Properties

Label 117.3.m.a
Level 117117
Weight 33
Character orbit 117.m
Analytic conductor 3.1883.188
Analytic rank 00
Dimension 5252
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(23,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.23");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 117=3213 117 = 3^{2} \cdot 13
Weight: k k == 3 3
Character orbit: [χ][\chi] == 117.m (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.188019093023.18801909302
Analytic rank: 00
Dimension: 5252
Relative dimension: 2626 over Q(ζ6)\Q(\zeta_{6})
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 52q3q2q347q43q6+78q8+q9+2q103q11+13q126q136q14+24q1575q1612q18+15q196q20+69q21+17q22++522q99+O(q100) 52 q - 3 q^{2} - q^{3} - 47 q^{4} - 3 q^{6} + 78 q^{8} + q^{9} + 2 q^{10} - 3 q^{11} + 13 q^{12} - 6 q^{13} - 6 q^{14} + 24 q^{15} - 75 q^{16} - 12 q^{18} + 15 q^{19} - 6 q^{20} + 69 q^{21} + 17 q^{22}+ \cdots + 522 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
23.1 −1.93775 + 3.35628i 2.99297 0.205259i −5.50976 9.54319i 2.28307 3.95440i −5.11072 + 10.4430i 7.95332i 27.2042 8.91574 1.22867i 8.84806 + 15.3253i
23.2 −1.93591 + 3.35310i −1.58366 + 2.54795i −5.49551 9.51849i −4.14167 + 7.17357i −5.47770 10.2428i 2.09604i 27.0680 −3.98407 8.07014i −16.0358 27.7748i
23.3 −1.70867 + 2.95950i −2.46748 1.70633i −3.83911 6.64954i 2.84214 4.92273i 9.26599 4.38696i 10.4396i 12.5698 3.17690 + 8.42065i 9.71257 + 16.8227i
23.4 −1.53167 + 2.65294i 0.626364 2.93388i −2.69205 4.66277i −1.85161 + 3.20708i 6.82402 + 6.15546i 3.36992i 4.24001 −8.21534 3.67536i −5.67212 9.82439i
23.5 −1.37577 + 2.38291i −2.45641 + 1.72222i −1.78551 3.09260i 3.47982 6.02723i −0.724439 8.22280i 9.53043i −1.18034 3.06790 8.46097i 9.57490 + 16.5842i
23.6 −1.37367 + 2.37927i 1.51461 + 2.58959i −1.77395 3.07257i 1.55246 2.68894i −8.24190 + 0.0464192i 10.5101i −1.24207 −4.41192 + 7.84442i 4.26515 + 7.38745i
23.7 −1.21581 + 2.10585i −2.69201 1.32405i −0.956401 1.65653i −3.20934 + 5.55874i 6.06122 4.05917i 7.16022i −5.07529 5.49381 + 7.12868i −7.80391 13.5168i
23.8 −1.10435 + 1.91278i 2.90392 + 0.753140i −0.439159 0.760646i −3.11152 + 5.38931i −4.64753 + 4.72285i 3.20199i −6.89483 7.86556 + 4.37413i −6.87238 11.9033i
23.9 −0.946118 + 1.63872i 1.13673 2.77630i 0.209721 + 0.363247i 2.45061 4.24459i 3.47411 + 4.48950i 6.31973i −8.36263 −6.41568 6.31182i 4.63714 + 8.03176i
23.10 −0.620888 + 1.07541i −2.03795 + 2.20153i 1.22900 + 2.12868i −0.320482 + 0.555091i −1.10221 3.55854i 5.50883i −8.01938 −0.693489 8.97324i −0.397967 0.689299i
23.11 −0.323897 + 0.561007i 2.87676 0.851031i 1.79018 + 3.10068i 1.12097 1.94158i −0.454341 + 1.88953i 7.69849i −4.91052 7.55149 4.89642i 0.726158 + 1.25774i
23.12 −0.239751 + 0.415260i −2.67694 1.35425i 1.88504 + 3.26498i 0.131616 0.227965i 1.20417 0.786943i 0.552346i −3.72576 5.33200 + 7.25050i 0.0631100 + 0.109310i
23.13 −0.138316 + 0.239570i 0.191257 + 2.99390i 1.96174 + 3.39783i −2.47988 + 4.29528i −0.743703 0.368285i 6.85336i −2.19189 −8.92684 + 1.14521i −0.686015 1.18821i
23.14 0.000244066 0 0.000422734i 1.90499 + 2.31755i 2.00000 + 3.46410i 4.59055 7.95106i 0.00144465 0.000239669i 5.76773i 0.00390505 −1.74205 + 8.82979i −0.00224079 0.00388116i
23.15 0.120411 0.208558i −0.240500 2.99034i 1.97100 + 3.41388i −4.12967 + 7.15280i −0.652619 0.309912i 10.8968i 1.91261 −8.88432 + 1.43836i 0.994515 + 1.72255i
23.16 0.587917 1.01830i −0.850106 2.87703i 1.30871 + 2.26675i 0.331589 0.574329i −3.42948 0.825792i 12.4699i 7.78098 −7.55464 + 4.89157i −0.389894 0.675315i
23.17 0.594188 1.02916i −2.98008 + 0.345181i 1.29388 + 2.24107i 3.27957 5.68038i −1.41548 + 3.27209i 2.41808i 7.82874 8.76170 2.05733i −3.89736 6.75042i
23.18 0.670962 1.16214i 2.55159 1.57778i 1.09962 + 1.90460i −0.383399 + 0.664067i −0.121583 4.02393i 5.48499i 8.31891 4.02121 8.05170i 0.514492 + 0.891127i
23.19 0.927144 1.60586i 2.67307 + 1.36187i 0.280807 + 0.486372i −2.88924 + 5.00431i 4.66530 3.02993i 2.33066i 8.45855 5.29062 + 7.28075i 5.35749 + 9.27944i
23.20 1.01844 1.76399i −0.178787 + 2.99467i −0.0744351 0.128925i −0.0620677 + 0.107504i 5.10047 + 3.36526i 8.93133i 7.84428 −8.93607 1.07081i 0.126424 + 0.218973i
See all 52 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 23.26
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
117.m odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.3.m.a 52
3.b odd 2 1 351.3.m.a 52
9.c even 3 1 351.3.v.a 52
9.d odd 6 1 117.3.v.a yes 52
13.e even 6 1 117.3.v.a yes 52
39.h odd 6 1 351.3.v.a 52
117.m odd 6 1 inner 117.3.m.a 52
117.r even 6 1 351.3.m.a 52
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.3.m.a 52 1.a even 1 1 trivial
117.3.m.a 52 117.m odd 6 1 inner
117.3.v.a yes 52 9.d odd 6 1
117.3.v.a yes 52 13.e even 6 1
351.3.m.a 52 3.b odd 2 1
351.3.m.a 52 117.r even 6 1
351.3.v.a 52 9.c even 3 1
351.3.v.a 52 39.h odd 6 1

Hecke kernels

This newform subspace is the entire newspace S3new(117,[χ])S_{3}^{\mathrm{new}}(117, [\chi]).