Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,3,Mod(58,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([4, 5]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.58");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.w (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.18801909302\) |
Analytic rank: | \(0\) |
Dimension: | \(104\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
58.1 | −2.66555 | + | 2.66555i | 2.99690 | − | 0.136394i | − | 10.2103i | 0.151696 | + | 0.566137i | −7.62482 | + | 8.35195i | −1.59453 | + | 0.427252i | 16.5540 | + | 16.5540i | 8.96279 | − | 0.817519i | −1.91342 | − | 1.10471i | |
58.2 | −2.59584 | + | 2.59584i | −1.41809 | + | 2.64368i | − | 9.47679i | −0.898750 | − | 3.35418i | −3.18143 | − | 10.5437i | 13.2917 | − | 3.56149i | 14.2169 | + | 14.2169i | −4.97805 | − | 7.49794i | 11.0399 | + | 6.37391i | |
58.3 | −2.46426 | + | 2.46426i | −1.28173 | − | 2.71241i | − | 8.14515i | 2.29040 | + | 8.54788i | 9.84260 | + | 3.52555i | 1.69578 | − | 0.454383i | 10.2147 | + | 10.2147i | −5.71431 | + | 6.95317i | −26.7083 | − | 15.4201i | |
58.4 | −2.05515 | + | 2.05515i | −2.55279 | + | 1.57584i | − | 4.44728i | 1.02938 | + | 3.84171i | 2.00779 | − | 8.48495i | −11.7531 | + | 3.14923i | 0.919224 | + | 0.919224i | 4.03348 | − | 8.04556i | −10.0108 | − | 5.77976i | |
58.5 | −1.88215 | + | 1.88215i | 1.48796 | + | 2.60499i | − | 3.08498i | −1.58439 | − | 5.91301i | −7.70355 | − | 2.10241i | −9.40849 | + | 2.52100i | −1.72221 | − | 1.72221i | −4.57193 | + | 7.75225i | 14.1112 | + | 8.14711i | |
58.6 | −1.82132 | + | 1.82132i | 1.56629 | − | 2.55866i | − | 2.63444i | −0.750566 | − | 2.80115i | 1.80743 | + | 7.51287i | −0.00333442 | 0.000893455i | −2.48713 | − | 2.48713i | −4.09348 | − | 8.01520i | 6.46883 | + | 3.73478i | ||
58.7 | −1.74157 | + | 1.74157i | −2.81069 | − | 1.04883i | − | 2.06613i | −0.760473 | − | 2.83812i | 6.72161 | − | 3.06840i | 4.20536 | − | 1.12682i | −3.36797 | − | 3.36797i | 6.79992 | + | 5.89586i | 6.26721 | + | 3.61837i | |
58.8 | −1.43729 | + | 1.43729i | 2.21903 | + | 2.01889i | − | 0.131606i | 1.39764 | + | 5.21605i | −6.09112 | + | 0.287655i | 6.72649 | − | 1.80236i | −5.56000 | − | 5.56000i | 0.848165 | + | 8.95995i | −9.50579 | − | 5.48817i | |
58.9 | −0.781876 | + | 0.781876i | 2.42393 | − | 1.76765i | 2.77734i | 1.97793 | + | 7.38172i | −0.513129 | + | 3.27729i | −7.60192 | + | 2.03693i | −5.29904 | − | 5.29904i | 2.75084 | − | 8.56930i | −7.31808 | − | 4.22509i | ||
58.10 | −0.656548 | + | 0.656548i | −1.43494 | + | 2.63457i | 3.13789i | 0.963843 | + | 3.59711i | −0.787615 | − | 2.67182i | 2.03338 | − | 0.544842i | −4.68636 | − | 4.68636i | −4.88191 | − | 7.56088i | −2.99448 | − | 1.72886i | ||
58.11 | −0.547586 | + | 0.547586i | −1.26837 | − | 2.71868i | 3.40030i | −0.822537 | − | 3.06975i | 2.18325 | + | 0.794174i | −7.72490 | + | 2.06988i | −4.05230 | − | 4.05230i | −5.78249 | + | 6.89658i | 2.13136 | + | 1.23054i | ||
58.12 | −0.513828 | + | 0.513828i | 2.98609 | − | 0.288554i | 3.47196i | −2.21291 | − | 8.25869i | −1.38607 | + | 1.68260i | 10.0413 | − | 2.69055i | −3.83930 | − | 3.83930i | 8.83347 | − | 1.72330i | 5.38060 | + | 3.10649i | ||
58.13 | −0.0203305 | + | 0.0203305i | −2.72600 | + | 1.25256i | 3.99917i | −2.28573 | − | 8.53046i | 0.0299559 | − | 0.0808862i | −1.33641 | + | 0.358091i | −0.162627 | − | 0.162627i | 5.86220 | − | 6.82895i | 0.219899 | + | 0.126959i | ||
58.14 | 0.0727269 | − | 0.0727269i | −0.510508 | − | 2.95624i | 3.98942i | 0.969534 | + | 3.61835i | −0.252126 | − | 0.177871i | 10.9873 | − | 2.94403i | 0.581046 | + | 0.581046i | −8.47876 | + | 3.01838i | 0.333663 | + | 0.192640i | ||
58.15 | 0.549055 | − | 0.549055i | 2.56691 | + | 1.55273i | 3.39708i | 0.0757358 | + | 0.282650i | 2.26191 | − | 0.556840i | −2.35467 | + | 0.630931i | 4.06140 | + | 4.06140i | 4.17805 | + | 7.97144i | 0.196773 | + | 0.113607i | ||
58.16 | 0.574886 | − | 0.574886i | 0.355272 | + | 2.97889i | 3.33901i | −0.368282 | − | 1.37445i | 1.91676 | + | 1.50828i | −4.95189 | + | 1.32685i | 4.21910 | + | 4.21910i | −8.74756 | + | 2.11663i | −1.00187 | − | 0.578431i | ||
58.17 | 0.982617 | − | 0.982617i | −2.77223 | − | 1.14662i | 2.06893i | 1.58072 | + | 5.89931i | −3.85073 | + | 1.59736i | −10.8853 | + | 2.91671i | 5.96343 | + | 5.96343i | 6.37054 | + | 6.35738i | 7.35000 | + | 4.24353i | ||
58.18 | 1.20073 | − | 1.20073i | −2.90912 | + | 0.732830i | 1.11649i | 0.331796 | + | 1.23828i | −2.61313 | + | 4.37300i | 8.36838 | − | 2.24230i | 6.14353 | + | 6.14353i | 7.92592 | − | 4.26378i | 1.88524 | + | 1.08844i | ||
58.19 | 1.20903 | − | 1.20903i | 2.63140 | − | 1.44075i | 1.07649i | 0.734621 | + | 2.74164i | 1.43953 | − | 4.92335i | 3.07395 | − | 0.823664i | 6.13763 | + | 6.13763i | 4.84850 | − | 7.58235i | 4.20291 | + | 2.42655i | ||
58.20 | 1.52354 | − | 1.52354i | 1.61877 | − | 2.52578i | − | 0.642329i | −1.83169 | − | 6.83596i | −1.38187 | − | 6.31438i | −7.99700 | + | 2.14279i | 5.11554 | + | 5.11554i | −3.75916 | − | 8.17733i | −13.2055 | − | 7.62419i | |
See next 80 embeddings (of 104 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.w | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.3.w.a | ✓ | 104 |
3.b | odd | 2 | 1 | 351.3.z.a | 104 | ||
9.c | even | 3 | 1 | 117.3.bb.a | yes | 104 | |
9.d | odd | 6 | 1 | 351.3.be.a | 104 | ||
13.f | odd | 12 | 1 | 117.3.bb.a | yes | 104 | |
39.k | even | 12 | 1 | 351.3.be.a | 104 | ||
117.w | odd | 12 | 1 | inner | 117.3.w.a | ✓ | 104 |
117.x | even | 12 | 1 | 351.3.z.a | 104 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.3.w.a | ✓ | 104 | 1.a | even | 1 | 1 | trivial |
117.3.w.a | ✓ | 104 | 117.w | odd | 12 | 1 | inner |
117.3.bb.a | yes | 104 | 9.c | even | 3 | 1 | |
117.3.bb.a | yes | 104 | 13.f | odd | 12 | 1 | |
351.3.z.a | 104 | 3.b | odd | 2 | 1 | ||
351.3.z.a | 104 | 117.x | even | 12 | 1 | ||
351.3.be.a | 104 | 9.d | odd | 6 | 1 | ||
351.3.be.a | 104 | 39.k | even | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(117, [\chi])\).