Properties

Label 117.14.b.c.64.5
Level $117$
Weight $14$
Character 117.64
Analytic conductor $125.460$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,14,Mod(64,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 14, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.64"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 117.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-49154] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(125.460186874\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 81921 x^{12} + 2522899104 x^{10} + 37246030694192 x^{8} + \cdots + 56\!\cdots\!64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{8}\cdot 13^{6} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 64.5
Root \(-87.5010i\) of defining polynomial
Character \(\chi\) \(=\) 117.64
Dual form 117.14.b.c.64.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-87.5010i q^{2} +535.569 q^{4} -31938.7i q^{5} -191671. i q^{7} -763671. i q^{8} -2.79467e6 q^{10} +9.74341e6i q^{11} +(-633744. + 1.73918e7i) q^{13} -1.67714e7 q^{14} -6.24346e7 q^{16} +6.29773e7 q^{17} -3.67427e7i q^{19} -1.71054e7i q^{20} +8.52559e8 q^{22} +6.82777e8 q^{23} +2.00624e8 q^{25} +(1.52180e9 + 5.54533e7i) q^{26} -1.02653e8i q^{28} +4.28310e9 q^{29} -1.74048e8i q^{31} -7.92899e8i q^{32} -5.51058e9i q^{34} -6.12171e9 q^{35} +2.72739e7i q^{37} -3.21503e9 q^{38} -2.43906e10 q^{40} +2.25984e10i q^{41} +3.58063e10 q^{43} +5.21827e9i q^{44} -5.97437e10i q^{46} +5.55708e10i q^{47} +6.01513e10 q^{49} -1.75548e10i q^{50} +(-3.39414e8 + 9.31449e9i) q^{52} +4.92496e10 q^{53} +3.11192e11 q^{55} -1.46374e11 q^{56} -3.74776e11i q^{58} +3.00035e11i q^{59} -8.99954e10 q^{61} -1.52294e10 q^{62} -5.80844e11 q^{64} +(5.55470e11 + 2.02410e10i) q^{65} -1.13281e12i q^{67} +3.37287e10 q^{68} +5.35656e11i q^{70} +8.22933e11i q^{71} +9.13149e11i q^{73} +2.38649e9 q^{74} -1.96783e10i q^{76} +1.86753e12 q^{77} +1.70734e12 q^{79} +1.99408e12i q^{80} +1.97738e12 q^{82} -3.23695e12i q^{83} -2.01141e12i q^{85} -3.13309e12i q^{86} +7.44077e12 q^{88} -1.90362e12i q^{89} +(3.33349e12 + 1.21470e11i) q^{91} +3.65674e11 q^{92} +4.86250e12 q^{94} -1.17351e12 q^{95} +8.72249e12i q^{97} -5.26330e12i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 49154 q^{4} - 3968358 q^{10} - 14362478 q^{13} - 72843942 q^{14} + 243447170 q^{16} + 178512492 q^{17} + 1330288056 q^{22} + 1641693744 q^{23} + 1601386654 q^{25} - 138020766 q^{26} + 10348326348 q^{29}+ \cdots - 11940434574336 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 87.5010i 0.966759i −0.875411 0.483379i \(-0.839409\pi\)
0.875411 0.483379i \(-0.160591\pi\)
\(3\) 0 0
\(4\) 535.569 0.0653771
\(5\) 31938.7i 0.914138i −0.889431 0.457069i \(-0.848899\pi\)
0.889431 0.457069i \(-0.151101\pi\)
\(6\) 0 0
\(7\) 191671.i 0.615770i −0.951424 0.307885i \(-0.900379\pi\)
0.951424 0.307885i \(-0.0996213\pi\)
\(8\) 763671.i 1.02996i
\(9\) 0 0
\(10\) −2.79467e6 −0.883751
\(11\) 9.74341e6i 1.65828i 0.559039 + 0.829142i \(0.311170\pi\)
−0.559039 + 0.829142i \(0.688830\pi\)
\(12\) 0 0
\(13\) −633744. + 1.73918e7i −0.0364152 + 0.999337i
\(14\) −1.67714e7 −0.595302
\(15\) 0 0
\(16\) −6.24346e7 −0.930349
\(17\) 6.29773e7 0.632800 0.316400 0.948626i \(-0.397526\pi\)
0.316400 + 0.948626i \(0.397526\pi\)
\(18\) 0 0
\(19\) 3.67427e7i 0.179173i −0.995979 0.0895866i \(-0.971445\pi\)
0.995979 0.0895866i \(-0.0285546\pi\)
\(20\) 1.71054e7i 0.0597637i
\(21\) 0 0
\(22\) 8.52559e8 1.60316
\(23\) 6.82777e8 0.961718 0.480859 0.876798i \(-0.340325\pi\)
0.480859 + 0.876798i \(0.340325\pi\)
\(24\) 0 0
\(25\) 2.00624e8 0.164351
\(26\) 1.52180e9 + 5.54533e7i 0.966118 + 0.0352047i
\(27\) 0 0
\(28\) 1.02653e8i 0.0402573i
\(29\) 4.28310e9 1.33712 0.668562 0.743656i \(-0.266910\pi\)
0.668562 + 0.743656i \(0.266910\pi\)
\(30\) 0 0
\(31\) 1.74048e8i 0.0352223i −0.999845 0.0176111i \(-0.994394\pi\)
0.999845 0.0176111i \(-0.00560609\pi\)
\(32\) 7.92899e8i 0.130540i
\(33\) 0 0
\(34\) 5.51058e9i 0.611765i
\(35\) −6.12171e9 −0.562899
\(36\) 0 0
\(37\) 2.72739e7i 0.00174757i 1.00000 0.000873787i \(0.000278135\pi\)
−1.00000 0.000873787i \(0.999722\pi\)
\(38\) −3.21503e9 −0.173217
\(39\) 0 0
\(40\) −2.43906e10 −0.941528
\(41\) 2.25984e10i 0.742990i 0.928435 + 0.371495i \(0.121155\pi\)
−0.928435 + 0.371495i \(0.878845\pi\)
\(42\) 0 0
\(43\) 3.58063e10 0.863804 0.431902 0.901921i \(-0.357843\pi\)
0.431902 + 0.901921i \(0.357843\pi\)
\(44\) 5.21827e9i 0.108414i
\(45\) 0 0
\(46\) 5.97437e10i 0.929750i
\(47\) 5.55708e10i 0.751987i 0.926622 + 0.375993i \(0.122698\pi\)
−0.926622 + 0.375993i \(0.877302\pi\)
\(48\) 0 0
\(49\) 6.01513e10 0.620827
\(50\) 1.75548e10i 0.158888i
\(51\) 0 0
\(52\) −3.39414e8 + 9.31449e9i −0.00238072 + 0.0653337i
\(53\) 4.92496e10 0.305217 0.152609 0.988287i \(-0.451233\pi\)
0.152609 + 0.988287i \(0.451233\pi\)
\(54\) 0 0
\(55\) 3.11192e11 1.51590
\(56\) −1.46374e11 −0.634221
\(57\) 0 0
\(58\) 3.74776e11i 1.29268i
\(59\) 3.00035e11i 0.926050i 0.886345 + 0.463025i \(0.153236\pi\)
−0.886345 + 0.463025i \(0.846764\pi\)
\(60\) 0 0
\(61\) −8.99954e10 −0.223654 −0.111827 0.993728i \(-0.535670\pi\)
−0.111827 + 0.993728i \(0.535670\pi\)
\(62\) −1.52294e10 −0.0340515
\(63\) 0 0
\(64\) −5.80844e11 −1.05655
\(65\) 5.55470e11 + 2.02410e10i 0.913532 + 0.0332885i
\(66\) 0 0
\(67\) 1.13281e12i 1.52992i −0.644077 0.764960i \(-0.722759\pi\)
0.644077 0.764960i \(-0.277241\pi\)
\(68\) 3.37287e10 0.0413706
\(69\) 0 0
\(70\) 5.35656e11i 0.544188i
\(71\) 8.22933e11i 0.762404i 0.924492 + 0.381202i \(0.124490\pi\)
−0.924492 + 0.381202i \(0.875510\pi\)
\(72\) 0 0
\(73\) 9.13149e11i 0.706225i 0.935581 + 0.353113i \(0.114877\pi\)
−0.935581 + 0.353113i \(0.885123\pi\)
\(74\) 2.38649e9 0.00168948
\(75\) 0 0
\(76\) 1.96783e10i 0.0117138i
\(77\) 1.86753e12 1.02112
\(78\) 0 0
\(79\) 1.70734e12 0.790211 0.395106 0.918636i \(-0.370708\pi\)
0.395106 + 0.918636i \(0.370708\pi\)
\(80\) 1.99408e12i 0.850467i
\(81\) 0 0
\(82\) 1.97738e12 0.718292
\(83\) 3.23695e12i 1.08675i −0.839491 0.543374i \(-0.817147\pi\)
0.839491 0.543374i \(-0.182853\pi\)
\(84\) 0 0
\(85\) 2.01141e12i 0.578466i
\(86\) 3.13309e12i 0.835090i
\(87\) 0 0
\(88\) 7.44077e12 1.70797
\(89\) 1.90362e12i 0.406018i −0.979177 0.203009i \(-0.934928\pi\)
0.979177 0.203009i \(-0.0650722\pi\)
\(90\) 0 0
\(91\) 3.33349e12 + 1.21470e11i 0.615362 + 0.0224234i
\(92\) 3.65674e11 0.0628743
\(93\) 0 0
\(94\) 4.86250e12 0.726990
\(95\) −1.17351e12 −0.163789
\(96\) 0 0
\(97\) 8.72249e12i 1.06322i 0.846988 + 0.531612i \(0.178413\pi\)
−0.846988 + 0.531612i \(0.821587\pi\)
\(98\) 5.26330e12i 0.600190i
\(99\) 0 0
\(100\) 1.07448e11 0.0107448
\(101\) 9.35975e12 0.877355 0.438677 0.898645i \(-0.355447\pi\)
0.438677 + 0.898645i \(0.355447\pi\)
\(102\) 0 0
\(103\) −4.32981e12 −0.357295 −0.178648 0.983913i \(-0.557172\pi\)
−0.178648 + 0.983913i \(0.557172\pi\)
\(104\) 1.32816e13 + 4.83972e11i 1.02928 + 0.0375063i
\(105\) 0 0
\(106\) 4.30939e12i 0.295072i
\(107\) −2.03267e13 −1.30940 −0.654700 0.755889i \(-0.727205\pi\)
−0.654700 + 0.755889i \(0.727205\pi\)
\(108\) 0 0
\(109\) 8.76206e12i 0.500419i 0.968192 + 0.250210i \(0.0804996\pi\)
−0.968192 + 0.250210i \(0.919500\pi\)
\(110\) 2.72296e13i 1.46551i
\(111\) 0 0
\(112\) 1.19669e13i 0.572881i
\(113\) −8.52942e12 −0.385398 −0.192699 0.981258i \(-0.561724\pi\)
−0.192699 + 0.981258i \(0.561724\pi\)
\(114\) 0 0
\(115\) 2.18070e13i 0.879143i
\(116\) 2.29390e12 0.0874172
\(117\) 0 0
\(118\) 2.62534e13 0.895267
\(119\) 1.20709e13i 0.389659i
\(120\) 0 0
\(121\) −6.04114e13 −1.74990
\(122\) 7.87469e12i 0.216219i
\(123\) 0 0
\(124\) 9.32146e10i 0.00230273i
\(125\) 4.53953e13i 1.06438i
\(126\) 0 0
\(127\) −3.34991e13 −0.708449 −0.354224 0.935160i \(-0.615255\pi\)
−0.354224 + 0.935160i \(0.615255\pi\)
\(128\) 4.43290e13i 0.890889i
\(129\) 0 0
\(130\) 1.77110e12 4.86042e13i 0.0321819 0.883165i
\(131\) 1.10053e14 1.90256 0.951280 0.308329i \(-0.0997696\pi\)
0.951280 + 0.308329i \(0.0997696\pi\)
\(132\) 0 0
\(133\) −7.04251e12 −0.110330
\(134\) −9.91216e13 −1.47906
\(135\) 0 0
\(136\) 4.80940e13i 0.651760i
\(137\) 1.09480e14i 1.41466i −0.706883 0.707330i \(-0.749899\pi\)
0.706883 0.707330i \(-0.250101\pi\)
\(138\) 0 0
\(139\) −1.77596e13 −0.208851 −0.104425 0.994533i \(-0.533300\pi\)
−0.104425 + 0.994533i \(0.533300\pi\)
\(140\) −3.27860e12 −0.0368007
\(141\) 0 0
\(142\) 7.20075e13 0.737061
\(143\) −1.69455e14 6.17483e12i −1.65718 0.0603867i
\(144\) 0 0
\(145\) 1.36797e14i 1.22232i
\(146\) 7.99015e13 0.682750
\(147\) 0 0
\(148\) 1.46070e10i 0.000114251i
\(149\) 1.57109e14i 1.17622i 0.808780 + 0.588111i \(0.200128\pi\)
−0.808780 + 0.588111i \(0.799872\pi\)
\(150\) 0 0
\(151\) 7.81355e13i 0.536412i 0.963362 + 0.268206i \(0.0864307\pi\)
−0.963362 + 0.268206i \(0.913569\pi\)
\(152\) −2.80594e13 −0.184542
\(153\) 0 0
\(154\) 1.63411e14i 0.987179i
\(155\) −5.55886e12 −0.0321980
\(156\) 0 0
\(157\) 5.69426e12 0.0303451 0.0151726 0.999885i \(-0.495170\pi\)
0.0151726 + 0.999885i \(0.495170\pi\)
\(158\) 1.49394e14i 0.763944i
\(159\) 0 0
\(160\) −2.53241e13 −0.119331
\(161\) 1.30868e14i 0.592198i
\(162\) 0 0
\(163\) 1.35936e14i 0.567693i −0.958870 0.283847i \(-0.908389\pi\)
0.958870 0.283847i \(-0.0916106\pi\)
\(164\) 1.21030e13i 0.0485745i
\(165\) 0 0
\(166\) −2.83237e14 −1.05062
\(167\) 4.92949e14i 1.75851i −0.476351 0.879255i \(-0.658041\pi\)
0.476351 0.879255i \(-0.341959\pi\)
\(168\) 0 0
\(169\) −3.02072e14 2.20439e13i −0.997348 0.0727820i
\(170\) −1.76001e14 −0.559237
\(171\) 0 0
\(172\) 1.91768e13 0.0564729
\(173\) 3.51977e14 0.998194 0.499097 0.866546i \(-0.333665\pi\)
0.499097 + 0.866546i \(0.333665\pi\)
\(174\) 0 0
\(175\) 3.84538e13i 0.101203i
\(176\) 6.08327e14i 1.54278i
\(177\) 0 0
\(178\) −1.66569e14 −0.392522
\(179\) −5.79869e14 −1.31760 −0.658802 0.752316i \(-0.728937\pi\)
−0.658802 + 0.752316i \(0.728937\pi\)
\(180\) 0 0
\(181\) −1.86793e14 −0.394867 −0.197433 0.980316i \(-0.563261\pi\)
−0.197433 + 0.980316i \(0.563261\pi\)
\(182\) 1.06288e13 2.91684e14i 0.0216780 0.594907i
\(183\) 0 0
\(184\) 5.21417e14i 0.990534i
\(185\) 8.71091e11 0.00159752
\(186\) 0 0
\(187\) 6.13614e14i 1.04936i
\(188\) 2.97620e13i 0.0491627i
\(189\) 0 0
\(190\) 1.02684e14i 0.158345i
\(191\) −7.07758e13 −0.105480 −0.0527398 0.998608i \(-0.516795\pi\)
−0.0527398 + 0.998608i \(0.516795\pi\)
\(192\) 0 0
\(193\) 4.06497e14i 0.566155i 0.959097 + 0.283077i \(0.0913553\pi\)
−0.959097 + 0.283077i \(0.908645\pi\)
\(194\) 7.63227e14 1.02788
\(195\) 0 0
\(196\) 3.22152e13 0.0405878
\(197\) 1.43964e15i 1.75479i −0.479770 0.877394i \(-0.659280\pi\)
0.479770 0.877394i \(-0.340720\pi\)
\(198\) 0 0
\(199\) 1.38293e15 1.57854 0.789269 0.614048i \(-0.210460\pi\)
0.789269 + 0.614048i \(0.210460\pi\)
\(200\) 1.53211e14i 0.169276i
\(201\) 0 0
\(202\) 8.18988e14i 0.848191i
\(203\) 8.20946e14i 0.823361i
\(204\) 0 0
\(205\) 7.21763e14 0.679195
\(206\) 3.78863e14i 0.345418i
\(207\) 0 0
\(208\) 3.95676e13 1.08585e15i 0.0338788 0.929732i
\(209\) 3.58000e14 0.297120
\(210\) 0 0
\(211\) 1.51265e15 1.18006 0.590029 0.807382i \(-0.299116\pi\)
0.590029 + 0.807382i \(0.299116\pi\)
\(212\) 2.63765e13 0.0199542
\(213\) 0 0
\(214\) 1.77861e15i 1.26587i
\(215\) 1.14361e15i 0.789636i
\(216\) 0 0
\(217\) −3.33599e13 −0.0216888
\(218\) 7.66690e14 0.483785
\(219\) 0 0
\(220\) 1.66665e14 0.0991051
\(221\) −3.99115e13 + 1.09529e15i −0.0230435 + 0.632380i
\(222\) 0 0
\(223\) 2.47515e15i 1.34778i −0.738831 0.673891i \(-0.764622\pi\)
0.738831 0.673891i \(-0.235378\pi\)
\(224\) −1.51976e14 −0.0803826
\(225\) 0 0
\(226\) 7.46333e14i 0.372587i
\(227\) 1.78560e15i 0.866195i −0.901347 0.433097i \(-0.857421\pi\)
0.901347 0.433097i \(-0.142579\pi\)
\(228\) 0 0
\(229\) 1.48202e15i 0.679084i 0.940591 + 0.339542i \(0.110272\pi\)
−0.940591 + 0.339542i \(0.889728\pi\)
\(230\) −1.90813e15 −0.849920
\(231\) 0 0
\(232\) 3.27088e15i 1.37719i
\(233\) 1.08461e15 0.444079 0.222039 0.975038i \(-0.428729\pi\)
0.222039 + 0.975038i \(0.428729\pi\)
\(234\) 0 0
\(235\) 1.77486e15 0.687420
\(236\) 1.60690e14i 0.0605424i
\(237\) 0 0
\(238\) −1.05622e15 −0.376707
\(239\) 2.75278e15i 0.955401i 0.878523 + 0.477700i \(0.158530\pi\)
−0.878523 + 0.477700i \(0.841470\pi\)
\(240\) 0 0
\(241\) 2.34617e15i 0.771345i −0.922636 0.385672i \(-0.873969\pi\)
0.922636 0.385672i \(-0.126031\pi\)
\(242\) 5.28606e15i 1.69173i
\(243\) 0 0
\(244\) −4.81988e13 −0.0146218
\(245\) 1.92115e15i 0.567521i
\(246\) 0 0
\(247\) 6.39021e14 + 2.32855e13i 0.179054 + 0.00652462i
\(248\) −1.32915e14 −0.0362776
\(249\) 0 0
\(250\) −3.97214e15 −1.02900
\(251\) 5.69252e15 1.43690 0.718448 0.695581i \(-0.244853\pi\)
0.718448 + 0.695581i \(0.244853\pi\)
\(252\) 0 0
\(253\) 6.65258e15i 1.59480i
\(254\) 2.93120e15i 0.684899i
\(255\) 0 0
\(256\) −8.79439e14 −0.195275
\(257\) 1.80324e15 0.390381 0.195190 0.980765i \(-0.437468\pi\)
0.195190 + 0.980765i \(0.437468\pi\)
\(258\) 0 0
\(259\) 5.22760e12 0.00107610
\(260\) 2.97492e14 + 1.08404e13i 0.0597240 + 0.00217630i
\(261\) 0 0
\(262\) 9.62975e15i 1.83932i
\(263\) −4.61101e15 −0.859178 −0.429589 0.903024i \(-0.641342\pi\)
−0.429589 + 0.903024i \(0.641342\pi\)
\(264\) 0 0
\(265\) 1.57297e15i 0.279011i
\(266\) 6.16227e14i 0.106662i
\(267\) 0 0
\(268\) 6.06695e14i 0.100022i
\(269\) −6.36121e15 −1.02365 −0.511823 0.859091i \(-0.671030\pi\)
−0.511823 + 0.859091i \(0.671030\pi\)
\(270\) 0 0
\(271\) 9.80335e15i 1.50340i 0.659506 + 0.751700i \(0.270766\pi\)
−0.659506 + 0.751700i \(0.729234\pi\)
\(272\) −3.93197e15 −0.588724
\(273\) 0 0
\(274\) −9.57964e15 −1.36764
\(275\) 1.95477e15i 0.272541i
\(276\) 0 0
\(277\) 7.93739e14 0.105574 0.0527872 0.998606i \(-0.483189\pi\)
0.0527872 + 0.998606i \(0.483189\pi\)
\(278\) 1.55398e15i 0.201909i
\(279\) 0 0
\(280\) 4.67498e15i 0.579765i
\(281\) 4.13004e15i 0.500452i 0.968187 + 0.250226i \(0.0805050\pi\)
−0.968187 + 0.250226i \(0.919495\pi\)
\(282\) 0 0
\(283\) −4.88199e15 −0.564917 −0.282459 0.959280i \(-0.591150\pi\)
−0.282459 + 0.959280i \(0.591150\pi\)
\(284\) 4.40738e14i 0.0498438i
\(285\) 0 0
\(286\) −5.40304e14 + 1.48275e16i −0.0583793 + 1.60210i
\(287\) 4.33146e15 0.457511
\(288\) 0 0
\(289\) −5.93844e15 −0.599565
\(290\) −1.19698e16 −1.18168
\(291\) 0 0
\(292\) 4.89054e14i 0.0461709i
\(293\) 7.21337e15i 0.666037i −0.942920 0.333019i \(-0.891933\pi\)
0.942920 0.333019i \(-0.108067\pi\)
\(294\) 0 0
\(295\) 9.58273e15 0.846537
\(296\) 2.08283e13 0.00179994
\(297\) 0 0
\(298\) 1.37472e16 1.13712
\(299\) −4.32706e14 + 1.18747e16i −0.0350211 + 0.961080i
\(300\) 0 0
\(301\) 6.86303e15i 0.531905i
\(302\) 6.83694e15 0.518581
\(303\) 0 0
\(304\) 2.29402e15i 0.166694i
\(305\) 2.87433e15i 0.204451i
\(306\) 0 0
\(307\) 6.03857e15i 0.411656i 0.978588 + 0.205828i \(0.0659887\pi\)
−0.978588 + 0.205828i \(0.934011\pi\)
\(308\) 1.00019e15 0.0667579
\(309\) 0 0
\(310\) 4.86406e14i 0.0311277i
\(311\) 1.68566e16 1.05640 0.528200 0.849120i \(-0.322867\pi\)
0.528200 + 0.849120i \(0.322867\pi\)
\(312\) 0 0
\(313\) 2.02486e15 0.121718 0.0608592 0.998146i \(-0.480616\pi\)
0.0608592 + 0.998146i \(0.480616\pi\)
\(314\) 4.98253e14i 0.0293364i
\(315\) 0 0
\(316\) 9.14397e14 0.0516617
\(317\) 1.40459e16i 0.777438i 0.921356 + 0.388719i \(0.127082\pi\)
−0.921356 + 0.388719i \(0.872918\pi\)
\(318\) 0 0
\(319\) 4.17321e16i 2.21733i
\(320\) 1.85514e16i 0.965832i
\(321\) 0 0
\(322\) −1.14511e16 −0.572512
\(323\) 2.31396e15i 0.113381i
\(324\) 0 0
\(325\) −1.27144e14 + 3.48921e15i −0.00598488 + 0.164242i
\(326\) −1.18945e16 −0.548822
\(327\) 0 0
\(328\) 1.72578e16 0.765252
\(329\) 1.06513e16 0.463051
\(330\) 0 0
\(331\) 1.06454e16i 0.444917i −0.974942 0.222458i \(-0.928592\pi\)
0.974942 0.222458i \(-0.0714081\pi\)
\(332\) 1.73361e15i 0.0710484i
\(333\) 0 0
\(334\) −4.31335e16 −1.70006
\(335\) −3.61803e16 −1.39856
\(336\) 0 0
\(337\) −3.10858e16 −1.15603 −0.578014 0.816027i \(-0.696172\pi\)
−0.578014 + 0.816027i \(0.696172\pi\)
\(338\) −1.92886e15 + 2.64316e16i −0.0703627 + 0.964195i
\(339\) 0 0
\(340\) 1.07725e15i 0.0378184i
\(341\) 1.69582e15 0.0584085
\(342\) 0 0
\(343\) 3.01000e16i 0.998057i
\(344\) 2.73443e16i 0.889686i
\(345\) 0 0
\(346\) 3.07984e16i 0.965013i
\(347\) 4.50444e16 1.38516 0.692579 0.721342i \(-0.256474\pi\)
0.692579 + 0.721342i \(0.256474\pi\)
\(348\) 0 0
\(349\) 1.59465e16i 0.472391i −0.971706 0.236195i \(-0.924099\pi\)
0.971706 0.236195i \(-0.0759005\pi\)
\(350\) −3.36475e15 −0.0978387
\(351\) 0 0
\(352\) 7.72554e15 0.216472
\(353\) 2.81276e16i 0.773744i 0.922133 + 0.386872i \(0.126444\pi\)
−0.922133 + 0.386872i \(0.873556\pi\)
\(354\) 0 0
\(355\) 2.62834e16 0.696943
\(356\) 1.01952e15i 0.0265443i
\(357\) 0 0
\(358\) 5.07391e16i 1.27381i
\(359\) 1.42870e16i 0.352231i 0.984369 + 0.176116i \(0.0563533\pi\)
−0.984369 + 0.176116i \(0.943647\pi\)
\(360\) 0 0
\(361\) 4.07030e16 0.967897
\(362\) 1.63446e16i 0.381741i
\(363\) 0 0
\(364\) 1.78532e15 + 6.50557e13i 0.0402306 + 0.00146597i
\(365\) 2.91648e16 0.645587
\(366\) 0 0
\(367\) 5.30985e16 1.13437 0.567183 0.823592i \(-0.308033\pi\)
0.567183 + 0.823592i \(0.308033\pi\)
\(368\) −4.26289e16 −0.894733
\(369\) 0 0
\(370\) 7.62213e13i 0.00154442i
\(371\) 9.43970e15i 0.187944i
\(372\) 0 0
\(373\) 8.49419e16 1.63311 0.816553 0.577270i \(-0.195882\pi\)
0.816553 + 0.577270i \(0.195882\pi\)
\(374\) 5.36919e16 1.01448
\(375\) 0 0
\(376\) 4.24378e16 0.774518
\(377\) −2.71439e15 + 7.44907e16i −0.0486916 + 1.33624i
\(378\) 0 0
\(379\) 7.54106e16i 1.30701i −0.756924 0.653503i \(-0.773299\pi\)
0.756924 0.653503i \(-0.226701\pi\)
\(380\) −6.28498e14 −0.0107081
\(381\) 0 0
\(382\) 6.19296e15i 0.101973i
\(383\) 3.22518e15i 0.0522110i −0.999659 0.0261055i \(-0.991689\pi\)
0.999659 0.0261055i \(-0.00831058\pi\)
\(384\) 0 0
\(385\) 5.96464e16i 0.933446i
\(386\) 3.55689e16 0.547335
\(387\) 0 0
\(388\) 4.67150e15i 0.0695104i
\(389\) −6.43418e16 −0.941500 −0.470750 0.882267i \(-0.656017\pi\)
−0.470750 + 0.882267i \(0.656017\pi\)
\(390\) 0 0
\(391\) 4.29994e16 0.608575
\(392\) 4.59358e16i 0.639429i
\(393\) 0 0
\(394\) −1.25970e17 −1.69646
\(395\) 5.45301e16i 0.722362i
\(396\) 0 0
\(397\) 8.57754e16i 1.09957i 0.835305 + 0.549787i \(0.185291\pi\)
−0.835305 + 0.549787i \(0.814709\pi\)
\(398\) 1.21008e17i 1.52607i
\(399\) 0 0
\(400\) −1.25259e16 −0.152904
\(401\) 8.64300e16i 1.03807i −0.854753 0.519034i \(-0.826292\pi\)
0.854753 0.519034i \(-0.173708\pi\)
\(402\) 0 0
\(403\) 3.02700e15 + 1.10302e14i 0.0351989 + 0.00128263i
\(404\) 5.01279e15 0.0573589
\(405\) 0 0
\(406\) −7.18336e16 −0.795992
\(407\) −2.65740e14 −0.00289797
\(408\) 0 0
\(409\) 8.84315e16i 0.934126i −0.884224 0.467063i \(-0.845312\pi\)
0.884224 0.467063i \(-0.154688\pi\)
\(410\) 6.31550e16i 0.656618i
\(411\) 0 0
\(412\) −2.31891e15 −0.0233589
\(413\) 5.75080e16 0.570234
\(414\) 0 0
\(415\) −1.03384e17 −0.993437
\(416\) 1.37899e16 + 5.02495e14i 0.130453 + 0.00475363i
\(417\) 0 0
\(418\) 3.13253e16i 0.287243i
\(419\) −7.71802e16 −0.696811 −0.348405 0.937344i \(-0.613277\pi\)
−0.348405 + 0.937344i \(0.613277\pi\)
\(420\) 0 0
\(421\) 1.56354e17i 1.36859i 0.729204 + 0.684297i \(0.239891\pi\)
−0.729204 + 0.684297i \(0.760109\pi\)
\(422\) 1.32359e17i 1.14083i
\(423\) 0 0
\(424\) 3.76105e16i 0.314363i
\(425\) 1.26348e16 0.104001
\(426\) 0 0
\(427\) 1.72495e16i 0.137719i
\(428\) −1.08863e16 −0.0856047
\(429\) 0 0
\(430\) −1.00067e17 −0.763387
\(431\) 1.47738e17i 1.11017i 0.831794 + 0.555085i \(0.187314\pi\)
−0.831794 + 0.555085i \(0.812686\pi\)
\(432\) 0 0
\(433\) 9.85012e16 0.718241 0.359120 0.933291i \(-0.383077\pi\)
0.359120 + 0.933291i \(0.383077\pi\)
\(434\) 2.91903e15i 0.0209679i
\(435\) 0 0
\(436\) 4.69269e15i 0.0327160i
\(437\) 2.50871e16i 0.172314i
\(438\) 0 0
\(439\) 2.62228e16 0.174848 0.0874239 0.996171i \(-0.472137\pi\)
0.0874239 + 0.996171i \(0.472137\pi\)
\(440\) 2.37648e17i 1.56132i
\(441\) 0 0
\(442\) 9.58387e16 + 3.49230e15i 0.611359 + 0.0222775i
\(443\) 6.03593e16 0.379420 0.189710 0.981840i \(-0.439245\pi\)
0.189710 + 0.981840i \(0.439245\pi\)
\(444\) 0 0
\(445\) −6.07992e16 −0.371157
\(446\) −2.16578e17 −1.30298
\(447\) 0 0
\(448\) 1.11331e17i 0.650592i
\(449\) 1.69726e17i 0.977569i −0.872405 0.488785i \(-0.837440\pi\)
0.872405 0.488785i \(-0.162560\pi\)
\(450\) 0 0
\(451\) −2.20186e17 −1.23209
\(452\) −4.56809e15 −0.0251962
\(453\) 0 0
\(454\) −1.56242e17 −0.837401
\(455\) 3.87960e15 1.06467e17i 0.0204981 0.562526i
\(456\) 0 0
\(457\) 1.32615e17i 0.680986i −0.940247 0.340493i \(-0.889406\pi\)
0.940247 0.340493i \(-0.110594\pi\)
\(458\) 1.29678e17 0.656510
\(459\) 0 0
\(460\) 1.16791e16i 0.0574758i
\(461\) 6.00255e15i 0.0291259i 0.999894 + 0.0145630i \(0.00463570\pi\)
−0.999894 + 0.0145630i \(0.995364\pi\)
\(462\) 0 0
\(463\) 3.23963e17i 1.52834i −0.645016 0.764169i \(-0.723149\pi\)
0.645016 0.764169i \(-0.276851\pi\)
\(464\) −2.67414e17 −1.24399
\(465\) 0 0
\(466\) 9.49045e16i 0.429317i
\(467\) −1.53186e17 −0.683373 −0.341687 0.939814i \(-0.610998\pi\)
−0.341687 + 0.939814i \(0.610998\pi\)
\(468\) 0 0
\(469\) −2.17126e17 −0.942080
\(470\) 1.55302e17i 0.664569i
\(471\) 0 0
\(472\) 2.29128e17 0.953797
\(473\) 3.48876e17i 1.43243i
\(474\) 0 0
\(475\) 7.37149e15i 0.0294474i
\(476\) 6.46481e15i 0.0254748i
\(477\) 0 0
\(478\) 2.40871e17 0.923642
\(479\) 2.82516e16i 0.106872i −0.998571 0.0534358i \(-0.982983\pi\)
0.998571 0.0534358i \(-0.0170173\pi\)
\(480\) 0 0
\(481\) −4.74341e14 1.72847e13i −0.00174641 6.36382e-5i
\(482\) −2.05292e17 −0.745705
\(483\) 0 0
\(484\) −3.23545e16 −0.114404
\(485\) 2.78585e17 0.971933
\(486\) 0 0
\(487\) 1.42186e17i 0.482968i 0.970405 + 0.241484i \(0.0776341\pi\)
−0.970405 + 0.241484i \(0.922366\pi\)
\(488\) 6.87269e16i 0.230355i
\(489\) 0 0
\(490\) −1.68103e17 −0.548656
\(491\) −1.85733e17 −0.598218 −0.299109 0.954219i \(-0.596689\pi\)
−0.299109 + 0.954219i \(0.596689\pi\)
\(492\) 0 0
\(493\) 2.69738e17 0.846131
\(494\) 2.03751e15 5.59150e16i 0.00630774 0.173102i
\(495\) 0 0
\(496\) 1.08666e16i 0.0327690i
\(497\) 1.57732e17 0.469466
\(498\) 0 0
\(499\) 4.33272e17i 1.25634i 0.778076 + 0.628170i \(0.216196\pi\)
−0.778076 + 0.628170i \(0.783804\pi\)
\(500\) 2.43123e16i 0.0695859i
\(501\) 0 0
\(502\) 4.98101e17i 1.38913i
\(503\) 3.06362e17 0.843419 0.421709 0.906731i \(-0.361430\pi\)
0.421709 + 0.906731i \(0.361430\pi\)
\(504\) 0 0
\(505\) 2.98938e17i 0.802024i
\(506\) 5.82107e17 1.54179
\(507\) 0 0
\(508\) −1.79411e16 −0.0463163
\(509\) 2.56714e17i 0.654311i 0.944971 + 0.327155i \(0.106090\pi\)
−0.944971 + 0.327155i \(0.893910\pi\)
\(510\) 0 0
\(511\) 1.75024e17 0.434873
\(512\) 4.40095e17i 1.07967i
\(513\) 0 0
\(514\) 1.57785e17i 0.377404i
\(515\) 1.38288e17i 0.326617i
\(516\) 0 0
\(517\) −5.41449e17 −1.24701
\(518\) 4.57421e14i 0.00104033i
\(519\) 0 0
\(520\) 1.54574e16 4.24196e17i 0.0342859 0.940904i
\(521\) 2.71617e17 0.594993 0.297496 0.954723i \(-0.403848\pi\)
0.297496 + 0.954723i \(0.403848\pi\)
\(522\) 0 0
\(523\) 7.18991e17 1.53625 0.768127 0.640298i \(-0.221189\pi\)
0.768127 + 0.640298i \(0.221189\pi\)
\(524\) 5.89409e16 0.124384
\(525\) 0 0
\(526\) 4.03468e17i 0.830618i
\(527\) 1.09611e16i 0.0222886i
\(528\) 0 0
\(529\) −3.78523e16 −0.0750984
\(530\) −1.37636e17 −0.269736
\(531\) 0 0
\(532\) −3.77175e15 −0.00721302
\(533\) −3.93026e17 1.43216e16i −0.742497 0.0270561i
\(534\) 0 0
\(535\) 6.49207e17i 1.19697i
\(536\) −8.65091e17 −1.57576
\(537\) 0 0
\(538\) 5.56612e17i 0.989619i
\(539\) 5.86079e17i 1.02951i
\(540\) 0 0
\(541\) 5.41301e16i 0.0928232i 0.998922 + 0.0464116i \(0.0147786\pi\)
−0.998922 + 0.0464116i \(0.985221\pi\)
\(542\) 8.57804e17 1.45342
\(543\) 0 0
\(544\) 4.99346e16i 0.0826055i
\(545\) 2.79849e17 0.457453
\(546\) 0 0
\(547\) 1.79153e17 0.285961 0.142980 0.989726i \(-0.454331\pi\)
0.142980 + 0.989726i \(0.454331\pi\)
\(548\) 5.86342e16i 0.0924864i
\(549\) 0 0
\(550\) 1.71044e17 0.263482
\(551\) 1.57373e17i 0.239577i
\(552\) 0 0
\(553\) 3.27247e17i 0.486589i
\(554\) 6.94529e16i 0.102065i
\(555\) 0 0
\(556\) −9.51148e15 −0.0136541
\(557\) 7.43876e16i 0.105546i −0.998607 0.0527730i \(-0.983194\pi\)
0.998607 0.0527730i \(-0.0168060\pi\)
\(558\) 0 0
\(559\) −2.26921e16 + 6.22735e17i −0.0314555 + 0.863231i
\(560\) 3.82207e17 0.523693
\(561\) 0 0
\(562\) 3.61382e17 0.483817
\(563\) −5.58736e17 −0.739438 −0.369719 0.929144i \(-0.620546\pi\)
−0.369719 + 0.929144i \(0.620546\pi\)
\(564\) 0 0
\(565\) 2.72418e17i 0.352307i
\(566\) 4.27179e17i 0.546139i
\(567\) 0 0
\(568\) 6.28451e17 0.785248
\(569\) −6.17454e17 −0.762737 −0.381368 0.924423i \(-0.624547\pi\)
−0.381368 + 0.924423i \(0.624547\pi\)
\(570\) 0 0
\(571\) 4.66410e17 0.563162 0.281581 0.959537i \(-0.409141\pi\)
0.281581 + 0.959537i \(0.409141\pi\)
\(572\) −9.07549e16 3.30705e15i −0.108342 0.00394790i
\(573\) 0 0
\(574\) 3.79007e17i 0.442303i
\(575\) 1.36982e17 0.158060
\(576\) 0 0
\(577\) 1.40520e18i 1.58524i 0.609713 + 0.792622i \(0.291285\pi\)
−0.609713 + 0.792622i \(0.708715\pi\)
\(578\) 5.19619e17i 0.579635i
\(579\) 0 0
\(580\) 7.32640e16i 0.0799114i
\(581\) −6.20429e17 −0.669187
\(582\) 0 0
\(583\) 4.79859e17i 0.506137i
\(584\) 6.97346e17 0.727386
\(585\) 0 0
\(586\) −6.31177e17 −0.643897
\(587\) 3.58281e17i 0.361473i 0.983532 + 0.180737i \(0.0578482\pi\)
−0.983532 + 0.180737i \(0.942152\pi\)
\(588\) 0 0
\(589\) −6.39499e15 −0.00631089
\(590\) 8.38499e17i 0.818398i
\(591\) 0 0
\(592\) 1.70283e15i 0.00162585i
\(593\) 2.27371e17i 0.214724i −0.994220 0.107362i \(-0.965760\pi\)
0.994220 0.107362i \(-0.0342403\pi\)
\(594\) 0 0
\(595\) −3.85529e17 −0.356202
\(596\) 8.41426e16i 0.0768980i
\(597\) 0 0
\(598\) 1.03905e18 + 3.78622e16i 0.929133 + 0.0338570i
\(599\) 1.22701e18 1.08536 0.542681 0.839939i \(-0.317409\pi\)
0.542681 + 0.839939i \(0.317409\pi\)
\(600\) 0 0
\(601\) −1.49251e18 −1.29191 −0.645957 0.763374i \(-0.723541\pi\)
−0.645957 + 0.763374i \(0.723541\pi\)
\(602\) −6.00522e17 −0.514224
\(603\) 0 0
\(604\) 4.18470e16i 0.0350690i
\(605\) 1.92946e18i 1.59965i
\(606\) 0 0
\(607\) −1.66922e18 −1.35452 −0.677262 0.735742i \(-0.736834\pi\)
−0.677262 + 0.735742i \(0.736834\pi\)
\(608\) −2.91333e16 −0.0233892
\(609\) 0 0
\(610\) 2.51507e17 0.197654
\(611\) −9.66474e17 3.52177e16i −0.751488 0.0273837i
\(612\) 0 0
\(613\) 9.85345e17i 0.750059i 0.927013 + 0.375029i \(0.122367\pi\)
−0.927013 + 0.375029i \(0.877633\pi\)
\(614\) 5.28381e17 0.397972
\(615\) 0 0
\(616\) 1.42618e18i 1.05172i
\(617\) 1.96101e18i 1.43096i 0.698636 + 0.715478i \(0.253791\pi\)
−0.698636 + 0.715478i \(0.746209\pi\)
\(618\) 0 0
\(619\) 1.98675e18i 1.41956i 0.704424 + 0.709780i \(0.251206\pi\)
−0.704424 + 0.709780i \(0.748794\pi\)
\(620\) −2.97715e15 −0.00210501
\(621\) 0 0
\(622\) 1.47497e18i 1.02128i
\(623\) −3.64869e17 −0.250014
\(624\) 0 0
\(625\) −1.20496e18 −0.808637
\(626\) 1.77177e17i 0.117672i
\(627\) 0 0
\(628\) 3.04967e15 0.00198388
\(629\) 1.71763e15i 0.00110586i
\(630\) 0 0
\(631\) 6.31756e17i 0.398436i −0.979955 0.199218i \(-0.936160\pi\)
0.979955 0.199218i \(-0.0638402\pi\)
\(632\) 1.30384e18i 0.813888i
\(633\) 0 0
\(634\) 1.22903e18 0.751595
\(635\) 1.06992e18i 0.647620i
\(636\) 0 0
\(637\) −3.81205e16 + 1.04614e18i −0.0226075 + 0.620415i
\(638\) 3.65160e18 2.14362
\(639\) 0 0
\(640\) 1.41581e18 0.814395
\(641\) −2.69186e18 −1.53276 −0.766381 0.642386i \(-0.777944\pi\)
−0.766381 + 0.642386i \(0.777944\pi\)
\(642\) 0 0
\(643\) 1.54575e18i 0.862517i −0.902228 0.431259i \(-0.858070\pi\)
0.902228 0.431259i \(-0.141930\pi\)
\(644\) 7.00891e16i 0.0387161i
\(645\) 0 0
\(646\) −2.02474e17 −0.109612
\(647\) 2.64371e18 1.41689 0.708444 0.705767i \(-0.249398\pi\)
0.708444 + 0.705767i \(0.249398\pi\)
\(648\) 0 0
\(649\) −2.92337e18 −1.53565
\(650\) 3.05309e17 + 1.11253e16i 0.158783 + 0.00578594i
\(651\) 0 0
\(652\) 7.28029e16i 0.0371141i
\(653\) −3.47578e18 −1.75435 −0.877175 0.480170i \(-0.840575\pi\)
−0.877175 + 0.480170i \(0.840575\pi\)
\(654\) 0 0
\(655\) 3.51495e18i 1.73920i
\(656\) 1.41092e18i 0.691239i
\(657\) 0 0
\(658\) 9.31999e17i 0.447659i
\(659\) 6.64948e17 0.316251 0.158126 0.987419i \(-0.449455\pi\)
0.158126 + 0.987419i \(0.449455\pi\)
\(660\) 0 0
\(661\) 1.05716e18i 0.492981i −0.969145 0.246491i \(-0.920723\pi\)
0.969145 0.246491i \(-0.0792774\pi\)
\(662\) −9.31481e17 −0.430127
\(663\) 0 0
\(664\) −2.47197e18 −1.11931
\(665\) 2.24929e17i 0.100856i
\(666\) 0 0
\(667\) 2.92440e18 1.28594
\(668\) 2.64008e17i 0.114966i
\(669\) 0 0
\(670\) 3.16581e18i 1.35207i
\(671\) 8.76863e17i 0.370882i
\(672\) 0 0
\(673\) 9.84944e17 0.408614 0.204307 0.978907i \(-0.434506\pi\)
0.204307 + 0.978907i \(0.434506\pi\)
\(674\) 2.72004e18i 1.11760i
\(675\) 0 0
\(676\) −1.61780e17 1.18060e16i −0.0652037 0.00475828i
\(677\) −2.66054e18 −1.06205 −0.531023 0.847357i \(-0.678192\pi\)
−0.531023 + 0.847357i \(0.678192\pi\)
\(678\) 0 0
\(679\) 1.67185e18 0.654701
\(680\) −1.53606e18 −0.595799
\(681\) 0 0
\(682\) 1.48386e17i 0.0564670i
\(683\) 5.21508e17i 0.196574i −0.995158 0.0982871i \(-0.968664\pi\)
0.995158 0.0982871i \(-0.0313364\pi\)
\(684\) 0 0
\(685\) −3.49666e18 −1.29320
\(686\) −2.63379e18 −0.964881
\(687\) 0 0
\(688\) −2.23556e18 −0.803639
\(689\) −3.12116e16 + 8.56537e17i −0.0111145 + 0.305015i
\(690\) 0 0
\(691\) 3.35433e18i 1.17219i 0.810242 + 0.586096i \(0.199336\pi\)
−0.810242 + 0.586096i \(0.800664\pi\)
\(692\) 1.88508e17 0.0652590
\(693\) 0 0
\(694\) 3.94144e18i 1.33911i
\(695\) 5.67217e17i 0.190919i
\(696\) 0 0
\(697\) 1.42319e18i 0.470163i
\(698\) −1.39534e18 −0.456688
\(699\) 0 0
\(700\) 2.05947e16i 0.00661634i
\(701\) 2.15474e18 0.685848 0.342924 0.939363i \(-0.388583\pi\)
0.342924 + 0.939363i \(0.388583\pi\)
\(702\) 0 0
\(703\) 1.00212e15 0.000313118
\(704\) 5.65940e18i 1.75206i
\(705\) 0 0
\(706\) 2.46120e18 0.748024
\(707\) 1.79399e18i 0.540249i
\(708\) 0 0
\(709\) 6.64329e18i 1.96419i −0.188393 0.982094i \(-0.560328\pi\)
0.188393 0.982094i \(-0.439672\pi\)
\(710\) 2.29982e18i 0.673776i
\(711\) 0 0
\(712\) −1.45374e18 −0.418184
\(713\) 1.18836e17i 0.0338739i
\(714\) 0 0
\(715\) −1.97216e17 + 5.41217e18i −0.0552017 + 1.51489i
\(716\) −3.10560e17 −0.0861411
\(717\) 0 0
\(718\) 1.25013e18 0.340523
\(719\) 5.03748e18 1.35980 0.679901 0.733304i \(-0.262023\pi\)
0.679901 + 0.733304i \(0.262023\pi\)
\(720\) 0 0
\(721\) 8.29899e17i 0.220012i
\(722\) 3.56155e18i 0.935723i
\(723\) 0 0
\(724\) −1.00041e17 −0.0258152
\(725\) 8.59295e17 0.219758
\(726\) 0 0
\(727\) 2.44730e18 0.614770 0.307385 0.951585i \(-0.400546\pi\)
0.307385 + 0.951585i \(0.400546\pi\)
\(728\) 9.27634e16 2.54569e18i 0.0230953 0.633800i
\(729\) 0 0
\(730\) 2.55195e18i 0.624127i
\(731\) 2.25499e18 0.546614
\(732\) 0 0
\(733\) 4.52485e18i 1.07753i −0.842457 0.538763i \(-0.818892\pi\)
0.842457 0.538763i \(-0.181108\pi\)
\(734\) 4.64618e18i 1.09666i
\(735\) 0 0
\(736\) 5.41373e17i 0.125543i
\(737\) 1.10374e19 2.53704
\(738\) 0 0
\(739\) 5.57733e18i 1.25962i 0.776751 + 0.629808i \(0.216866\pi\)
−0.776751 + 0.629808i \(0.783134\pi\)
\(740\) 4.66529e14 0.000104441
\(741\) 0 0
\(742\) −8.25984e17 −0.181696
\(743\) 1.21489e18i 0.264916i −0.991189 0.132458i \(-0.957713\pi\)
0.991189 0.132458i \(-0.0422870\pi\)
\(744\) 0 0
\(745\) 5.01784e18 1.07523
\(746\) 7.43251e18i 1.57882i
\(747\) 0 0
\(748\) 3.28633e17i 0.0686041i
\(749\) 3.89603e18i 0.806289i
\(750\) 0 0
\(751\) 2.90122e18 0.590093 0.295047 0.955483i \(-0.404665\pi\)
0.295047 + 0.955483i \(0.404665\pi\)
\(752\) 3.46954e18i 0.699610i
\(753\) 0 0
\(754\) 6.51802e18 + 2.37512e17i 1.29182 + 0.0470730i
\(755\) 2.49554e18 0.490354
\(756\) 0 0
\(757\) 7.74004e18 1.49493 0.747463 0.664303i \(-0.231272\pi\)
0.747463 + 0.664303i \(0.231272\pi\)
\(758\) −6.59851e18 −1.26356
\(759\) 0 0
\(760\) 8.96179e17i 0.168697i
\(761\) 3.77780e18i 0.705081i 0.935796 + 0.352541i \(0.114682\pi\)
−0.935796 + 0.352541i \(0.885318\pi\)
\(762\) 0 0
\(763\) 1.67943e18 0.308144
\(764\) −3.79053e16 −0.00689594
\(765\) 0 0
\(766\) −2.82207e17 −0.0504755
\(767\) −5.21814e18 1.90146e17i −0.925435 0.0337223i
\(768\) 0 0
\(769\) 5.74448e17i 0.100168i −0.998745 0.0500841i \(-0.984051\pi\)
0.998745 0.0500841i \(-0.0159489\pi\)
\(770\) −5.21912e18 −0.902418
\(771\) 0 0
\(772\) 2.17707e17i 0.0370135i
\(773\) 2.70309e18i 0.455715i 0.973694 + 0.227858i \(0.0731721\pi\)
−0.973694 + 0.227858i \(0.926828\pi\)
\(774\) 0 0
\(775\) 3.49182e16i 0.00578883i
\(776\) 6.66112e18 1.09508
\(777\) 0 0
\(778\) 5.62997e18i 0.910204i
\(779\) 8.30327e17 0.133124
\(780\) 0 0
\(781\) −8.01818e18 −1.26428
\(782\) 3.76250e18i 0.588345i
\(783\) 0 0
\(784\) −3.75552e18 −0.577585
\(785\) 1.81867e17i 0.0277397i
\(786\) 0 0
\(787\) 1.21559e19i 1.82369i −0.410539 0.911843i \(-0.634659\pi\)
0.410539 0.911843i \(-0.365341\pi\)
\(788\) 7.71029e17i 0.114723i
\(789\) 0 0
\(790\) −4.77144e18 −0.698350
\(791\) 1.63484e18i 0.237317i
\(792\) 0 0
\(793\) 5.70341e16 1.56518e18i 0.00814439 0.223506i
\(794\) 7.50544e18 1.06302
\(795\) 0 0
\(796\) 7.40654e17 0.103200
\(797\) −1.19259e19 −1.64821 −0.824103 0.566440i \(-0.808320\pi\)
−0.824103 + 0.566440i \(0.808320\pi\)
\(798\) 0 0
\(799\) 3.49970e18i 0.475857i
\(800\) 1.59075e17i 0.0214544i
\(801\) 0 0
\(802\) −7.56271e18 −1.00356
\(803\) −8.89719e18 −1.17112
\(804\) 0 0
\(805\) −4.17976e18 −0.541350
\(806\) 9.65152e15 2.64865e17i 0.00123999 0.0340289i
\(807\) 0 0
\(808\) 7.14777e18i 0.903643i
\(809\) 2.02703e18 0.254211 0.127106 0.991889i \(-0.459431\pi\)
0.127106 + 0.991889i \(0.459431\pi\)
\(810\) 0 0
\(811\) 5.40615e18i 0.667195i 0.942716 + 0.333597i \(0.108263\pi\)
−0.942716 + 0.333597i \(0.891737\pi\)
\(812\) 4.39673e17i 0.0538290i
\(813\) 0 0
\(814\) 2.32526e16i 0.00280164i
\(815\) −4.34160e18 −0.518950
\(816\) 0 0
\(817\) 1.31562e18i 0.154770i
\(818\) −7.73785e18 −0.903075
\(819\) 0 0
\(820\) 3.86554e17 0.0444038
\(821\) 1.19996e19i 1.36753i 0.729704 + 0.683763i \(0.239658\pi\)
−0.729704 + 0.683763i \(0.760342\pi\)
\(822\) 0 0
\(823\) −7.49361e17 −0.0840605 −0.0420303 0.999116i \(-0.513383\pi\)
−0.0420303 + 0.999116i \(0.513383\pi\)
\(824\) 3.30655e18i 0.368001i
\(825\) 0 0
\(826\) 5.03201e18i 0.551279i
\(827\) 9.04543e18i 0.983204i 0.870820 + 0.491602i \(0.163588\pi\)
−0.870820 + 0.491602i \(0.836412\pi\)
\(828\) 0 0
\(829\) 5.57893e18 0.596962 0.298481 0.954416i \(-0.403520\pi\)
0.298481 + 0.954416i \(0.403520\pi\)
\(830\) 9.04620e18i 0.960414i
\(831\) 0 0
\(832\) 3.68107e17 1.01019e19i 0.0384744 1.05585i
\(833\) 3.78817e18 0.392859
\(834\) 0 0
\(835\) −1.57441e19 −1.60752
\(836\) 1.91734e17 0.0194248
\(837\) 0 0
\(838\) 6.75335e18i 0.673648i
\(839\) 1.48570e19i 1.47054i −0.677774 0.735271i \(-0.737055\pi\)
0.677774 0.735271i \(-0.262945\pi\)
\(840\) 0 0
\(841\) 8.08435e18 0.787900
\(842\) 1.36811e19 1.32310
\(843\) 0 0
\(844\) 8.10130e17 0.0771488
\(845\) −7.04052e17 + 9.64777e18i −0.0665328 + 0.911714i
\(846\) 0 0
\(847\) 1.15791e19i 1.07754i
\(848\) −3.07488e18 −0.283959
\(849\) 0 0
\(850\) 1.10556e18i 0.100544i
\(851\) 1.86220e16i 0.00168067i
\(852\) 0 0
\(853\) 1.30706e19i 1.16179i −0.813978 0.580895i \(-0.802703\pi\)
0.813978 0.580895i \(-0.197297\pi\)
\(854\) 1.50935e18 0.133142
\(855\) 0 0
\(856\) 1.55229e19i 1.34863i
\(857\) 1.17760e19 1.01536 0.507682 0.861544i \(-0.330502\pi\)
0.507682 + 0.861544i \(0.330502\pi\)
\(858\) 0 0
\(859\) −1.70251e19 −1.44588 −0.722942 0.690909i \(-0.757210\pi\)
−0.722942 + 0.690909i \(0.757210\pi\)
\(860\) 6.12480e17i 0.0516241i
\(861\) 0 0
\(862\) 1.29272e19 1.07327
\(863\) 1.24318e19i 1.02439i 0.858870 + 0.512194i \(0.171167\pi\)
−0.858870 + 0.512194i \(0.828833\pi\)
\(864\) 0 0
\(865\) 1.12417e19i 0.912487i
\(866\) 8.61895e18i 0.694366i
\(867\) 0 0
\(868\) −1.78665e16 −0.00141795
\(869\) 1.66353e19i 1.31039i
\(870\) 0 0
\(871\) 1.97015e19 + 7.17909e17i 1.52891 + 0.0557123i
\(872\) 6.69134e18 0.515413
\(873\) 0 0
\(874\) −2.19515e18 −0.166586
\(875\) −8.70096e18 −0.655413
\(876\) 0 0
\(877\) 2.36133e19i 1.75251i 0.481850 + 0.876254i \(0.339965\pi\)
−0.481850 + 0.876254i \(0.660035\pi\)
\(878\) 2.29452e18i 0.169036i
\(879\) 0 0
\(880\) −1.94291e19 −1.41032
\(881\) 5.00094e17 0.0360336 0.0180168 0.999838i \(-0.494265\pi\)
0.0180168 + 0.999838i \(0.494265\pi\)
\(882\) 0 0
\(883\) −4.54937e18 −0.323003 −0.161501 0.986872i \(-0.551634\pi\)
−0.161501 + 0.986872i \(0.551634\pi\)
\(884\) −2.13754e16 + 5.86602e17i −0.00150652 + 0.0413431i
\(885\) 0 0
\(886\) 5.28150e18i 0.366807i
\(887\) −1.04938e19 −0.723484 −0.361742 0.932278i \(-0.617818\pi\)
−0.361742 + 0.932278i \(0.617818\pi\)
\(888\) 0 0
\(889\) 6.42079e18i 0.436242i
\(890\) 5.31999e18i 0.358819i
\(891\) 0 0
\(892\) 1.32561e18i 0.0881140i
\(893\) 2.04182e18 0.134736
\(894\) 0 0
\(895\) 1.85202e19i 1.20447i
\(896\) 8.49658e18 0.548583
\(897\) 0 0
\(898\) −1.48512e19 −0.945074
\(899\) 7.45465e17i 0.0470966i
\(900\) 0 0
\(901\) 3.10160e18 0.193141
\(902\) 1.92665e19i 1.19113i
\(903\) 0 0
\(904\) 6.51368e18i 0.396946i
\(905\) 5.96593e18i 0.360963i
\(906\) 0 0
\(907\) −8.50215e18 −0.507086 −0.253543 0.967324i \(-0.581596\pi\)
−0.253543 + 0.967324i \(0.581596\pi\)
\(908\) 9.56310e17i 0.0566293i
\(909\) 0 0
\(910\) −9.31601e18 3.39469e17i −0.543827 0.0198167i
\(911\) 6.48478e18 0.375859 0.187930 0.982182i \(-0.439822\pi\)
0.187930 + 0.982182i \(0.439822\pi\)
\(912\) 0 0
\(913\) 3.15390e19 1.80213
\(914\) −1.16040e19 −0.658349
\(915\) 0 0
\(916\) 7.93724e17i 0.0443965i
\(917\) 2.10939e19i 1.17154i
\(918\) 0 0
\(919\) −1.40012e19 −0.766682 −0.383341 0.923607i \(-0.625227\pi\)
−0.383341 + 0.923607i \(0.625227\pi\)
\(920\) −1.66534e19 −0.905485
\(921\) 0 0
\(922\) 5.25229e17 0.0281577
\(923\) −1.43123e19 5.21529e17i −0.761899 0.0277631i
\(924\) 0 0
\(925\) 5.47180e15i 0.000287216i
\(926\) −2.83471e19 −1.47753
\(927\) 0 0
\(928\) 3.39607e18i 0.174548i
\(929\) 3.60756e18i 0.184124i 0.995753 + 0.0920621i \(0.0293458\pi\)
−0.995753 + 0.0920621i \(0.970654\pi\)
\(930\) 0 0
\(931\) 2.21012e18i 0.111236i
\(932\) 5.80884e17 0.0290326
\(933\) 0 0
\(934\) 1.34039e19i 0.660657i
\(935\) 1.95980e19 0.959261
\(936\) 0 0
\(937\) 3.43026e19 1.65585 0.827923 0.560841i \(-0.189522\pi\)
0.827923 + 0.560841i \(0.189522\pi\)
\(938\) 1.89987e19i 0.910764i
\(939\) 0 0
\(940\) 9.50558e17 0.0449415
\(941\) 1.71617e19i 0.805802i −0.915244 0.402901i \(-0.868002\pi\)
0.915244 0.402901i \(-0.131998\pi\)
\(942\) 0 0
\(943\) 1.54297e19i 0.714547i
\(944\) 1.87326e19i 0.861549i
\(945\) 0 0
\(946\) 3.05270e19 1.38482
\(947\) 9.83424e18i 0.443063i −0.975153 0.221532i \(-0.928894\pi\)
0.975153 0.221532i \(-0.0711056\pi\)
\(948\) 0 0
\(949\) −1.58813e19 5.78703e17i −0.705757 0.0257173i
\(950\) −6.45013e17 −0.0284685
\(951\) 0 0
\(952\) −9.21821e18 −0.401335
\(953\) 3.20088e19 1.38409 0.692047 0.721852i \(-0.256709\pi\)
0.692047 + 0.721852i \(0.256709\pi\)
\(954\) 0 0
\(955\) 2.26049e18i 0.0964229i
\(956\) 1.47431e18i 0.0624613i
\(957\) 0 0
\(958\) −2.47205e18 −0.103319
\(959\) −2.09842e19 −0.871106
\(960\) 0 0
\(961\) 2.43873e19 0.998759
\(962\) −1.51242e15 + 4.15053e16i −6.15228e−5 + 0.00168836i
\(963\) 0 0
\(964\) 1.25654e18i 0.0504283i
\(965\) 1.29830e19 0.517544
\(966\) 0 0
\(967\) 7.50976e18i 0.295362i 0.989035 + 0.147681i \(0.0471808\pi\)
−0.989035 + 0.147681i \(0.952819\pi\)
\(968\) 4.61345e19i 1.80234i
\(969\) 0 0
\(970\) 2.43765e19i 0.939625i
\(971\) 2.99621e19 1.14722 0.573611 0.819128i \(-0.305542\pi\)
0.573611 + 0.819128i \(0.305542\pi\)
\(972\) 0 0
\(973\) 3.40399e18i 0.128604i
\(974\) 1.24414e19 0.466913
\(975\) 0 0
\(976\) 5.61883e18 0.208076
\(977\) 3.69718e19i 1.36005i 0.733188 + 0.680026i \(0.238032\pi\)
−0.733188 + 0.680026i \(0.761968\pi\)
\(978\) 0 0
\(979\) 1.85478e19 0.673294
\(980\) 1.02891e18i 0.0371029i
\(981\) 0 0
\(982\) 1.62518e19i 0.578333i
\(983\) 4.64432e18i 0.164181i −0.996625 0.0820907i \(-0.973840\pi\)
0.996625 0.0820907i \(-0.0261597\pi\)
\(984\) 0 0
\(985\) −4.59803e19 −1.60412
\(986\) 2.36024e19i 0.818005i
\(987\) 0 0
\(988\) 3.42240e17 + 1.24710e16i 0.0117061 + 0.000426561i
\(989\) 2.44477e19 0.830735
\(990\) 0 0
\(991\) 1.34705e19 0.451758 0.225879 0.974155i \(-0.427475\pi\)
0.225879 + 0.974155i \(0.427475\pi\)
\(992\) −1.38002e17 −0.00459791
\(993\) 0 0
\(994\) 1.38017e19i 0.453861i
\(995\) 4.41689e19i 1.44300i
\(996\) 0 0
\(997\) 2.44003e19 0.786823 0.393412 0.919362i \(-0.371295\pi\)
0.393412 + 0.919362i \(0.371295\pi\)
\(998\) 3.79117e19 1.21458
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.14.b.c.64.5 14
3.2 odd 2 13.14.b.a.12.10 yes 14
13.12 even 2 inner 117.14.b.c.64.10 14
39.5 even 4 169.14.a.d.1.10 14
39.8 even 4 169.14.a.d.1.5 14
39.38 odd 2 13.14.b.a.12.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.14.b.a.12.5 14 39.38 odd 2
13.14.b.a.12.10 yes 14 3.2 odd 2
117.14.b.c.64.5 14 1.1 even 1 trivial
117.14.b.c.64.10 14 13.12 even 2 inner
169.14.a.d.1.5 14 39.8 even 4
169.14.a.d.1.10 14 39.5 even 4