Properties

Label 1166.2.q
Level $1166$
Weight $2$
Character orbit 1166.q
Rep. character $\chi_{1166}(21,\cdot)$
Character field $\Q(\zeta_{52})$
Dimension $1296$
Sturm bound $324$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1166.q (of order \(52\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 583 \)
Character field: \(\Q(\zeta_{52})\)
Sturm bound: \(324\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1166, [\chi])\).

Total New Old
Modular forms 3984 1296 2688
Cusp forms 3792 1296 2496
Eisenstein series 192 0 192

Trace form

\( 1296 q + 4 q^{3} + 4 q^{5} + 4 q^{12} - 16 q^{14} + 8 q^{15} + 108 q^{16} - 4 q^{20} - 12 q^{23} - 8 q^{26} - 32 q^{27} + 4 q^{31} - 108 q^{36} - 160 q^{42} + 8 q^{44} - 492 q^{45} + 32 q^{47} + 48 q^{48}+ \cdots + 316 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1166, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1166, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1166, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(583, [\chi])\)\(^{\oplus 2}\)