Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,3,Mod(23,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5, 5]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.23");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.m (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.18801909302\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −1.93775 | + | 3.35628i | 2.99297 | − | 0.205259i | −5.50976 | − | 9.54319i | 2.28307 | − | 3.95440i | −5.11072 | + | 10.4430i | − | 7.95332i | 27.2042 | 8.91574 | − | 1.22867i | 8.84806 | + | 15.3253i | |||
23.2 | −1.93591 | + | 3.35310i | −1.58366 | + | 2.54795i | −5.49551 | − | 9.51849i | −4.14167 | + | 7.17357i | −5.47770 | − | 10.2428i | 2.09604i | 27.0680 | −3.98407 | − | 8.07014i | −16.0358 | − | 27.7748i | ||||
23.3 | −1.70867 | + | 2.95950i | −2.46748 | − | 1.70633i | −3.83911 | − | 6.64954i | 2.84214 | − | 4.92273i | 9.26599 | − | 4.38696i | 10.4396i | 12.5698 | 3.17690 | + | 8.42065i | 9.71257 | + | 16.8227i | ||||
23.4 | −1.53167 | + | 2.65294i | 0.626364 | − | 2.93388i | −2.69205 | − | 4.66277i | −1.85161 | + | 3.20708i | 6.82402 | + | 6.15546i | 3.36992i | 4.24001 | −8.21534 | − | 3.67536i | −5.67212 | − | 9.82439i | ||||
23.5 | −1.37577 | + | 2.38291i | −2.45641 | + | 1.72222i | −1.78551 | − | 3.09260i | 3.47982 | − | 6.02723i | −0.724439 | − | 8.22280i | − | 9.53043i | −1.18034 | 3.06790 | − | 8.46097i | 9.57490 | + | 16.5842i | |||
23.6 | −1.37367 | + | 2.37927i | 1.51461 | + | 2.58959i | −1.77395 | − | 3.07257i | 1.55246 | − | 2.68894i | −8.24190 | + | 0.0464192i | 10.5101i | −1.24207 | −4.41192 | + | 7.84442i | 4.26515 | + | 7.38745i | ||||
23.7 | −1.21581 | + | 2.10585i | −2.69201 | − | 1.32405i | −0.956401 | − | 1.65653i | −3.20934 | + | 5.55874i | 6.06122 | − | 4.05917i | − | 7.16022i | −5.07529 | 5.49381 | + | 7.12868i | −7.80391 | − | 13.5168i | |||
23.8 | −1.10435 | + | 1.91278i | 2.90392 | + | 0.753140i | −0.439159 | − | 0.760646i | −3.11152 | + | 5.38931i | −4.64753 | + | 4.72285i | − | 3.20199i | −6.89483 | 7.86556 | + | 4.37413i | −6.87238 | − | 11.9033i | |||
23.9 | −0.946118 | + | 1.63872i | 1.13673 | − | 2.77630i | 0.209721 | + | 0.363247i | 2.45061 | − | 4.24459i | 3.47411 | + | 4.48950i | − | 6.31973i | −8.36263 | −6.41568 | − | 6.31182i | 4.63714 | + | 8.03176i | |||
23.10 | −0.620888 | + | 1.07541i | −2.03795 | + | 2.20153i | 1.22900 | + | 2.12868i | −0.320482 | + | 0.555091i | −1.10221 | − | 3.55854i | 5.50883i | −8.01938 | −0.693489 | − | 8.97324i | −0.397967 | − | 0.689299i | ||||
23.11 | −0.323897 | + | 0.561007i | 2.87676 | − | 0.851031i | 1.79018 | + | 3.10068i | 1.12097 | − | 1.94158i | −0.454341 | + | 1.88953i | 7.69849i | −4.91052 | 7.55149 | − | 4.89642i | 0.726158 | + | 1.25774i | ||||
23.12 | −0.239751 | + | 0.415260i | −2.67694 | − | 1.35425i | 1.88504 | + | 3.26498i | 0.131616 | − | 0.227965i | 1.20417 | − | 0.786943i | 0.552346i | −3.72576 | 5.33200 | + | 7.25050i | 0.0631100 | + | 0.109310i | ||||
23.13 | −0.138316 | + | 0.239570i | 0.191257 | + | 2.99390i | 1.96174 | + | 3.39783i | −2.47988 | + | 4.29528i | −0.743703 | − | 0.368285i | − | 6.85336i | −2.19189 | −8.92684 | + | 1.14521i | −0.686015 | − | 1.18821i | |||
23.14 | 0.000244066 | 0 | 0.000422734i | 1.90499 | + | 2.31755i | 2.00000 | + | 3.46410i | 4.59055 | − | 7.95106i | 0.00144465 | 0.000239669i | − | 5.76773i | 0.00390505 | −1.74205 | + | 8.82979i | −0.00224079 | − | 0.00388116i | ||||
23.15 | 0.120411 | − | 0.208558i | −0.240500 | − | 2.99034i | 1.97100 | + | 3.41388i | −4.12967 | + | 7.15280i | −0.652619 | − | 0.309912i | 10.8968i | 1.91261 | −8.88432 | + | 1.43836i | 0.994515 | + | 1.72255i | ||||
23.16 | 0.587917 | − | 1.01830i | −0.850106 | − | 2.87703i | 1.30871 | + | 2.26675i | 0.331589 | − | 0.574329i | −3.42948 | − | 0.825792i | − | 12.4699i | 7.78098 | −7.55464 | + | 4.89157i | −0.389894 | − | 0.675315i | |||
23.17 | 0.594188 | − | 1.02916i | −2.98008 | + | 0.345181i | 1.29388 | + | 2.24107i | 3.27957 | − | 5.68038i | −1.41548 | + | 3.27209i | 2.41808i | 7.82874 | 8.76170 | − | 2.05733i | −3.89736 | − | 6.75042i | ||||
23.18 | 0.670962 | − | 1.16214i | 2.55159 | − | 1.57778i | 1.09962 | + | 1.90460i | −0.383399 | + | 0.664067i | −0.121583 | − | 4.02393i | − | 5.48499i | 8.31891 | 4.02121 | − | 8.05170i | 0.514492 | + | 0.891127i | |||
23.19 | 0.927144 | − | 1.60586i | 2.67307 | + | 1.36187i | 0.280807 | + | 0.486372i | −2.88924 | + | 5.00431i | 4.66530 | − | 3.02993i | − | 2.33066i | 8.45855 | 5.29062 | + | 7.28075i | 5.35749 | + | 9.27944i | |||
23.20 | 1.01844 | − | 1.76399i | −0.178787 | + | 2.99467i | −0.0744351 | − | 0.128925i | −0.0620677 | + | 0.107504i | 5.10047 | + | 3.36526i | 8.93133i | 7.84428 | −8.93607 | − | 1.07081i | 0.126424 | + | 0.218973i | ||||
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.m | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.3.m.a | ✓ | 52 |
3.b | odd | 2 | 1 | 351.3.m.a | 52 | ||
9.c | even | 3 | 1 | 351.3.v.a | 52 | ||
9.d | odd | 6 | 1 | 117.3.v.a | yes | 52 | |
13.e | even | 6 | 1 | 117.3.v.a | yes | 52 | |
39.h | odd | 6 | 1 | 351.3.v.a | 52 | ||
117.m | odd | 6 | 1 | inner | 117.3.m.a | ✓ | 52 |
117.r | even | 6 | 1 | 351.3.m.a | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.3.m.a | ✓ | 52 | 1.a | even | 1 | 1 | trivial |
117.3.m.a | ✓ | 52 | 117.m | odd | 6 | 1 | inner |
117.3.v.a | yes | 52 | 9.d | odd | 6 | 1 | |
117.3.v.a | yes | 52 | 13.e | even | 6 | 1 | |
351.3.m.a | 52 | 3.b | odd | 2 | 1 | ||
351.3.m.a | 52 | 117.r | even | 6 | 1 | ||
351.3.v.a | 52 | 9.c | even | 3 | 1 | ||
351.3.v.a | 52 | 39.h | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(117, [\chi])\).