22112.3 −0.251376
\(96\) 0 0
\(97\) −138432. −1.49385 −0.746927 0.664906i \(-0.768472\pi\)
−0.746927 + 0.664906i \(0.768472\pi\)
\(98\) −3891.52 −0.0409312
\(99\) 0 0
\(100\) −84830.5 −0.848305
\(101\) −139151. −1.35733 −0.678663 0.734450i \(-0.737440\pi\)
−0.678663 + 0.734450i \(0.737440\pi\)
\(102\) 0 0
\(103\) 98512.2 0.914950 0.457475 0.889223i \(-0.348754\pi\)
0.457475 + 0.889223i \(0.348754\pi\)
\(104\) 33297.0 0.301871
\(105\) 0 0
\(106\) 35618.7 0.307902
\(107\) 26848.4 0.226704 0.113352 0.993555i \(-0.463841\pi\)
0.113352 + 0.993555i \(0.463841\pi\)
\(108\) 0 0
\(109\) −63220.9 −0.509676 −0.254838 0.966984i \(-0.582022\pi\)
−0.254838 + 0.966984i \(0.582022\pi\)
\(110\) 6998.78 0.0551494
\(111\) 0 0
\(112\) −68280.2 −0.514340
\(113\) −114434. −0.843058 −0.421529 0.906815i \(-0.638506\pi\)
−0.421529 + 0.906815i \(0.638506\pi\)
\(114\) 0 0
\(115\) 437765. 3.08671
\(116\) −5651.57 −0.0389964
\(117\) 0 0
\(118\) 170317. 1.12604
\(119\) 132766. 0.859446
\(120\) 0 0
\(121\) −160831. −0.998634
\(122\) −82893.4 −0.504221
\(123\) 0 0
\(124\) −53538.9 −0.312691
\(125\) 460863. 2.63813
\(126\) 0 0
\(127\) −248871. −1.36919 −0.684596 0.728922i \(-0.740022\pi\)
−0.684596 + 0.728922i \(0.740022\pi\)
\(128\) 35943.2 0.193906
\(129\) 0 0
\(130\) −79759.2 −0.413926
\(131\) −102963. −0.524205 −0.262102 0.965040i \(-0.584416\pi\)
−0.262102 + 0.965040i \(0.584416\pi\)
\(132\) 0 0
\(133\) −26995.1 −0.132329
\(134\) −157647. −0.758444
\(135\) 0 0
\(136\) −207096. −0.960117
\(137\) 36037.4 0.164041 0.0820204 0.996631i \(-0.473863\pi\)
0.0820204 + 0.996631i \(0.473863\pi\)
\(138\) 0 0
\(139\) 152655. 0.670151 0.335076 0.942191i \(-0.391238\pi\)
0.335076 + 0.942191i \(0.391238\pi\)
\(140\) −146262. −0.630683
\(141\) 0 0
\(142\) −188190. −0.783205
\(143\) −2506.20 −0.0102488
\(144\) 0 0
\(145\) 52243.7 0.206354
\(146\) −4818.92 −0.0187097
\(147\) 0 0
\(148\) 51884.3 0.194707
\(149\) −72547.1 −0.267704 −0.133852 0.991001i \(-0.542735\pi\)
−0.133852 + 0.991001i \(0.542735\pi\)
\(150\) 0 0
\(151\) 489021. 1.74536 0.872681 0.488291i \(-0.162379\pi\)
0.872681 + 0.488291i \(0.162379\pi\)
\(152\) 42108.6 0.147830
\(153\) 0 0
\(154\) 8544.26 0.0290317
\(155\) 494919. 1.65464
\(156\) 0 0
\(157\) 89467.9 0.289680 0.144840 0.989455i \(-0.453733\pi\)
0.144840 + 0.989455i \(0.453733\pi\)
\(158\) −217674. −0.693687
\(159\) 0 0
\(160\) 397177. 1.22655
\(161\) 534432. 1.62490
\(162\) 0 0
\(163\) −225668. −0.665275 −0.332637 0.943055i \(-0.607939\pi\)
−0.332637 + 0.943055i \(0.607939\pi\)
\(164\) 88912.8 0.258140
\(165\) 0 0
\(166\) 341200. 0.961033
\(167\) −209528. −0.581367 −0.290683 0.956819i \(-0.593883\pi\)
−0.290683 + 0.956819i \(0.593883\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 496074. 1.31651
\(171\) 0 0
\(172\) 95317.6 0.245670
\(173\) 465184. 1.18171 0.590853 0.806779i \(-0.298791\pi\)
0.590853 + 0.806779i \(0.298791\pi\)
\(174\) 0 0
\(175\) 957345. 2.36305
\(176\) −8016.60 −0.0195078
\(177\) 0 0
\(178\) −44699.9 −0.105744
\(179\) 472573. 1.10239 0.551197 0.834375i \(-0.314171\pi\)
0.551197 + 0.834375i \(0.314171\pi\)
\(180\) 0 0
\(181\) −74099.4 −0.168120 −0.0840598 0.996461i \(-0.526789\pi\)
−0.0840598 + 0.996461i \(0.526789\pi\)
\(182\) −97371.7 −0.217898
\(183\) 0 0
\(184\) −833638. −1.81524
\(185\) −479624. −1.03032
\(186\) 0 0
\(187\) 15587.7 0.0325970
\(188\) 278924. 0.575561
\(189\) 0 0
\(190\) −100866. −0.202704
\(191\) 224128. 0.444543 0.222271 0.974985i \(-0.428653\pi\)
0.222271 + 0.974985i \(0.428653\pi\)
\(192\) 0 0
\(193\) −662265. −1.27979 −0.639895 0.768463i \(-0.721022\pi\)
−0.639895 + 0.768463i \(0.721022\pi\)
\(194\) −631467. −1.20461
\(195\) 0 0
\(196\) 9548.24 0.0177535
\(197\) −666464. −1.22352 −0.611760 0.791043i \(-0.709538\pi\)
−0.611760 + 0.791043i \(0.709538\pi\)
\(198\) 0 0
\(199\) 645720. 1.15588 0.577938 0.816081i \(-0.303858\pi\)
0.577938 + 0.816081i \(0.303858\pi\)
\(200\) −1.49332e6 −2.63985
\(201\) 0 0
\(202\) −634746. −1.09451
\(203\) 63780.1 0.108629
\(204\) 0 0
\(205\) −821919. −1.36598
\(206\) 449369. 0.737794
\(207\) 0 0
\(208\) 91358.4 0.146417
\(209\) −3169.43 −0.00501897
\(210\) 0 0
\(211\) −868021. −1.34222 −0.671110 0.741357i \(-0.734182\pi\)
−0.671110 + 0.741357i \(0.734182\pi\)
\(212\) −87394.1 −0.133550
\(213\) 0 0
\(214\) 122470. 0.182808
\(215\) −881125. −1.29999
\(216\) 0 0
\(217\) 604207. 0.871037
\(218\) −288385. −0.410991
\(219\) 0 0
\(220\) −17172.2 −0.0239205
\(221\) −177639. −0.244658
\(222\) 0 0
\(223\) −58342.9 −0.0785644 −0.0392822 0.999228i \(-0.512507\pi\)
−0.0392822 + 0.999228i \(0.512507\pi\)
\(224\) 484882. 0.645678
\(225\) 0 0
\(226\) −521995. −0.679822
\(227\) −111768. −0.143964 −0.0719820 0.997406i \(-0.522932\pi\)
−0.0719820 + 0.997406i \(0.522932\pi\)
\(228\) 0 0
\(229\) 1.14984e6 1.44893 0.724467 0.689309i \(-0.242086\pi\)
0.724467 + 0.689309i \(0.242086\pi\)
\(230\) 1.99689e6 2.48905
\(231\) 0 0
\(232\) −99488.0 −0.121353
\(233\) −630470. −0.760807 −0.380404 0.924821i \(-0.624215\pi\)
−0.380404 + 0.924821i \(0.624215\pi\)
\(234\) 0 0
\(235\) −2.57840e6 −3.04566
\(236\) −417891. −0.488408
\(237\) 0 0
\(238\) 605618. 0.693037
\(239\) 165628. 0.187559 0.0937797 0.995593i \(-0.470105\pi\)
0.0937797 + 0.995593i \(0.470105\pi\)
\(240\) 0 0
\(241\) 690968. 0.766329 0.383165 0.923680i \(-0.374834\pi\)
0.383165 + 0.923680i \(0.374834\pi\)
\(242\) −733639. −0.805275
\(243\) 0 0
\(244\) 203387. 0.218700
\(245\) −88264.9 −0.0939448
\(246\) 0 0
\(247\) 36119.3 0.0376701
\(248\) −942478. −0.973065
\(249\) 0 0
\(250\) 2.10225e6 2.12733
\(251\) 386887. 0.387615 0.193807 0.981040i \(-0.437916\pi\)
0.193807 + 0.981040i \(0.437916\pi\)
\(252\) 0 0
\(253\) 62746.2 0.0616292
\(254\) −1.13524e6 −1.10408
\(255\) 0 0
\(256\) −949957. −0.905950
\(257\) −258260. −0.243907 −0.121953 0.992536i \(-0.538916\pi\)
−0.121953 + 0.992536i \(0.538916\pi\)
\(258\) 0 0
\(259\) −585535. −0.542379
\(260\) 195697. 0.179536
\(261\) 0 0
\(262\) −469669. −0.422706
\(263\) 1.19053e6 1.06133 0.530665 0.847582i \(-0.321942\pi\)
0.530665 + 0.847582i \(0.321942\pi\)
\(264\) 0 0
\(265\) 807879. 0.706695
\(266\) −123140. −0.106707
\(267\) 0 0
\(268\) 386803. 0.328967
\(269\) −850968. −0.717022 −0.358511 0.933525i \(-0.616715\pi\)
−0.358511 + 0.933525i \(0.616715\pi\)
\(270\) 0 0
\(271\) −40926.1 −0.0338514 −0.0169257 0.999857i \(-0.505388\pi\)
−0.0169257 + 0.999857i \(0.505388\pi\)
\(272\) −568218. −0.465685
\(273\) 0 0
\(274\) 164387. 0.132279
\(275\) 112399. 0.0896256
\(276\) 0 0
\(277\) 1.00054e6 0.783490 0.391745 0.920074i \(-0.371872\pi\)
0.391745 + 0.920074i \(0.371872\pi\)
\(278\) 696342. 0.540394
\(279\) 0 0
\(280\) −2.57474e6 −1.96263
\(281\) 1.73596e6 1.31151 0.655757 0.754972i \(-0.272350\pi\)
0.655757 + 0.754972i \(0.272350\pi\)
\(282\) 0 0
\(283\) −1.27363e6 −0.945319 −0.472660 0.881245i \(-0.656706\pi\)
−0.472660 + 0.881245i \(0.656706\pi\)
\(284\) 461743. 0.339707
\(285\) 0 0
\(286\) −11432.1 −0.00826443
\(287\) −1.00342e6 −0.719078
\(288\) 0 0
\(289\) −315001. −0.221854
\(290\) 238312. 0.166399
\(291\) 0 0
\(292\) 11823.7 0.00811515
\(293\) 2043.70 0.00139075 0.000695374 1.00000i \(-0.499779\pi\)
0.000695374 1.00000i \(0.499779\pi\)
\(294\) 0 0
\(295\) 3.86302e6 2.58447
\(296\) 913351. 0.605910
\(297\) 0 0
\(298\) −330927. −0.215870
\(299\) −715066. −0.462560
\(300\) 0 0
\(301\) −1.07570e6 −0.684342
\(302\) 2.23070e6 1.40742
\(303\) 0 0
\(304\) 115535. 0.0717018
\(305\) −1.88013e6 −1.15728
\(306\) 0 0
\(307\) −401308. −0.243014 −0.121507 0.992591i \(-0.538773\pi\)
−0.121507 + 0.992591i \(0.538773\pi\)
\(308\) −20964.2 −0.0125922
\(309\) 0 0
\(310\) 2.25760e6 1.33427
\(311\) 1.92628e6 1.12933 0.564663 0.825322i \(-0.309006\pi\)
0.564663 + 0.825322i \(0.309006\pi\)
\(312\) 0 0
\(313\) 1.64519e6 0.949196 0.474598 0.880203i \(-0.342593\pi\)
0.474598 + 0.880203i \(0.342593\pi\)
\(314\) 408113. 0.233591
\(315\) 0 0
\(316\) 534085. 0.300880
\(317\) 1.99476e6 1.11492 0.557459 0.830205i \(-0.311777\pi\)
0.557459 + 0.830205i \(0.311777\pi\)
\(318\) 0 0
\(319\) 7488.26 0.00412006
\(320\) 3.60150e6 1.96611
\(321\) 0 0
\(322\) 2.43784e6 1.31028
\(323\) −224649. −0.119812
\(324\) 0 0
\(325\) −1.28092e6 −0.672688
\(326\) −1.02940e6 −0.536462
\(327\) 0 0
\(328\) 1.56519e6 0.803306
\(329\) −3.14777e6 −1.60329
\(330\) 0 0
\(331\) −675924. −0.339100 −0.169550 0.985522i \(-0.554231\pi\)
−0.169550 + 0.985522i \(0.554231\pi\)
\(332\) −837168. −0.416838
\(333\) 0 0
\(334\) −955772. −0.468800
\(335\) −3.57564e6 −1.74077
\(336\) 0 0
\(337\) −2.13552e6 −1.02430 −0.512152 0.858895i \(-0.671152\pi\)
−0.512152 + 0.858895i \(0.671152\pi\)
\(338\) 130283. 0.0620289
\(339\) 0 0
\(340\) −1.21717e6 −0.571023
\(341\) 70938.3 0.0330366
\(342\) 0 0
\(343\) −2.23063e6 −1.02374
\(344\) 1.67793e6 0.764502
\(345\) 0 0
\(346\) 2.12196e6 0.952899
\(347\) 2.57257e6 1.14695 0.573473 0.819225i \(-0.305596\pi\)
0.573473 + 0.819225i \(0.305596\pi\)
\(348\) 0 0
\(349\) 2.02363e6 0.889339 0.444670 0.895695i \(-0.353321\pi\)
0.444670 + 0.895695i \(0.353321\pi\)
\(350\) 4.36698e6 1.90551
\(351\) 0 0
\(352\) 56928.7 0.0244892
\(353\) −2.04810e6 −0.874810 −0.437405 0.899265i \(-0.644102\pi\)
−0.437405 + 0.899265i \(0.644102\pi\)
\(354\) 0 0
\(355\) −4.26840e6 −1.79760
\(356\) 109676. 0.0458654
\(357\) 0 0
\(358\) 2.15567e6 0.888944
\(359\) 1.59901e6 0.654808 0.327404 0.944885i \(-0.393826\pi\)
0.327404 + 0.944885i \(0.393826\pi\)
\(360\) 0 0
\(361\) −2.43042e6 −0.981553
\(362\) −338008. −0.135568
\(363\) 0 0
\(364\) 238911. 0.0945112
\(365\) −109299. −0.0429424
\(366\) 0 0
\(367\) −3.86389e6 −1.49747 −0.748737 0.662867i \(-0.769339\pi\)
−0.748737 + 0.662867i \(0.769339\pi\)
\(368\) −2.28729e6 −0.880444
\(369\) 0 0
\(370\) −2.18783e6 −0.830824
\(371\) 986276. 0.372018
\(372\) 0 0
\(373\) −1.56702e6 −0.583179 −0.291589 0.956544i \(-0.594184\pi\)
−0.291589 + 0.956544i \(0.594184\pi\)
\(374\) 71104.0 0.0262854
\(375\) 0 0
\(376\) 4.91007e6 1.79109
\(377\) −85337.3 −0.0309233
\(378\) 0 0
\(379\) 3.19239e6 1.14161 0.570805 0.821086i \(-0.306631\pi\)
0.570805 + 0.821086i \(0.306631\pi\)
\(380\) 247486. 0.0879208
\(381\) 0 0
\(382\) 1.02237e6 0.358469
\(383\) −400432. −0.139486 −0.0697432 0.997565i \(-0.522218\pi\)
−0.0697432 + 0.997565i \(0.522218\pi\)
\(384\) 0 0
\(385\) 193795. 0.0666333
\(386\) −3.02096e6 −1.03199
\(387\) 0 0
\(388\) 1.54937e6 0.522487
\(389\) −413440. −0.138528 −0.0692642 0.997598i \(-0.522065\pi\)
−0.0692642 + 0.997598i \(0.522065\pi\)
\(390\) 0 0
\(391\) 4.44746e6 1.47120
\(392\) 168083. 0.0552471
\(393\) 0 0
\(394\) −3.04011e6 −0.986618
\(395\) −4.93714e6 −1.59214
\(396\) 0 0
\(397\) −102926. −0.0327753 −0.0163877 0.999866i \(-0.505217\pi\)
−0.0163877 + 0.999866i \(0.505217\pi\)
\(398\) 2.94548e6 0.932071
\(399\) 0 0
\(400\) −4.09729e6 −1.28040
\(401\) −2.23365e6 −0.693671 −0.346836 0.937926i \(-0.612744\pi\)
−0.346836 + 0.937926i \(0.612744\pi\)
\(402\) 0 0
\(403\) −808424. −0.247957
\(404\) 1.55741e6 0.474734
\(405\) 0 0
\(406\) 290937. 0.0875958
\(407\) −68746.0 −0.0205713
\(408\) 0 0
\(409\) −4.46150e6 −1.31878 −0.659390 0.751801i \(-0.729185\pi\)
−0.659390 + 0.751801i \(0.729185\pi\)
\(410\) −3.74923e6 −1.10149
\(411\) 0 0
\(412\) −1.10257e6 −0.320010
\(413\) 4.71606e6 1.36052
\(414\) 0 0
\(415\) 7.73887e6 2.20575
\(416\) −648768. −0.183804
\(417\) 0 0
\(418\) −14457.5 −0.00404718
\(419\) −4.22792e6 −1.17650 −0.588250 0.808679i \(-0.700183\pi\)
−0.588250 + 0.808679i \(0.700183\pi\)
\(420\) 0 0
\(421\) 4.11791e6 1.13233 0.566163 0.824293i \(-0.308427\pi\)
0.566163 + 0.824293i \(0.308427\pi\)
\(422\) −3.95952e6 −1.08233
\(423\) 0 0
\(424\) −1.53845e6 −0.415594
\(425\) 7.96688e6 2.13952
\(426\) 0 0
\(427\) −2.29531e6 −0.609216
\(428\) −300493. −0.0792912
\(429\) 0 0
\(430\) −4.01930e6 −1.04828
\(431\) −1.15324e6 −0.299038 −0.149519 0.988759i \(-0.547773\pi\)
−0.149519 + 0.988759i \(0.547773\pi\)
\(432\) 0 0
\(433\) −33734.3 −0.00864673 −0.00432337 0.999991i \(-0.501376\pi\)
−0.00432337 + 0.999991i \(0.501376\pi\)
\(434\) 2.75612e6 0.702383
\(435\) 0 0
\(436\) 707583. 0.178263
\(437\) −904298. −0.226521
\(438\) 0 0
\(439\) 7.48363e6 1.85332 0.926661 0.375898i \(-0.122666\pi\)
0.926661 + 0.375898i \(0.122666\pi\)
\(440\) −302293. −0.0744383
\(441\) 0 0
\(442\) −810312. −0.197286
\(443\) 3.28028e6 0.794148 0.397074 0.917786i \(-0.370026\pi\)
0.397074 + 0.917786i \(0.370026\pi\)
\(444\) 0 0
\(445\) −1.01385e6 −0.242703
\(446\) −266134. −0.0633525
\(447\) 0 0
\(448\) 4.39678e6 1.03500
\(449\) −7.95356e6 −1.86185 −0.930927 0.365205i \(-0.880999\pi\)
−0.930927 + 0.365205i \(0.880999\pi\)
\(450\) 0 0
\(451\) −117808. −0.0272731
\(452\) 1.28077e6 0.294866
\(453\) 0 0
\(454\) −509837. −0.116089
\(455\) −2.20852e6 −0.500118
\(456\) 0 0
\(457\) −3.35187e6 −0.750753 −0.375377 0.926872i \(-0.622487\pi\)
−0.375377 + 0.926872i \(0.622487\pi\)
\(458\) 5.24506e6 1.16839
\(459\) 0 0
\(460\) −4.89956e6 −1.07960
\(461\) −4.68627e6 −1.02701 −0.513505 0.858086i \(-0.671653\pi\)
−0.513505 + 0.858086i \(0.671653\pi\)
\(462\) 0 0
\(463\) 6.64697e6 1.44102 0.720512 0.693442i \(-0.243907\pi\)
0.720512 + 0.693442i \(0.243907\pi\)
\(464\) −272969. −0.0588599
\(465\) 0 0
\(466\) −2.87592e6 −0.613497
\(467\) 3.14141e6 0.666549 0.333275 0.942830i \(-0.391846\pi\)
0.333275 + 0.942830i \(0.391846\pi\)
\(468\) 0 0
\(469\) −4.36522e6 −0.916377
\(470\) −1.17615e7 −2.45594
\(471\) 0 0
\(472\) −7.35638e6 −1.51988
\(473\) −126295. −0.0259556
\(474\) 0 0
\(475\) −1.61990e6 −0.329423
\(476\) −1.48595e6 −0.300598
\(477\) 0 0
\(478\) 755521. 0.151243
\(479\) 6.68286e6 1.33083 0.665416 0.746473i \(-0.268254\pi\)
0.665416 + 0.746473i \(0.268254\pi\)
\(480\) 0 0
\(481\) 783441. 0.154399
\(482\) 3.15189e6 0.617950
\(483\) 0 0
\(484\) 1.80006e6 0.349280
\(485\) −1.43225e7 −2.76481
\(486\) 0 0
\(487\) −4.06478e6 −0.776631 −0.388316 0.921526i \(-0.626943\pi\)
−0.388316 + 0.921526i \(0.626943\pi\)
\(488\) 3.58035e6 0.680575
\(489\) 0 0
\(490\) −402625. −0.0757549
\(491\) 2.10434e6 0.393923 0.196962 0.980411i \(-0.436893\pi\)
0.196962 + 0.980411i \(0.436893\pi\)
\(492\) 0 0
\(493\) 530768. 0.0983530
\(494\) 164760. 0.0303763
\(495\) 0 0
\(496\) −2.58592e6 −0.471966
\(497\) −5.21095e6 −0.946293
\(498\) 0 0
\(499\) 5.96715e6 1.07279 0.536396 0.843966i \(-0.319785\pi\)
0.536396 + 0.843966i \(0.319785\pi\)
\(500\) −5.15808e6 −0.922706
\(501\) 0 0
\(502\) 1.76481e6 0.312563
\(503\) 1.00144e7 1.76483 0.882417 0.470467i \(-0.155915\pi\)
0.882417 + 0.470467i \(0.155915\pi\)
\(504\) 0 0
\(505\) −1.43969e7 −2.51212
\(506\) 286220. 0.0496963
\(507\) 0 0
\(508\) 2.78542e6 0.478885
\(509\) 8.47321e6 1.44962 0.724809 0.688950i \(-0.241928\pi\)
0.724809 + 0.688950i \(0.241928\pi\)
\(510\) 0 0
\(511\) −133435. −0.0226057
\(512\) −5.48346e6 −0.924442
\(513\) 0 0
\(514\) −1.17807e6 −0.196681
\(515\) 1.01923e7 1.69338
\(516\) 0 0
\(517\) −369571. −0.0608095
\(518\) −2.67095e6 −0.437362
\(519\) 0 0
\(520\) 3.44498e6 0.558699
\(521\) 197614. 0.0318951 0.0159476 0.999873i \(-0.494924\pi\)
0.0159476 + 0.999873i \(0.494924\pi\)
\(522\) 0 0
\(523\) 8.27263e6 1.32248 0.661240 0.750174i \(-0.270030\pi\)
0.661240 + 0.750174i \(0.270030\pi\)
\(524\) 1.15238e6 0.183345
\(525\) 0 0
\(526\) 5.43066e6 0.855831
\(527\) 5.02812e6 0.788640
\(528\) 0 0
\(529\) 1.14664e7 1.78150
\(530\) 3.68518e6 0.569862
\(531\) 0 0
\(532\) 302136. 0.0462832
\(533\) 1.34256e6 0.204699
\(534\) 0 0
\(535\) 2.77779e6 0.419580
\(536\) 6.80913e6 1.02372
\(537\) 0 0
\(538\) −3.88174e6 −0.578190
\(539\) −12651.3 −0.00187570
\(540\) 0 0
\(541\) 363216. 0.0533546 0.0266773 0.999644i \(-0.491507\pi\)
0.0266773 + 0.999644i \(0.491507\pi\)
\(542\) −186686. −0.0272970
\(543\) 0 0
\(544\) 4.03511e6 0.584599
\(545\) −6.54097e6 −0.943302
\(546\) 0 0
\(547\) −620452. −0.0886624 −0.0443312 0.999017i \(-0.514116\pi\)
−0.0443312 + 0.999017i \(0.514116\pi\)
\(548\) −403339. −0.0573745
\(549\) 0 0
\(550\) 512715. 0.0722719
\(551\) −107921. −0.0151435
\(552\) 0 0
\(553\) −6.02736e6 −0.838136
\(554\) 4.56400e6 0.631788
\(555\) 0 0
\(556\) −1.70855e6 −0.234390
\(557\) −3.89737e6 −0.532272 −0.266136 0.963935i \(-0.585747\pi\)
−0.266136 + 0.963935i \(0.585747\pi\)
\(558\) 0 0
\(559\) 1.43927e6 0.194811
\(560\) −7.06442e6 −0.951933
\(561\) 0 0
\(562\) 7.91865e6 1.05757
\(563\) −510725. −0.0679073 −0.0339536 0.999423i \(-0.510810\pi\)
−0.0339536 + 0.999423i \(0.510810\pi\)
\(564\) 0 0
\(565\) −1.18395e7 −1.56032
\(566\) −5.80975e6 −0.762283
\(567\) 0 0
\(568\) 8.12834e6 1.05714
\(569\) −9.75625e6 −1.26329 −0.631644 0.775259i \(-0.717619\pi\)
−0.631644 + 0.775259i \(0.717619\pi\)
\(570\) 0 0
\(571\) −1.41952e7 −1.82201 −0.911006 0.412393i \(-0.864693\pi\)
−0.911006 + 0.412393i \(0.864693\pi\)
\(572\) 28049.9 0.00358461
\(573\) 0 0
\(574\) −4.57713e6 −0.579847
\(575\) 3.20697e7 4.04506
\(576\) 0 0
\(577\) −1.16423e6 −0.145579 −0.0727896 0.997347i \(-0.523190\pi\)
−0.0727896 + 0.997347i \(0.523190\pi\)
\(578\) −1.43689e6 −0.178898
\(579\) 0 0
\(580\) −584723. −0.0721740
\(581\) 9.44777e6 1.16115
\(582\) 0 0
\(583\) 115796. 0.0141098
\(584\) 208140. 0.0252536
\(585\) 0 0
\(586\) 9322.45 0.00112147
\(587\) −6.58038e6 −0.788234 −0.394117 0.919060i \(-0.628950\pi\)
−0.394117 + 0.919060i \(0.628950\pi\)
\(588\) 0 0
\(589\) −1.02236e6 −0.121427
\(590\) 1.76214e7 2.08406
\(591\) 0 0
\(592\) 2.50600e6 0.293885
\(593\) 1.91423e6 0.223541 0.111771 0.993734i \(-0.464348\pi\)
0.111771 + 0.993734i \(0.464348\pi\)
\(594\) 0 0
\(595\) 1.37362e7 1.59065
\(596\) 811964. 0.0936313
\(597\) 0 0
\(598\) −3.26181e6 −0.372997
\(599\) 2.33678e6 0.266104 0.133052 0.991109i \(-0.457522\pi\)
0.133052 + 0.991109i \(0.457522\pi\)
\(600\) 0 0
\(601\) 1.04273e7 1.17757 0.588786 0.808289i \(-0.299606\pi\)
0.588786 + 0.808289i \(0.299606\pi\)
\(602\) −4.90684e6 −0.551837
\(603\) 0 0
\(604\) −5.47324e6 −0.610453
\(605\) −1.66399e7 −1.84826
\(606\) 0 0
\(607\) −120274. −0.0132495 −0.00662474 0.999978i \(-0.502109\pi\)
−0.00662474 + 0.999978i \(0.502109\pi\)
\(608\) −820455. −0.0900111
\(609\) 0 0
\(610\) −8.57633e6 −0.933205
\(611\) 4.21169e6 0.456408
\(612\) 0 0
\(613\) 1.34576e7 1.44649 0.723245 0.690592i \(-0.242650\pi\)
0.723245 + 0.690592i \(0.242650\pi\)
\(614\) −1.83059e6 −0.195961
\(615\) 0 0
\(616\) −369046. −0.0391858
\(617\) 6.84879e6 0.724270 0.362135 0.932126i \(-0.382048\pi\)
0.362135 + 0.932126i \(0.382048\pi\)
\(618\) 0 0
\(619\) −5.40663e6 −0.567153 −0.283577 0.958950i \(-0.591521\pi\)
−0.283577 + 0.958950i \(0.591521\pi\)
\(620\) −5.53925e6 −0.578724
\(621\) 0 0
\(622\) 8.78684e6 0.910661
\(623\) −1.23773e6 −0.127763
\(624\) 0 0
\(625\) 2.39962e7 2.45721
\(626\) 7.50463e6 0.765409
\(627\) 0 0
\(628\) −1.00135e6 −0.101318
\(629\) −4.87273e6 −0.491072
\(630\) 0 0
\(631\) −9.62552e6 −0.962390 −0.481195 0.876614i \(-0.659797\pi\)
−0.481195 + 0.876614i \(0.659797\pi\)
\(632\) 9.40183e6 0.936310
\(633\) 0 0
\(634\) 9.09920e6 0.899043
\(635\) −2.57487e7 −2.53408
\(636\) 0 0
\(637\) 144176. 0.0140781
\(638\) 34158.1 0.00332232
\(639\) 0 0
\(640\) 3.71876e6 0.358879
\(641\) 1.58752e7 1.52607 0.763037 0.646355i \(-0.223707\pi\)
0.763037 + 0.646355i \(0.223707\pi\)
\(642\) 0 0
\(643\) 1.57235e7 1.49976 0.749880 0.661574i \(-0.230111\pi\)
0.749880 + 0.661574i \(0.230111\pi\)
\(644\) −5.98149e6 −0.568322
\(645\) 0 0
\(646\) −1.02475e6 −0.0966132
\(647\) 1.58173e7 1.48549 0.742747 0.669572i \(-0.233523\pi\)
0.742747 + 0.669572i \(0.233523\pi\)
\(648\) 0 0
\(649\) 553699. 0.0516015
\(650\) −5.84298e6 −0.542440
\(651\) 0 0
\(652\) 2.52573e6 0.232685
\(653\) −5.31229e6 −0.487527 −0.243763 0.969835i \(-0.578382\pi\)
−0.243763 + 0.969835i \(0.578382\pi\)
\(654\) 0 0
\(655\) −1.06527e7 −0.970192
\(656\) 4.29447e6 0.389628
\(657\) 0 0
\(658\) −1.43587e7 −1.29286
\(659\) −9.90554e6 −0.888514 −0.444257 0.895899i \(-0.646532\pi\)
−0.444257 + 0.895899i \(0.646532\pi\)
\(660\) 0 0
\(661\) −1.29988e7 −1.15717 −0.578587 0.815621i \(-0.696396\pi\)
−0.578587 + 0.815621i \(0.696396\pi\)
\(662\) −3.08326e6 −0.273442
\(663\) 0 0
\(664\) −1.47372e7 −1.29716
\(665\) −2.79297e6 −0.244913
\(666\) 0 0
\(667\) 2.13654e6 0.185950
\(668\) 2.34508e6 0.203337
\(669\) 0 0
\(670\) −1.63105e7 −1.40372
\(671\) −269486. −0.0231062
\(672\) 0 0
\(673\) −1.32503e7 −1.12769 −0.563844 0.825881i \(-0.690678\pi\)
−0.563844 + 0.825881i \(0.690678\pi\)
\(674\) −9.74129e6 −0.825975
\(675\) 0 0
\(676\) −319661. −0.0269044
\(677\) −2.23310e7 −1.87257 −0.936284 0.351245i \(-0.885758\pi\)
−0.936284 + 0.351245i \(0.885758\pi\)
\(678\) 0 0
\(679\) −1.74852e7 −1.45545
\(680\) −2.14266e7 −1.77697
\(681\) 0 0
\(682\) 323589. 0.0266399
\(683\) 1.40049e7 1.14876 0.574380 0.818588i \(-0.305243\pi\)
0.574380 + 0.818588i \(0.305243\pi\)
\(684\) 0 0
\(685\) 3.72851e6 0.303605
\(686\) −1.01751e7 −0.825523
\(687\) 0 0
\(688\) 4.60382e6 0.370806
\(689\) −1.31963e6 −0.105902
\(690\) 0 0
\(691\) −5.24817e6 −0.418132 −0.209066 0.977902i \(-0.567042\pi\)
−0.209066 + 0.977902i \(0.567042\pi\)
\(692\) −5.20645e6 −0.413310
\(693\) 0 0
\(694\) 1.17349e7 0.924870
\(695\) 1.57940e7 1.24031
\(696\) 0 0
\(697\) −8.35027e6 −0.651056
\(698\) 9.23090e6 0.717142
\(699\) 0 0
\(700\) −1.07148e7 −0.826495
\(701\) 2.13994e7 1.64477 0.822386 0.568930i \(-0.192642\pi\)
0.822386 + 0.568930i \(0.192642\pi\)
\(702\) 0 0
\(703\) 990767. 0.0756107
\(704\) 516214. 0.0392553
\(705\) 0 0
\(706\) −9.34250e6 −0.705426
\(707\) −1.75760e7 −1.32243
\(708\) 0 0
\(709\) 4.35333e6 0.325242 0.162621 0.986689i \(-0.448005\pi\)
0.162621 + 0.986689i \(0.448005\pi\)
\(710\) −1.94705e7 −1.44954
\(711\) 0 0
\(712\) 1.93069e6 0.142729
\(713\) 2.02401e7 1.49104
\(714\) 0 0
\(715\) −259296. −0.0189684
\(716\) −5.28915e6 −0.385570
\(717\) 0 0
\(718\) 7.29395e6 0.528021
\(719\) −2.21389e7 −1.59710 −0.798552 0.601926i \(-0.794400\pi\)
−0.798552 + 0.601926i \(0.794400\pi\)
\(720\) 0 0
\(721\) 1.24430e7 0.891426
\(722\) −1.10865e7 −0.791501
\(723\) 0 0
\(724\) 829338. 0.0588010
\(725\) 3.82726e6 0.270422
\(726\) 0 0
\(727\) −4.83218e6 −0.339084 −0.169542 0.985523i \(-0.554229\pi\)
−0.169542 + 0.985523i \(0.554229\pi\)
\(728\) 4.20570e6 0.294110
\(729\) 0 0
\(730\) −498575. −0.0346277
\(731\) −8.95178e6 −0.619606
\(732\) 0 0
\(733\) −2.47827e7 −1.70368 −0.851840 0.523803i \(-0.824513\pi\)
−0.851840 + 0.523803i \(0.824513\pi\)
\(734\) −1.76253e7 −1.20753
\(735\) 0 0
\(736\) 1.62428e7 1.10527
\(737\) −512509. −0.0347562
\(738\) 0 0
\(739\) 7.09289e6 0.477762 0.238881 0.971049i \(-0.423219\pi\)
0.238881 + 0.971049i \(0.423219\pi\)
\(740\) 5.36806e6 0.360361
\(741\) 0 0
\(742\) 4.49895e6 0.299986
\(743\) −1.95117e7 −1.29665 −0.648327 0.761362i \(-0.724531\pi\)
−0.648327 + 0.761362i \(0.724531\pi\)
\(744\) 0 0
\(745\) −7.50588e6 −0.495462
\(746\) −7.14803e6 −0.470262
\(747\) 0 0
\(748\) −174461. −0.0114010
\(749\) 3.39118e6 0.220875
\(750\) 0 0
\(751\) 1.66103e7 1.07468 0.537339 0.843366i \(-0.319430\pi\)
0.537339 + 0.843366i \(0.319430\pi\)
\(752\) 1.34720e7 0.868733
\(753\) 0 0
\(754\) −389271. −0.0249358
\(755\) 5.05952e7 3.23029
\(756\) 0 0
\(757\) 1.22902e6 0.0779508 0.0389754 0.999240i \(-0.487591\pi\)
0.0389754 + 0.999240i \(0.487591\pi\)
\(758\) 1.45622e7 0.920567
\(759\) 0 0
\(760\) 4.35664e6 0.273601
\(761\) −1.37482e7 −0.860569 −0.430284 0.902693i \(-0.641587\pi\)
−0.430284 + 0.902693i \(0.641587\pi\)
\(762\) 0 0
\(763\) −7.98535e6 −0.496572
\(764\) −2.50850e6 −0.155482
\(765\) 0 0
\(766\) −1.82659e6 −0.112478
\(767\) −6.31004e6 −0.387297
\(768\) 0 0
\(769\) −1.01549e7 −0.619240 −0.309620 0.950860i \(-0.600202\pi\)
−0.309620 + 0.950860i \(0.600202\pi\)
\(770\) 884007. 0.0537315
\(771\) 0 0
\(772\) 7.41222e6 0.447616
\(773\) −1.41511e7 −0.851807 −0.425903 0.904769i \(-0.640044\pi\)
−0.425903 + 0.904769i \(0.640044\pi\)
\(774\) 0 0
\(775\) 3.62567e7 2.16837
\(776\) 2.72745e7 1.62593
\(777\) 0 0
\(778\) −1.88593e6 −0.111706
\(779\) 1.69785e6 0.100243
\(780\) 0 0
\(781\) −611803. −0.0358909
\(782\) 2.02873e7 1.18634
\(783\) 0 0
\(784\) 461178. 0.0267965
\(785\) 9.25654e6 0.536136
\(786\) 0 0
\(787\) −1.03095e6 −0.0593338 −0.0296669 0.999560i \(-0.509445\pi\)
−0.0296669 + 0.999560i \(0.509445\pi\)
\(788\) 7.45923e6 0.427935
\(789\) 0 0
\(790\) −2.25210e7 −1.28387
\(791\) −1.44540e7 −0.821383
\(792\) 0 0
\(793\) 3.07110e6 0.173425
\(794\) −469500. −0.0264292
\(795\) 0 0
\(796\) −7.22705e6 −0.404276
\(797\) 1.43337e7 0.799303 0.399651 0.916667i \(-0.369131\pi\)
0.399651 + 0.916667i \(0.369131\pi\)
\(798\) 0 0
\(799\) −2.61952e7 −1.45163
\(800\) 2.90963e7 1.60736
\(801\) 0 0
\(802\) −1.01889e7 −0.559360
\(803\) −15666.3 −0.000857386 0
\(804\) 0 0
\(805\) 5.52935e7 3.00735
\(806\) −3.68767e6 −0.199947
\(807\) 0 0
\(808\) 2.74161e7 1.47733
\(809\) −1.55020e7 −0.832751 −0.416376 0.909193i \(-0.636700\pi\)
−0.416376 + 0.909193i \(0.636700\pi\)
\(810\) 0 0
\(811\) 2.45861e7 1.31261 0.656307 0.754494i \(-0.272118\pi\)
0.656307 + 0.754494i \(0.272118\pi\)
\(812\) −713842. −0.0379938
\(813\) 0 0
\(814\) −313589. −0.0165882
\(815\) −2.33481e7 −1.23128
\(816\) 0 0
\(817\) 1.82016e6 0.0954011
\(818\) −2.03513e7 −1.06343
\(819\) 0 0
\(820\) 9.19911e6 0.477761
\(821\) 3.33396e6 0.172624 0.0863122 0.996268i \(-0.472492\pi\)
0.0863122 + 0.996268i \(0.472492\pi\)
\(822\) 0 0
\(823\) 3.08787e6 0.158913 0.0794564 0.996838i \(-0.474682\pi\)
0.0794564 + 0.996838i \(0.474682\pi\)
\(824\) −1.94092e7 −0.995842
\(825\) 0 0
\(826\) 2.15125e7 1.09709
\(827\) −6.89555e6 −0.350595 −0.175297 0.984516i \(-0.556089\pi\)
−0.175297 + 0.984516i \(0.556089\pi\)
\(828\) 0 0
\(829\) −2.00007e7 −1.01078 −0.505391 0.862890i \(-0.668652\pi\)
−0.505391 + 0.862890i \(0.668652\pi\)
\(830\) 3.53012e7 1.77867
\(831\) 0 0
\(832\) −5.88286e6 −0.294632
\(833\) −896725. −0.0447762
\(834\) 0 0
\(835\) −2.16782e7 −1.07599
\(836\) 35473.0 0.00175542
\(837\) 0 0
\(838\) −1.92859e7 −0.948701
\(839\) −5.23988e6 −0.256990 −0.128495 0.991710i \(-0.541015\pi\)
−0.128495 + 0.991710i \(0.541015\pi\)
\(840\) 0 0
\(841\) −2.02562e7 −0.987569
\(842\) 1.87841e7 0.913081
\(843\) 0 0
\(844\) 9.71509e6 0.469452
\(845\) 2.95498e6 0.142368
\(846\) 0 0
\(847\) −2.03144e7 −0.972959
\(848\) −4.22111e6 −0.201575
\(849\) 0 0
\(850\) 3.63413e7 1.72526
\(851\) −1.96146e7 −0.928442
\(852\) 0 0
\(853\) −1.32853e7 −0.625170 −0.312585 0.949890i \(-0.601195\pi\)
−0.312585 + 0.949890i \(0.601195\pi\)
\(854\) −1.04702e7 −0.491257
\(855\) 0 0
\(856\) −5.28976e6 −0.246747
\(857\) 8.34473e6 0.388115 0.194057 0.980990i \(-0.437835\pi\)
0.194057 + 0.980990i \(0.437835\pi\)
\(858\) 0 0
\(859\) −4.07521e7 −1.88437 −0.942187 0.335088i \(-0.891234\pi\)
−0.942187 + 0.335088i \(0.891234\pi\)
\(860\) 9.86176e6 0.454683
\(861\) 0 0
\(862\) −5.26056e6 −0.241137
\(863\) 1.73853e7 0.794614 0.397307 0.917686i \(-0.369945\pi\)
0.397307 + 0.917686i \(0.369945\pi\)
\(864\) 0 0
\(865\) 4.81289e7 2.18708
\(866\) −153881. −0.00697252
\(867\) 0 0
\(868\) −6.76243e6 −0.304652
\(869\) −707656. −0.0317887
\(870\) 0 0
\(871\) 5.84063e6 0.260864
\(872\) 1.24560e7 0.554738
\(873\) 0 0
\(874\) −4.12500e6 −0.182661
\(875\) 5.82109e7 2.57030
\(876\) 0 0
\(877\) 2.58279e6 0.113394 0.0566971 0.998391i \(-0.481943\pi\)
0.0566971 + 0.998391i \(0.481943\pi\)
\(878\) 3.41370e7 1.49447
\(879\) 0 0
\(880\) −829414. −0.0361048
\(881\) 1.66814e7 0.724090 0.362045 0.932161i \(-0.382079\pi\)
0.362045 + 0.932161i \(0.382079\pi\)
\(882\) 0 0
\(883\) 2.36384e7 1.02027 0.510137 0.860093i \(-0.329595\pi\)
0.510137 + 0.860093i \(0.329595\pi\)
\(884\) 1.98818e6 0.0855708
\(885\) 0 0
\(886\) 1.49632e7 0.640382
\(887\) 5.25660e6 0.224334 0.112167 0.993689i \(-0.464221\pi\)
0.112167 + 0.993689i \(0.464221\pi\)
\(888\) 0 0
\(889\) −3.14345e7 −1.33399
\(890\) −4.62474e6 −0.195710
\(891\) 0 0
\(892\) 652988. 0.0274785
\(893\) 5.32625e6 0.223508
\(894\) 0 0
\(895\) 4.88935e7 2.04030
\(896\) 4.53994e6 0.188921
\(897\) 0 0
\(898\) −3.62806e7 −1.50135
\(899\) 2.41549e6 0.0996795
\(900\) 0 0
\(901\) 8.20763e6 0.336826
\(902\) −537389. −0.0219924
\(903\) 0 0
\(904\) 2.25461e7 0.917595
\(905\) −7.66648e6 −0.311153
\(906\) 0 0
\(907\) 3.22789e7 1.30287 0.651435 0.758705i \(-0.274167\pi\)
0.651435 + 0.758705i \(0.274167\pi\)
\(908\) 1.25094e6 0.0503525
\(909\) 0 0
\(910\) −1.00743e7 −0.403284
\(911\) −4.20975e7 −1.68058 −0.840292 0.542134i \(-0.817617\pi\)
−0.840292 + 0.542134i \(0.817617\pi\)
\(912\) 0 0
\(913\) 1.10924e6 0.0440400
\(914\) −1.52897e7 −0.605389
\(915\) 0 0
\(916\) −1.28693e7 −0.506775
\(917\) −1.30051e7 −0.510728
\(918\) 0 0
\(919\) −2.19460e7 −0.857168 −0.428584 0.903502i \(-0.640987\pi\)
−0.428584 + 0.903502i \(0.640987\pi\)
\(920\) −8.62500e7 −3.35961
\(921\) 0 0
\(922\) −2.13767e7 −0.828157
\(923\) 6.97221e6 0.269380
\(924\) 0 0
\(925\) −3.51362e7 −1.35021
\(926\) 3.03205e7 1.16201
\(927\) 0 0
\(928\) 1.93845e6 0.0738899
\(929\) 1.35921e7 0.516710 0.258355 0.966050i \(-0.416820\pi\)
0.258355 + 0.966050i \(0.416820\pi\)
\(930\) 0 0
\(931\) 182330. 0.00689421
\(932\) 7.05637e6 0.266098
\(933\) 0 0
\(934\) 1.43297e7 0.537489
\(935\) 1.61273e6 0.0603300
\(936\) 0 0
\(937\) 3.01018e7 1.12007 0.560033 0.828470i \(-0.310788\pi\)
0.560033 + 0.828470i \(0.310788\pi\)
\(938\) −1.99122e7 −0.738944
\(939\) 0 0
\(940\) 2.88581e7 1.06524
\(941\) 1.06275e7 0.391252 0.195626 0.980679i \(-0.437326\pi\)
0.195626 + 0.980679i \(0.437326\pi\)
\(942\) 0 0
\(943\) −3.36130e7 −1.23091
\(944\) −2.01840e7 −0.737187
\(945\) 0 0
\(946\) −576099. −0.0209300
\(947\) 2.41709e7 0.875826 0.437913 0.899017i \(-0.355718\pi\)
0.437913 + 0.899017i \(0.355718\pi\)
\(948\) 0 0
\(949\) 178535. 0.00643514
\(950\) −7.38925e6 −0.265639
\(951\) 0 0
\(952\) −2.61580e7 −0.935432
\(953\) −4.27043e7 −1.52314 −0.761569 0.648084i \(-0.775570\pi\)
−0.761569 + 0.648084i \(0.775570\pi\)
\(954\) 0 0
\(955\) 2.31888e7 0.822754
\(956\) −1.85375e6 −0.0656003
\(957\) 0 0
\(958\) 3.04842e7 1.07315
\(959\) 4.55184e6 0.159823
\(960\) 0 0
\(961\) −5.74655e6 −0.200724
\(962\) 3.57371e6 0.124503
\(963\) 0 0
\(964\) −7.73348e6 −0.268029
\(965\) −6.85193e7 −2.36862
\(966\) 0 0
\(967\) −4.42692e7 −1.52242 −0.761211 0.648504i \(-0.775395\pi\)
−0.761211 + 0.648504i \(0.775395\pi\)
\(968\) 3.16875e7 1.08693
\(969\) 0 0
\(970\) −6.53329e7 −2.22947
\(971\) −3.88962e7 −1.32391 −0.661956 0.749542i \(-0.730274\pi\)
−0.661956 + 0.749542i \(0.730274\pi\)
\(972\) 0 0
\(973\) 1.92816e7 0.652922
\(974\) −1.85417e7 −0.626257
\(975\) 0 0
\(976\) 9.82357e6 0.330099
\(977\) 2.71611e7 0.910354 0.455177 0.890401i \(-0.349576\pi\)
0.455177 + 0.890401i \(0.349576\pi\)
\(978\) 0 0
\(979\) −145319. −0.00484580
\(980\) 987881. 0.0328579
\(981\) 0 0
\(982\) 9.59904e6 0.317650
\(983\) 1.98048e7 0.653714 0.326857 0.945074i \(-0.394011\pi\)
0.326857 + 0.945074i \(0.394011\pi\)
\(984\) 0 0
\(985\) −6.89538e7 −2.26448
\(986\) 2.42113e6 0.0793096
\(987\) 0 0
\(988\) −404255. −0.0131754
\(989\) −3.60343e7 −1.17145
\(990\) 0 0
\(991\) −1.44104e7 −0.466115 −0.233057 0.972463i \(-0.574873\pi\)
−0.233057 + 0.972463i \(0.574873\pi\)
\(992\) 1.83635e7 0.592483
\(993\) 0 0
\(994\) −2.37700e7 −0.763068
\(995\) 6.68075e7 2.13928
\(996\) 0 0
\(997\) 3.16635e7 1.00884 0.504418 0.863459i \(-0.331707\pi\)
0.504418 + 0.863459i \(0.331707\pi\)
\(998\) 2.72195e7 0.865074
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.6.a.c.1.2 2
3.2 odd 2 13.6.a.a.1.1 2
12.11 even 2 208.6.a.h.1.1 2
15.2 even 4 325.6.b.b.274.1 4
15.8 even 4 325.6.b.b.274.4 4
15.14 odd 2 325.6.a.b.1.2 2
21.20 even 2 637.6.a.a.1.1 2
24.5 odd 2 832.6.a.p.1.1 2
24.11 even 2 832.6.a.i.1.2 2
39.5 even 4 169.6.b.a.168.4 4
39.8 even 4 169.6.b.a.168.1 4
39.38 odd 2 169.6.a.a.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.6.a.a.1.1 2 3.2 odd 2
117.6.a.c.1.2 2 1.1 even 1 trivial
169.6.a.a.1.2 2 39.38 odd 2
169.6.b.a.168.1 4 39.8 even 4
169.6.b.a.168.4 4 39.5 even 4
208.6.a.h.1.1 2 12.11 even 2
325.6.a.b.1.2 2 15.14 odd 2
325.6.b.b.274.1 4 15.2 even 4
325.6.b.b.274.4 4 15.8 even 4
637.6.a.a.1.1 2 21.20 even 2
832.6.a.i.1.2 2 24.11 even 2
832.6.a.p.1.1 2 24.5 odd 2