Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,3,Mod(7,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([8, 11]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.7");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.bb (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.18801909302\) |
Analytic rank: | \(0\) |
Dimension: | \(104\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −0.985740 | + | 3.67883i | 1.51073 | − | 2.59185i | −9.09802 | − | 5.25275i | −1.72850 | + | 6.45085i | 8.04580 | + | 8.11262i | −6.33066 | + | 6.33066i | 17.5199 | − | 17.5199i | −4.43538 | − | 7.83118i | −22.0278 | − | 12.7177i |
7.2 | −0.954072 | + | 3.56064i | −1.50245 | + | 2.59666i | −8.30384 | − | 4.79422i | 1.83667 | − | 6.85456i | −7.81234 | − | 7.82709i | −1.57948 | + | 1.57948i | 14.5667 | − | 14.5667i | −4.48530 | − | 7.80270i | 22.6543 | + | 13.0795i |
7.3 | −0.849385 | + | 3.16995i | −2.32988 | − | 1.88988i | −5.86301 | − | 3.38501i | 0.483124 | − | 1.80304i | 7.96979 | − | 5.78037i | 6.39811 | − | 6.39811i | 6.42800 | − | 6.42800i | 1.85670 | + | 8.80640i | 5.30519 | + | 3.06295i |
7.4 | −0.825818 | + | 3.08200i | 1.49477 | + | 2.60109i | −5.35262 | − | 3.09034i | −1.67984 | + | 6.26926i | −9.25095 | + | 2.45885i | 5.59737 | − | 5.59737i | 4.91998 | − | 4.91998i | −4.53132 | + | 7.77606i | −17.9346 | − | 10.3545i |
7.5 | −0.738153 | + | 2.75483i | 2.39100 | − | 1.81193i | −3.58010 | − | 2.06697i | 1.54818 | − | 5.77788i | 3.22664 | + | 7.92428i | 5.82885 | − | 5.82885i | 0.270108 | − | 0.270108i | 2.43379 | − | 8.66468i | 14.7743 | + | 8.52992i |
7.6 | −0.687085 | + | 2.56424i | 2.77842 | + | 1.13153i | −2.63912 | − | 1.52369i | 0.672006 | − | 2.50796i | −4.81053 | + | 6.34707i | −6.84868 | + | 6.84868i | −1.78820 | + | 1.78820i | 6.43927 | + | 6.28775i | 5.96928 | + | 3.44636i |
7.7 | −0.579256 | + | 2.16181i | −1.71409 | − | 2.46209i | −0.873789 | − | 0.504482i | 0.365478 | − | 1.36398i | 6.31547 | − | 2.27936i | −7.55072 | + | 7.55072i | −4.73348 | + | 4.73348i | −3.12377 | + | 8.44050i | 2.73696 | + | 1.58019i |
7.8 | −0.533716 | + | 1.99185i | −1.28337 | + | 2.71163i | −0.218531 | − | 0.126169i | −0.459354 | + | 1.71433i | −4.71622 | − | 4.00353i | −2.37210 | + | 2.37210i | −5.46461 | + | 5.46461i | −5.70591 | − | 6.96007i | −3.16954 | − | 1.82993i |
7.9 | −0.412698 | + | 1.54021i | −2.94208 | + | 0.586681i | 1.26217 | + | 0.728715i | −1.42093 | + | 5.30297i | 0.310577 | − | 4.77354i | 2.67174 | − | 2.67174i | −6.15332 | + | 6.15332i | 8.31161 | − | 3.45212i | −7.58129 | − | 4.37706i |
7.10 | −0.326843 | + | 1.21980i | 0.212026 | − | 2.99250i | 2.08303 | + | 1.20264i | −2.20981 | + | 8.24713i | 3.58094 | + | 1.23671i | 4.91549 | − | 4.91549i | −5.71960 | + | 5.71960i | −8.91009 | − | 1.26898i | −9.33755 | − | 5.39104i |
7.11 | −0.227045 | + | 0.847343i | −2.93694 | + | 0.611861i | 2.79766 | + | 1.61523i | 2.29731 | − | 8.57367i | 0.148361 | − | 2.62752i | 0.760861 | − | 0.760861i | −4.48504 | + | 4.48504i | 8.25125 | − | 3.59400i | 6.74325 | + | 3.89322i |
7.12 | −0.203464 | + | 0.759340i | 2.94965 | − | 0.547339i | 2.92890 | + | 1.69100i | −0.980067 | + | 3.65766i | −0.184532 | + | 2.35115i | −1.50909 | + | 1.50909i | −4.10347 | + | 4.10347i | 8.40084 | − | 3.22892i | −2.57800 | − | 1.48841i |
7.13 | −0.150066 | + | 0.560053i | 1.88011 | + | 2.33777i | 3.17296 | + | 1.83191i | 1.19056 | − | 4.44321i | −1.59142 | + | 0.702140i | 8.23071 | − | 8.23071i | −3.14207 | + | 3.14207i | −1.93038 | + | 8.79054i | 2.30977 | + | 1.33355i |
7.14 | −0.00774623 | + | 0.0289093i | 1.19499 | − | 2.75172i | 3.46333 | + | 1.99955i | 1.76908 | − | 6.60228i | 0.0702937 | + | 0.0558619i | −3.33116 | + | 3.33116i | −0.169286 | + | 0.169286i | −6.14397 | − | 6.57659i | 0.177164 | + | 0.102286i |
7.15 | 0.107592 | − | 0.401541i | −0.191564 | + | 2.99388i | 3.31444 | + | 1.91359i | −0.322695 | + | 1.20431i | 1.18155 | + | 0.399039i | −3.52152 | + | 3.52152i | 2.30079 | − | 2.30079i | −8.92661 | − | 1.14704i | 0.448861 | + | 0.259150i |
7.16 | 0.224300 | − | 0.837100i | −2.71604 | − | 1.27402i | 2.81368 | + | 1.62448i | −1.33823 | + | 4.99435i | −1.67569 | + | 1.98783i | −8.46705 | + | 8.46705i | 4.44216 | − | 4.44216i | 5.75373 | + | 6.92059i | 3.88061 | + | 2.24047i |
7.17 | 0.254432 | − | 0.949552i | −1.28144 | − | 2.71254i | 2.62719 | + | 1.51681i | 0.323014 | − | 1.20550i | −2.90174 | + | 0.526641i | 5.37476 | − | 5.37476i | 4.88921 | − | 4.88921i | −5.71580 | + | 6.95195i | −1.06250 | − | 0.613437i |
7.18 | 0.449246 | − | 1.67661i | −2.83824 | + | 0.971803i | 0.854911 | + | 0.493583i | −0.762199 | + | 2.84456i | 0.354267 | + | 5.19519i | 6.90561 | − | 6.90561i | 6.12106 | − | 6.12106i | 7.11120 | − | 5.51642i | 4.42680 | + | 2.55582i |
7.19 | 0.524404 | − | 1.95710i | 2.63868 | + | 1.42737i | −0.0911449 | − | 0.0526225i | 2.10179 | − | 7.84399i | 4.17724 | − | 4.41564i | −7.76479 | + | 7.76479i | 5.58001 | − | 5.58001i | 4.92522 | + | 7.53274i | −14.2493 | − | 8.22684i |
7.20 | 0.535255 | − | 1.99760i | 2.51826 | − | 1.63045i | −0.239808 | − | 0.138453i | −0.486029 | + | 1.81388i | −1.90908 | − | 5.90318i | 0.855863 | − | 0.855863i | 5.44445 | − | 5.44445i | 3.68326 | − | 8.21180i | 3.36327 | + | 1.94178i |
See next 80 embeddings (of 104 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.bb | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.3.bb.a | yes | 104 |
3.b | odd | 2 | 1 | 351.3.be.a | 104 | ||
9.c | even | 3 | 1 | 117.3.w.a | ✓ | 104 | |
9.d | odd | 6 | 1 | 351.3.z.a | 104 | ||
13.f | odd | 12 | 1 | 117.3.w.a | ✓ | 104 | |
39.k | even | 12 | 1 | 351.3.z.a | 104 | ||
117.bb | odd | 12 | 1 | inner | 117.3.bb.a | yes | 104 |
117.bc | even | 12 | 1 | 351.3.be.a | 104 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.3.w.a | ✓ | 104 | 9.c | even | 3 | 1 | |
117.3.w.a | ✓ | 104 | 13.f | odd | 12 | 1 | |
117.3.bb.a | yes | 104 | 1.a | even | 1 | 1 | trivial |
117.3.bb.a | yes | 104 | 117.bb | odd | 12 | 1 | inner |
351.3.z.a | 104 | 9.d | odd | 6 | 1 | ||
351.3.z.a | 104 | 39.k | even | 12 | 1 | ||
351.3.be.a | 104 | 3.b | odd | 2 | 1 | ||
351.3.be.a | 104 | 117.bc | even | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(117, [\chi])\).