Properties

Label 1160.1.o.a.579.2
Level $1160$
Weight $1$
Character 1160.579
Self dual yes
Analytic conductor $0.579$
Analytic rank $0$
Dimension $2$
Projective image $D_{5}$
CM discriminant -1160
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1160,1,Mod(579,1160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1160.579"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1160.o (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,1,2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.578915414654\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.1345600.2

Embedding invariants

Embedding label 579.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 1160.579

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.61803 q^{3} +1.00000 q^{4} -1.00000 q^{5} -1.61803 q^{6} -0.618034 q^{7} -1.00000 q^{8} +1.61803 q^{9} +1.00000 q^{10} +1.61803 q^{12} +1.61803 q^{13} +0.618034 q^{14} -1.61803 q^{15} +1.00000 q^{16} -0.618034 q^{17} -1.61803 q^{18} -1.00000 q^{20} -1.00000 q^{21} +1.61803 q^{23} -1.61803 q^{24} +1.00000 q^{25} -1.61803 q^{26} +1.00000 q^{27} -0.618034 q^{28} +1.00000 q^{29} +1.61803 q^{30} +0.618034 q^{31} -1.00000 q^{32} +0.618034 q^{34} +0.618034 q^{35} +1.61803 q^{36} +2.61803 q^{39} +1.00000 q^{40} +1.00000 q^{42} -0.618034 q^{43} -1.61803 q^{45} -1.61803 q^{46} +1.61803 q^{48} -0.618034 q^{49} -1.00000 q^{50} -1.00000 q^{51} +1.61803 q^{52} -0.618034 q^{53} -1.00000 q^{54} +0.618034 q^{56} -1.00000 q^{58} -1.61803 q^{59} -1.61803 q^{60} -1.61803 q^{61} -0.618034 q^{62} -1.00000 q^{63} +1.00000 q^{64} -1.61803 q^{65} -0.618034 q^{68} +2.61803 q^{69} -0.618034 q^{70} -1.61803 q^{72} -0.618034 q^{73} +1.61803 q^{75} -2.61803 q^{78} -1.61803 q^{79} -1.00000 q^{80} -1.00000 q^{84} +0.618034 q^{85} +0.618034 q^{86} +1.61803 q^{87} +1.61803 q^{90} -1.00000 q^{91} +1.61803 q^{92} +1.00000 q^{93} -1.61803 q^{96} +1.61803 q^{97} +0.618034 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{5} - q^{6} + q^{7} - 2 q^{8} + q^{9} + 2 q^{10} + q^{12} + q^{13} - q^{14} - q^{15} + 2 q^{16} + q^{17} - q^{18} - 2 q^{20} - 2 q^{21} + q^{23} - q^{24}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1160\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(581\) \(697\) \(871\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −1.00000
\(3\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(4\) 1.00000 1.00000
\(5\) −1.00000 −1.00000
\(6\) −1.61803 −1.61803
\(7\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(8\) −1.00000 −1.00000
\(9\) 1.61803 1.61803
\(10\) 1.00000 1.00000
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 1.61803 1.61803
\(13\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(14\) 0.618034 0.618034
\(15\) −1.61803 −1.61803
\(16\) 1.00000 1.00000
\(17\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(18\) −1.61803 −1.61803
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −1.00000 −1.00000
\(21\) −1.00000 −1.00000
\(22\) 0 0
\(23\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(24\) −1.61803 −1.61803
\(25\) 1.00000 1.00000
\(26\) −1.61803 −1.61803
\(27\) 1.00000 1.00000
\(28\) −0.618034 −0.618034
\(29\) 1.00000 1.00000
\(30\) 1.61803 1.61803
\(31\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(32\) −1.00000 −1.00000
\(33\) 0 0
\(34\) 0.618034 0.618034
\(35\) 0.618034 0.618034
\(36\) 1.61803 1.61803
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 2.61803 2.61803
\(40\) 1.00000 1.00000
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 1.00000 1.00000
\(43\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(44\) 0 0
\(45\) −1.61803 −1.61803
\(46\) −1.61803 −1.61803
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 1.61803 1.61803
\(49\) −0.618034 −0.618034
\(50\) −1.00000 −1.00000
\(51\) −1.00000 −1.00000
\(52\) 1.61803 1.61803
\(53\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(54\) −1.00000 −1.00000
\(55\) 0 0
\(56\) 0.618034 0.618034
\(57\) 0 0
\(58\) −1.00000 −1.00000
\(59\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(60\) −1.61803 −1.61803
\(61\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(62\) −0.618034 −0.618034
\(63\) −1.00000 −1.00000
\(64\) 1.00000 1.00000
\(65\) −1.61803 −1.61803
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −0.618034 −0.618034
\(69\) 2.61803 2.61803
\(70\) −0.618034 −0.618034
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −1.61803 −1.61803
\(73\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(74\) 0 0
\(75\) 1.61803 1.61803
\(76\) 0 0
\(77\) 0 0
\(78\) −2.61803 −2.61803
\(79\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(80\) −1.00000 −1.00000
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) −1.00000 −1.00000
\(85\) 0.618034 0.618034
\(86\) 0.618034 0.618034
\(87\) 1.61803 1.61803
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 1.61803 1.61803
\(91\) −1.00000 −1.00000
\(92\) 1.61803 1.61803
\(93\) 1.00000 1.00000
\(94\) 0 0
\(95\) 0 0
\(96\) −1.61803 −1.61803
\(97\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(98\) 0.618034 0.618034
\(99\) 0 0
\(100\) 1.00000 1.00000
\(101\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(102\) 1.00000 1.00000
\(103\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(104\) −1.61803 −1.61803
\(105\) 1.00000 1.00000
\(106\) 0.618034 0.618034
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 1.00000 1.00000
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.618034 −0.618034
\(113\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(114\) 0 0
\(115\) −1.61803 −1.61803
\(116\) 1.00000 1.00000
\(117\) 2.61803 2.61803
\(118\) 1.61803 1.61803
\(119\) 0.381966 0.381966
\(120\) 1.61803 1.61803
\(121\) 1.00000 1.00000
\(122\) 1.61803 1.61803
\(123\) 0 0
\(124\) 0.618034 0.618034
\(125\) −1.00000 −1.00000
\(126\) 1.00000 1.00000
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −1.00000 −1.00000
\(129\) −1.00000 −1.00000
\(130\) 1.61803 1.61803
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 −1.00000
\(136\) 0.618034 0.618034
\(137\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(138\) −2.61803 −2.61803
\(139\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(140\) 0.618034 0.618034
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 1.61803 1.61803
\(145\) −1.00000 −1.00000
\(146\) 0.618034 0.618034
\(147\) −1.00000 −1.00000
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) −1.61803 −1.61803
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −1.00000 −1.00000
\(154\) 0 0
\(155\) −0.618034 −0.618034
\(156\) 2.61803 2.61803
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 1.61803 1.61803
\(159\) −1.00000 −1.00000
\(160\) 1.00000 1.00000
\(161\) −1.00000 −1.00000
\(162\) 0 0
\(163\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(168\) 1.00000 1.00000
\(169\) 1.61803 1.61803
\(170\) −0.618034 −0.618034
\(171\) 0 0
\(172\) −0.618034 −0.618034
\(173\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(174\) −1.61803 −1.61803
\(175\) −0.618034 −0.618034
\(176\) 0 0
\(177\) −2.61803 −2.61803
\(178\) 0 0
\(179\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(180\) −1.61803 −1.61803
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 1.00000 1.00000
\(183\) −2.61803 −2.61803
\(184\) −1.61803 −1.61803
\(185\) 0 0
\(186\) −1.00000 −1.00000
\(187\) 0 0
\(188\) 0 0
\(189\) −0.618034 −0.618034
\(190\) 0 0
\(191\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(192\) 1.61803 1.61803
\(193\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(194\) −1.61803 −1.61803
\(195\) −2.61803 −2.61803
\(196\) −0.618034 −0.618034
\(197\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −1.00000 −1.00000
\(201\) 0 0
\(202\) 1.61803 1.61803
\(203\) −0.618034 −0.618034
\(204\) −1.00000 −1.00000
\(205\) 0 0
\(206\) 2.00000 2.00000
\(207\) 2.61803 2.61803
\(208\) 1.61803 1.61803
\(209\) 0 0
\(210\) −1.00000 −1.00000
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −0.618034 −0.618034
\(213\) 0 0
\(214\) 0 0
\(215\) 0.618034 0.618034
\(216\) −1.00000 −1.00000
\(217\) −0.381966 −0.381966
\(218\) 0 0
\(219\) −1.00000 −1.00000
\(220\) 0 0
\(221\) −1.00000 −1.00000
\(222\) 0 0
\(223\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(224\) 0.618034 0.618034
\(225\) 1.61803 1.61803
\(226\) −1.61803 −1.61803
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(230\) 1.61803 1.61803
\(231\) 0 0
\(232\) −1.00000 −1.00000
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) −2.61803 −2.61803
\(235\) 0 0
\(236\) −1.61803 −1.61803
\(237\) −2.61803 −2.61803
\(238\) −0.381966 −0.381966
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) −1.61803 −1.61803
\(241\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(242\) −1.00000 −1.00000
\(243\) −1.00000 −1.00000
\(244\) −1.61803 −1.61803
\(245\) 0.618034 0.618034
\(246\) 0 0
\(247\) 0 0
\(248\) −0.618034 −0.618034
\(249\) 0 0
\(250\) 1.00000 1.00000
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −1.00000 −1.00000
\(253\) 0 0
\(254\) 0 0
\(255\) 1.00000 1.00000
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 1.00000 1.00000
\(259\) 0 0
\(260\) −1.61803 −1.61803
\(261\) 1.61803 1.61803
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0.618034 0.618034
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(270\) 1.00000 1.00000
\(271\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(272\) −0.618034 −0.618034
\(273\) −1.61803 −1.61803
\(274\) −1.61803 −1.61803
\(275\) 0 0
\(276\) 2.61803 2.61803
\(277\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(278\) −0.618034 −0.618034
\(279\) 1.00000 1.00000
\(280\) −0.618034 −0.618034
\(281\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.61803 −1.61803
\(289\) −0.618034 −0.618034
\(290\) 1.00000 1.00000
\(291\) 2.61803 2.61803
\(292\) −0.618034 −0.618034
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 1.00000 1.00000
\(295\) 1.61803 1.61803
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.61803 2.61803
\(300\) 1.61803 1.61803
\(301\) 0.381966 0.381966
\(302\) 0 0
\(303\) −2.61803 −2.61803
\(304\) 0 0
\(305\) 1.61803 1.61803
\(306\) 1.00000 1.00000
\(307\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) −3.23607 −3.23607
\(310\) 0.618034 0.618034
\(311\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(312\) −2.61803 −2.61803
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 1.00000 1.00000
\(316\) −1.61803 −1.61803
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 1.00000 1.00000
\(319\) 0 0
\(320\) −1.00000 −1.00000
\(321\) 0 0
\(322\) 1.00000 1.00000
\(323\) 0 0
\(324\) 0 0
\(325\) 1.61803 1.61803
\(326\) 2.00000 2.00000
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0.618034 0.618034
\(335\) 0 0
\(336\) −1.00000 −1.00000
\(337\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(338\) −1.61803 −1.61803
\(339\) 2.61803 2.61803
\(340\) 0.618034 0.618034
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 1.00000
\(344\) 0.618034 0.618034
\(345\) −2.61803 −2.61803
\(346\) −1.61803 −1.61803
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 1.61803 1.61803
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0.618034 0.618034
\(351\) 1.61803 1.61803
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 2.61803 2.61803
\(355\) 0 0
\(356\) 0 0
\(357\) 0.618034 0.618034
\(358\) 1.61803 1.61803
\(359\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(360\) 1.61803 1.61803
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 1.61803 1.61803
\(364\) −1.00000 −1.00000
\(365\) 0.618034 0.618034
\(366\) 2.61803 2.61803
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 1.61803 1.61803
\(369\) 0 0
\(370\) 0 0
\(371\) 0.381966 0.381966
\(372\) 1.00000 1.00000
\(373\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(374\) 0 0
\(375\) −1.61803 −1.61803
\(376\) 0 0
\(377\) 1.61803 1.61803
\(378\) 0.618034 0.618034
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.618034 −0.618034
\(383\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(384\) −1.61803 −1.61803
\(385\) 0 0
\(386\) −1.61803 −1.61803
\(387\) −1.00000 −1.00000
\(388\) 1.61803 1.61803
\(389\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(390\) 2.61803 2.61803
\(391\) −1.00000 −1.00000
\(392\) 0.618034 0.618034
\(393\) 0 0
\(394\) 0.618034 0.618034
\(395\) 1.61803 1.61803
\(396\) 0 0
\(397\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.00000 1.00000
\(401\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(402\) 0 0
\(403\) 1.00000 1.00000
\(404\) −1.61803 −1.61803
\(405\) 0 0
\(406\) 0.618034 0.618034
\(407\) 0 0
\(408\) 1.00000 1.00000
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 2.61803 2.61803
\(412\) −2.00000 −2.00000
\(413\) 1.00000 1.00000
\(414\) −2.61803 −2.61803
\(415\) 0 0
\(416\) −1.61803 −1.61803
\(417\) 1.00000 1.00000
\(418\) 0 0
\(419\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(420\) 1.00000 1.00000
\(421\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0.618034 0.618034
\(425\) −0.618034 −0.618034
\(426\) 0 0
\(427\) 1.00000 1.00000
\(428\) 0 0
\(429\) 0 0
\(430\) −0.618034 −0.618034
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 1.00000 1.00000
\(433\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(434\) 0.381966 0.381966
\(435\) −1.61803 −1.61803
\(436\) 0 0
\(437\) 0 0
\(438\) 1.00000 1.00000
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −1.00000 −1.00000
\(442\) 1.00000 1.00000
\(443\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1.61803 −1.61803
\(447\) 0 0
\(448\) −0.618034 −0.618034
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −1.61803 −1.61803
\(451\) 0 0
\(452\) 1.61803 1.61803
\(453\) 0 0
\(454\) 0 0
\(455\) 1.00000 1.00000
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) −0.618034 −0.618034
\(459\) −0.618034 −0.618034
\(460\) −1.61803 −1.61803
\(461\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(462\) 0 0
\(463\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(464\) 1.00000 1.00000
\(465\) −1.00000 −1.00000
\(466\) 0 0
\(467\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(468\) 2.61803 2.61803
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 1.61803 1.61803
\(473\) 0 0
\(474\) 2.61803 2.61803
\(475\) 0 0
\(476\) 0.381966 0.381966
\(477\) −1.00000 −1.00000
\(478\) 0 0
\(479\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(480\) 1.61803 1.61803
\(481\) 0 0
\(482\) 1.61803 1.61803
\(483\) −1.61803 −1.61803
\(484\) 1.00000 1.00000
\(485\) −1.61803 −1.61803
\(486\) 1.00000 1.00000
\(487\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(488\) 1.61803 1.61803
\(489\) −3.23607 −3.23607
\(490\) −0.618034 −0.618034
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) −0.618034 −0.618034
\(494\) 0 0
\(495\) 0 0
\(496\) 0.618034 0.618034
\(497\) 0 0
\(498\) 0 0
\(499\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(500\) −1.00000 −1.00000
\(501\) −1.00000 −1.00000
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 1.00000 1.00000
\(505\) 1.61803 1.61803
\(506\) 0 0
\(507\) 2.61803 2.61803
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) −1.00000 −1.00000
\(511\) 0.381966 0.381966
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 2.00000 2.00000
\(516\) −1.00000 −1.00000
\(517\) 0 0
\(518\) 0 0
\(519\) 2.61803 2.61803
\(520\) 1.61803 1.61803
\(521\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(522\) −1.61803 −1.61803
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) −1.00000 −1.00000
\(526\) 0 0
\(527\) −0.381966 −0.381966
\(528\) 0 0
\(529\) 1.61803 1.61803
\(530\) −0.618034 −0.618034
\(531\) −2.61803 −2.61803
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2.61803 −2.61803
\(538\) −0.618034 −0.618034
\(539\) 0 0
\(540\) −1.00000 −1.00000
\(541\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(542\) −2.00000 −2.00000
\(543\) 0 0
\(544\) 0.618034 0.618034
\(545\) 0 0
\(546\) 1.61803 1.61803
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 1.61803 1.61803
\(549\) −2.61803 −2.61803
\(550\) 0 0
\(551\) 0 0
\(552\) −2.61803 −2.61803
\(553\) 1.00000 1.00000
\(554\) 2.00000 2.00000
\(555\) 0 0
\(556\) 0.618034 0.618034
\(557\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(558\) −1.00000 −1.00000
\(559\) −1.00000 −1.00000
\(560\) 0.618034 0.618034
\(561\) 0 0
\(562\) −0.618034 −0.618034
\(563\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(564\) 0 0
\(565\) −1.61803 −1.61803
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(572\) 0 0
\(573\) 1.00000 1.00000
\(574\) 0 0
\(575\) 1.61803 1.61803
\(576\) 1.61803 1.61803
\(577\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(578\) 0.618034 0.618034
\(579\) 2.61803 2.61803
\(580\) −1.00000 −1.00000
\(581\) 0 0
\(582\) −2.61803 −2.61803
\(583\) 0 0
\(584\) 0.618034 0.618034
\(585\) −2.61803 −2.61803
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −1.00000 −1.00000
\(589\) 0 0
\(590\) −1.61803 −1.61803
\(591\) −1.00000 −1.00000
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) −0.381966 −0.381966
\(596\) 0 0
\(597\) 0 0
\(598\) −2.61803 −2.61803
\(599\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(600\) −1.61803 −1.61803
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) −0.381966 −0.381966
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 −1.00000
\(606\) 2.61803 2.61803
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) −1.00000 −1.00000
\(610\) −1.61803 −1.61803
\(611\) 0 0
\(612\) −1.00000 −1.00000
\(613\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(614\) 2.00000 2.00000
\(615\) 0 0
\(616\) 0 0
\(617\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(618\) 3.23607 3.23607
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) −0.618034 −0.618034
\(621\) 1.61803 1.61803
\(622\) 1.61803 1.61803
\(623\) 0 0
\(624\) 2.61803 2.61803
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −1.00000 −1.00000
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 1.61803 1.61803
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −1.00000 −1.00000
\(637\) −1.00000 −1.00000
\(638\) 0 0
\(639\) 0 0
\(640\) 1.00000 1.00000
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) −1.00000 −1.00000
\(645\) 1.00000 1.00000
\(646\) 0 0
\(647\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −1.61803 −1.61803
\(651\) −0.618034 −0.618034
\(652\) −2.00000 −2.00000
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.00000 −1.00000
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) −1.61803 −1.61803
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.61803 1.61803
\(668\) −0.618034 −0.618034
\(669\) 2.61803 2.61803
\(670\) 0 0
\(671\) 0 0
\(672\) 1.00000 1.00000
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0.618034 0.618034
\(675\) 1.00000 1.00000
\(676\) 1.61803 1.61803
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) −2.61803 −2.61803
\(679\) −1.00000 −1.00000
\(680\) −0.618034 −0.618034
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) −1.61803 −1.61803
\(686\) −1.00000 −1.00000
\(687\) 1.00000 1.00000
\(688\) −0.618034 −0.618034
\(689\) −1.00000 −1.00000
\(690\) 2.61803 2.61803
\(691\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(692\) 1.61803 1.61803
\(693\) 0 0
\(694\) 0 0
\(695\) −0.618034 −0.618034
\(696\) −1.61803 −1.61803
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.618034 −0.618034
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −1.61803 −1.61803
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.00000 1.00000
\(708\) −2.61803 −2.61803
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) −2.61803 −2.61803
\(712\) 0 0
\(713\) 1.00000 1.00000
\(714\) −0.618034 −0.618034
\(715\) 0 0
\(716\) −1.61803 −1.61803
\(717\) 0 0
\(718\) 1.61803 1.61803
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) −1.61803 −1.61803
\(721\) 1.23607 1.23607
\(722\) −1.00000 −1.00000
\(723\) −2.61803 −2.61803
\(724\) 0 0
\(725\) 1.00000 1.00000
\(726\) −1.61803 −1.61803
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 1.00000 1.00000
\(729\) −1.61803 −1.61803
\(730\) −0.618034 −0.618034
\(731\) 0.381966 0.381966
\(732\) −2.61803 −2.61803
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 1.00000 1.00000
\(736\) −1.61803 −1.61803
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.381966 −0.381966
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) −1.00000 −1.00000
\(745\) 0 0
\(746\) 0.618034 0.618034
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 1.61803 1.61803
\(751\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 0 0
\(754\) −1.61803 −1.61803
\(755\) 0 0
\(756\) −0.618034 −0.618034
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0.618034 0.618034
\(765\) 1.00000 1.00000
\(766\) 0.618034 0.618034
\(767\) −2.61803 −2.61803
\(768\) 1.61803 1.61803
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.61803 1.61803
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 1.00000 1.00000
\(775\) 0.618034 0.618034
\(776\) −1.61803 −1.61803
\(777\) 0 0
\(778\) −2.00000 −2.00000
\(779\) 0 0
\(780\) −2.61803 −2.61803
\(781\) 0 0
\(782\) 1.00000 1.00000
\(783\) 1.00000 1.00000
\(784\) −0.618034 −0.618034
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) −0.618034 −0.618034
\(789\) 0 0
\(790\) −1.61803 −1.61803
\(791\) −1.00000 −1.00000
\(792\) 0 0
\(793\) −2.61803 −2.61803
\(794\) 0.618034 0.618034
\(795\) 1.00000 1.00000
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −1.00000 −1.00000
\(801\) 0 0
\(802\) 1.61803 1.61803
\(803\) 0 0
\(804\) 0 0
\(805\) 1.00000 1.00000
\(806\) −1.00000 −1.00000
\(807\) 1.00000 1.00000
\(808\) 1.61803 1.61803
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(812\) −0.618034 −0.618034
\(813\) 3.23607 3.23607
\(814\) 0 0
\(815\) 2.00000 2.00000
\(816\) −1.00000 −1.00000
\(817\) 0 0
\(818\) 0 0
\(819\) −1.61803 −1.61803
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) −2.61803 −2.61803
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 2.00000 2.00000
\(825\) 0 0
\(826\) −1.00000 −1.00000
\(827\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(828\) 2.61803 2.61803
\(829\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(830\) 0 0
\(831\) −3.23607 −3.23607
\(832\) 1.61803 1.61803
\(833\) 0.381966 0.381966
\(834\) −1.00000 −1.00000
\(835\) 0.618034 0.618034
\(836\) 0 0
\(837\) 0.618034 0.618034
\(838\) −0.618034 −0.618034
\(839\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(840\) −1.00000 −1.00000
\(841\) 1.00000 1.00000
\(842\) −2.00000 −2.00000
\(843\) 1.00000 1.00000
\(844\) 0 0
\(845\) −1.61803 −1.61803
\(846\) 0 0
\(847\) −0.618034 −0.618034
\(848\) −0.618034 −0.618034
\(849\) 0 0
\(850\) 0.618034 0.618034
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) −1.00000 −1.00000
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0.618034 0.618034
\(861\) 0 0
\(862\) 0 0
\(863\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(864\) −1.00000 −1.00000
\(865\) −1.61803 −1.61803
\(866\) 2.00000 2.00000
\(867\) −1.00000 −1.00000
\(868\) −0.381966 −0.381966
\(869\) 0 0
\(870\) 1.61803 1.61803
\(871\) 0 0
\(872\) 0 0
\(873\) 2.61803 2.61803
\(874\) 0 0
\(875\) 0.618034 0.618034
\(876\) −1.00000 −1.00000
\(877\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 1.00000 1.00000
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −1.00000 −1.00000
\(885\) 2.61803 2.61803
\(886\) −1.61803 −1.61803
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 1.61803 1.61803
\(893\) 0 0
\(894\) 0 0
\(895\) 1.61803 1.61803
\(896\) 0.618034 0.618034
\(897\) 4.23607 4.23607
\(898\) 0 0
\(899\) 0.618034 0.618034
\(900\) 1.61803 1.61803
\(901\) 0.381966 0.381966
\(902\) 0 0
\(903\) 0.618034 0.618034
\(904\) −1.61803 −1.61803
\(905\) 0 0
\(906\) 0 0
\(907\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(908\) 0 0
\(909\) −2.61803 −2.61803
\(910\) −1.00000 −1.00000
\(911\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 2.61803 2.61803
\(916\) 0.618034 0.618034
\(917\) 0 0
\(918\) 0.618034 0.618034
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 1.61803 1.61803
\(921\) −3.23607 −3.23607
\(922\) −0.618034 −0.618034
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 2.00000 2.00000
\(927\) −3.23607 −3.23607
\(928\) −1.00000 −1.00000
\(929\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(930\) 1.00000 1.00000
\(931\) 0 0
\(932\) 0 0
\(933\) −2.61803 −2.61803
\(934\) 0.618034 0.618034
\(935\) 0 0
\(936\) −2.61803 −2.61803
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −1.61803 −1.61803
\(945\) 0.618034 0.618034
\(946\) 0 0
\(947\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(948\) −2.61803 −2.61803
\(949\) −1.00000 −1.00000
\(950\) 0 0
\(951\) 0 0
\(952\) −0.381966 −0.381966
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 1.00000 1.00000
\(955\) −0.618034 −0.618034
\(956\) 0 0
\(957\) 0 0
\(958\) −0.618034 −0.618034
\(959\) −1.00000 −1.00000
\(960\) −1.61803 −1.61803
\(961\) −0.618034 −0.618034
\(962\) 0 0
\(963\) 0 0
\(964\) −1.61803 −1.61803
\(965\) −1.61803 −1.61803
\(966\) 1.61803 1.61803
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −1.00000 −1.00000
\(969\) 0 0
\(970\) 1.61803 1.61803
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −1.00000 −1.00000
\(973\) −0.381966 −0.381966
\(974\) −1.61803 −1.61803
\(975\) 2.61803 2.61803
\(976\) −1.61803 −1.61803
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 3.23607 3.23607
\(979\) 0 0
\(980\) 0.618034 0.618034
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0.618034 0.618034
\(986\) 0.618034 0.618034
\(987\) 0 0
\(988\) 0 0
\(989\) −1.00000 −1.00000
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −0.618034 −0.618034
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 1.61803 1.61803
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.1.o.a.579.2 2
5.4 even 2 1160.1.o.d.579.1 yes 2
8.3 odd 2 1160.1.o.b.579.2 yes 2
29.28 even 2 1160.1.o.c.579.1 yes 2
40.19 odd 2 1160.1.o.c.579.1 yes 2
145.144 even 2 1160.1.o.b.579.2 yes 2
232.115 odd 2 1160.1.o.d.579.1 yes 2
1160.579 odd 2 CM 1160.1.o.a.579.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.1.o.a.579.2 2 1.1 even 1 trivial
1160.1.o.a.579.2 2 1160.579 odd 2 CM
1160.1.o.b.579.2 yes 2 8.3 odd 2
1160.1.o.b.579.2 yes 2 145.144 even 2
1160.1.o.c.579.1 yes 2 29.28 even 2
1160.1.o.c.579.1 yes 2 40.19 odd 2
1160.1.o.d.579.1 yes 2 5.4 even 2
1160.1.o.d.579.1 yes 2 232.115 odd 2