Properties

Label 115.6.b.a.24.45
Level $115$
Weight $6$
Character 115.24
Analytic conductor $18.444$
Analytic rank $0$
Dimension $54$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [115,6,Mod(24,115)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("115.24"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(115, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 115.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4441392785\)
Analytic rank: \(0\)
Dimension: \(54\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 24.45
Character \(\chi\) \(=\) 115.24
Dual form 115.6.b.a.24.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.77128i q^{2} -16.5107i q^{3} -28.3928 q^{4} +(38.9251 - 40.1228i) q^{5} +128.309 q^{6} +7.31009i q^{7} +28.0326i q^{8} -29.6034 q^{9} +(311.805 + 302.498i) q^{10} -512.382 q^{11} +468.785i q^{12} -603.915i q^{13} -56.8088 q^{14} +(-662.455 - 642.681i) q^{15} -1126.42 q^{16} -1547.97i q^{17} -230.056i q^{18} +2173.79 q^{19} +(-1105.19 + 1139.20i) q^{20} +120.695 q^{21} -3981.86i q^{22} -529.000i q^{23} +462.838 q^{24} +(-94.6706 - 3123.57i) q^{25} +4693.20 q^{26} -3523.33i q^{27} -207.554i q^{28} -2114.61 q^{29} +(4994.45 - 5148.12i) q^{30} -6354.77 q^{31} -7856.67i q^{32} +8459.79i q^{33} +12029.7 q^{34} +(293.301 + 284.546i) q^{35} +840.522 q^{36} +3404.46i q^{37} +16893.1i q^{38} -9971.07 q^{39} +(1124.75 + 1091.17i) q^{40} +8009.77 q^{41} +937.953i q^{42} -14626.7i q^{43} +14548.0 q^{44} +(-1152.31 + 1187.77i) q^{45} +4111.01 q^{46} -2294.90i q^{47} +18598.0i q^{48} +16753.6 q^{49} +(24274.1 - 735.712i) q^{50} -25558.1 q^{51} +17146.8i q^{52} -19770.6i q^{53} +27380.8 q^{54} +(-19944.5 + 20558.2i) q^{55} -204.921 q^{56} -35890.8i q^{57} -16433.2i q^{58} +48436.6 q^{59} +(18808.9 + 18247.5i) q^{60} -2261.14 q^{61} -49384.7i q^{62} -216.403i q^{63} +25011.0 q^{64} +(-24230.8 - 23507.5i) q^{65} -65743.4 q^{66} +47700.6i q^{67} +43951.2i q^{68} -8734.16 q^{69} +(-2211.29 + 2279.32i) q^{70} -59497.4 q^{71} -829.859i q^{72} +12040.2i q^{73} -26457.0 q^{74} +(-51572.3 + 1563.08i) q^{75} -61719.9 q^{76} -3745.56i q^{77} -77488.0i q^{78} -59066.2 q^{79} +(-43846.0 + 45195.0i) q^{80} -65366.3 q^{81} +62246.2i q^{82} -88291.8i q^{83} -3426.86 q^{84} +(-62108.8 - 60254.9i) q^{85} +113668. q^{86} +34913.6i q^{87} -14363.4i q^{88} +61494.9 q^{89} +(-9230.48 - 8954.96i) q^{90} +4414.68 q^{91} +15019.8i q^{92} +104922. i q^{93} +17834.3 q^{94} +(84614.9 - 87218.3i) q^{95} -129719. q^{96} +55907.6i q^{97} +130197. i q^{98} +15168.2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 832 q^{4} + 98 q^{5} - 144 q^{6} - 4270 q^{9} + 942 q^{10} - 380 q^{11} - 3988 q^{14} + 690 q^{15} + 16632 q^{16} - 2440 q^{19} - 2436 q^{20} + 4768 q^{21} - 17940 q^{24} - 9150 q^{25} - 15144 q^{26}+ \cdots - 14088 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.77128i 1.37378i 0.726761 + 0.686891i \(0.241025\pi\)
−0.726761 + 0.686891i \(0.758975\pi\)
\(3\) 16.5107i 1.05916i −0.848259 0.529581i \(-0.822349\pi\)
0.848259 0.529581i \(-0.177651\pi\)
\(4\) −28.3928 −0.887275
\(5\) 38.9251 40.1228i 0.696314 0.717738i
\(6\) 128.309 1.45506
\(7\) 7.31009i 0.0563868i 0.999602 + 0.0281934i \(0.00897543\pi\)
−0.999602 + 0.0281934i \(0.991025\pi\)
\(8\) 28.0326i 0.154860i
\(9\) −29.6034 −0.121825
\(10\) 311.805 + 302.498i 0.986014 + 0.956583i
\(11\) −512.382 −1.27677 −0.638384 0.769718i \(-0.720397\pi\)
−0.638384 + 0.769718i \(0.720397\pi\)
\(12\) 468.785i 0.939768i
\(13\) 603.915i 0.991101i −0.868579 0.495550i \(-0.834966\pi\)
0.868579 0.495550i \(-0.165034\pi\)
\(14\) −56.8088 −0.0774632
\(15\) −662.455 642.681i −0.760201 0.737509i
\(16\) −1126.42 −1.10002
\(17\) 1547.97i 1.29909i −0.760322 0.649546i \(-0.774959\pi\)
0.760322 0.649546i \(-0.225041\pi\)
\(18\) 230.056i 0.167360i
\(19\) 2173.79 1.38144 0.690722 0.723121i \(-0.257293\pi\)
0.690722 + 0.723121i \(0.257293\pi\)
\(20\) −1105.19 + 1139.20i −0.617822 + 0.636831i
\(21\) 120.695 0.0597228
\(22\) 3981.86i 1.75400i
\(23\) 529.000i 0.208514i
\(24\) 462.838 0.164022
\(25\) −94.6706 3123.57i −0.0302946 0.999541i
\(26\) 4693.20 1.36156
\(27\) 3523.33i 0.930130i
\(28\) 207.554i 0.0500306i
\(29\) −2114.61 −0.466911 −0.233456 0.972367i \(-0.575003\pi\)
−0.233456 + 0.972367i \(0.575003\pi\)
\(30\) 4994.45 5148.12i 1.01318 1.04435i
\(31\) −6354.77 −1.18767 −0.593834 0.804587i \(-0.702387\pi\)
−0.593834 + 0.804587i \(0.702387\pi\)
\(32\) 7856.67i 1.35632i
\(33\) 8459.79i 1.35230i
\(34\) 12029.7 1.78467
\(35\) 293.301 + 284.546i 0.0404709 + 0.0392629i
\(36\) 840.522 0.108092
\(37\) 3404.46i 0.408831i 0.978884 + 0.204415i \(0.0655293\pi\)
−0.978884 + 0.204415i \(0.934471\pi\)
\(38\) 16893.1i 1.89780i
\(39\) −9971.07 −1.04974
\(40\) 1124.75 + 1091.17i 0.111149 + 0.107831i
\(41\) 8009.77 0.744150 0.372075 0.928203i \(-0.378646\pi\)
0.372075 + 0.928203i \(0.378646\pi\)
\(42\) 937.953i 0.0820461i
\(43\) 14626.7i 1.20635i −0.797608 0.603176i \(-0.793902\pi\)
0.797608 0.603176i \(-0.206098\pi\)
\(44\) 14548.0 1.13284
\(45\) −1152.31 + 1187.77i −0.0848281 + 0.0874381i
\(46\) 4111.01 0.286453
\(47\) 2294.90i 0.151537i −0.997125 0.0757685i \(-0.975859\pi\)
0.997125 0.0757685i \(-0.0241410\pi\)
\(48\) 18598.0i 1.16510i
\(49\) 16753.6 0.996821
\(50\) 24274.1 735.712i 1.37315 0.0416181i
\(51\) −25558.1 −1.37595
\(52\) 17146.8i 0.879379i
\(53\) 19770.6i 0.966785i −0.875404 0.483393i \(-0.839404\pi\)
0.875404 0.483393i \(-0.160596\pi\)
\(54\) 27380.8 1.27780
\(55\) −19944.5 + 20558.2i −0.889031 + 0.916385i
\(56\) −204.921 −0.00873205
\(57\) 35890.8i 1.46317i
\(58\) 16433.2i 0.641434i
\(59\) 48436.6 1.81152 0.905760 0.423791i \(-0.139301\pi\)
0.905760 + 0.423791i \(0.139301\pi\)
\(60\) 18808.9 + 18247.5i 0.674507 + 0.654373i
\(61\) −2261.14 −0.0778041 −0.0389020 0.999243i \(-0.512386\pi\)
−0.0389020 + 0.999243i \(0.512386\pi\)
\(62\) 49384.7i 1.63160i
\(63\) 216.403i 0.00686930i
\(64\) 25011.0 0.763275
\(65\) −24230.8 23507.5i −0.711350 0.690117i
\(66\) −65743.4 −1.85777
\(67\) 47700.6i 1.29819i 0.760709 + 0.649093i \(0.224852\pi\)
−0.760709 + 0.649093i \(0.775148\pi\)
\(68\) 43951.2i 1.15265i
\(69\) −8734.16 −0.220851
\(70\) −2211.29 + 2279.32i −0.0539387 + 0.0555982i
\(71\) −59497.4 −1.40072 −0.700361 0.713789i \(-0.746978\pi\)
−0.700361 + 0.713789i \(0.746978\pi\)
\(72\) 829.859i 0.0188657i
\(73\) 12040.2i 0.264441i 0.991220 + 0.132220i \(0.0422106\pi\)
−0.991220 + 0.132220i \(0.957789\pi\)
\(74\) −26457.0 −0.561644
\(75\) −51572.3 + 1563.08i −1.05868 + 0.0320869i
\(76\) −61719.9 −1.22572
\(77\) 3745.56i 0.0719929i
\(78\) 77488.0i 1.44211i
\(79\) −59066.2 −1.06481 −0.532404 0.846491i \(-0.678711\pi\)
−0.532404 + 0.846491i \(0.678711\pi\)
\(80\) −43846.0 + 45195.0i −0.765958 + 0.789524i
\(81\) −65366.3 −1.10698
\(82\) 62246.2i 1.02230i
\(83\) 88291.8i 1.40678i −0.710806 0.703389i \(-0.751669\pi\)
0.710806 0.703389i \(-0.248331\pi\)
\(84\) −3426.86 −0.0529905
\(85\) −62108.8 60254.9i −0.932408 0.904576i
\(86\) 113668. 1.65726
\(87\) 34913.6i 0.494535i
\(88\) 14363.4i 0.197720i
\(89\) 61494.9 0.822932 0.411466 0.911425i \(-0.365017\pi\)
0.411466 + 0.911425i \(0.365017\pi\)
\(90\) −9230.48 8954.96i −0.120121 0.116535i
\(91\) 4414.68 0.0558850
\(92\) 15019.8i 0.185010i
\(93\) 104922.i 1.25793i
\(94\) 17834.3 0.208179
\(95\) 84614.9 87218.3i 0.961918 0.991514i
\(96\) −129719. −1.43657
\(97\) 55907.6i 0.603311i 0.953417 + 0.301656i \(0.0975393\pi\)
−0.953417 + 0.301656i \(0.902461\pi\)
\(98\) 130197.i 1.36941i
\(99\) 15168.2 0.155542
\(100\) 2687.96 + 88686.8i 0.0268796 + 0.886868i
\(101\) −30742.8 −0.299875 −0.149937 0.988695i \(-0.547907\pi\)
−0.149937 + 0.988695i \(0.547907\pi\)
\(102\) 198619.i 1.89025i
\(103\) 161792.i 1.50267i 0.659919 + 0.751337i \(0.270591\pi\)
−0.659919 + 0.751337i \(0.729409\pi\)
\(104\) 16929.3 0.153482
\(105\) 4698.06 4842.61i 0.0415858 0.0428653i
\(106\) 153643. 1.32815
\(107\) 165359.i 1.39627i 0.715966 + 0.698135i \(0.245986\pi\)
−0.715966 + 0.698135i \(0.754014\pi\)
\(108\) 100037.i 0.825281i
\(109\) 128891. 1.03910 0.519549 0.854441i \(-0.326100\pi\)
0.519549 + 0.854441i \(0.326100\pi\)
\(110\) −159763. 154995.i −1.25891 1.22133i
\(111\) 56210.0 0.433018
\(112\) 8234.22i 0.0620265i
\(113\) 44437.9i 0.327384i 0.986511 + 0.163692i \(0.0523404\pi\)
−0.986511 + 0.163692i \(0.947660\pi\)
\(114\) 278917. 2.01008
\(115\) −21224.9 20591.4i −0.149659 0.145191i
\(116\) 60039.5 0.414279
\(117\) 17877.9i 0.120740i
\(118\) 376414.i 2.48863i
\(119\) 11315.8 0.0732517
\(120\) 18016.0 18570.3i 0.114210 0.117724i
\(121\) 101484. 0.630138
\(122\) 17571.9i 0.106886i
\(123\) 132247.i 0.788175i
\(124\) 180430. 1.05379
\(125\) −129011. 117787.i −0.738503 0.674250i
\(126\) 1681.73 0.00943691
\(127\) 155427.i 0.855101i 0.903991 + 0.427551i \(0.140623\pi\)
−0.903991 + 0.427551i \(0.859377\pi\)
\(128\) 57046.0i 0.307752i
\(129\) −241496. −1.27772
\(130\) 182683. 188304.i 0.948070 0.977240i
\(131\) −181481. −0.923961 −0.461981 0.886890i \(-0.652861\pi\)
−0.461981 + 0.886890i \(0.652861\pi\)
\(132\) 240197.i 1.19987i
\(133\) 15890.6i 0.0778952i
\(134\) −370695. −1.78342
\(135\) −141366. 137146.i −0.667589 0.647662i
\(136\) 43393.6 0.201177
\(137\) 273627.i 1.24554i 0.782406 + 0.622769i \(0.213992\pi\)
−0.782406 + 0.622769i \(0.786008\pi\)
\(138\) 67875.6i 0.303400i
\(139\) 435154. 1.91032 0.955160 0.296090i \(-0.0956829\pi\)
0.955160 + 0.296090i \(0.0956829\pi\)
\(140\) −8327.63 8079.06i −0.0359089 0.0348370i
\(141\) −37890.4 −0.160502
\(142\) 462371.i 1.92429i
\(143\) 309435.i 1.26541i
\(144\) 33345.8 0.134009
\(145\) −82311.2 + 84843.8i −0.325117 + 0.335120i
\(146\) −93568.1 −0.363284
\(147\) 276613.i 1.05579i
\(148\) 96662.0i 0.362745i
\(149\) −13438.2 −0.0495877 −0.0247939 0.999693i \(-0.507893\pi\)
−0.0247939 + 0.999693i \(0.507893\pi\)
\(150\) −12147.1 400783.i −0.0440804 1.45439i
\(151\) 181022. 0.646083 0.323042 0.946385i \(-0.395295\pi\)
0.323042 + 0.946385i \(0.395295\pi\)
\(152\) 60936.9i 0.213930i
\(153\) 45825.1i 0.158261i
\(154\) 29107.8 0.0989025
\(155\) −247360. + 254971.i −0.826990 + 0.852435i
\(156\) 283107. 0.931405
\(157\) 419348.i 1.35777i −0.734245 0.678885i \(-0.762464\pi\)
0.734245 0.678885i \(-0.237536\pi\)
\(158\) 459020.i 1.46281i
\(159\) −326426. −1.02398
\(160\) −315231. 305822.i −0.973485 0.944427i
\(161\) 3867.04 0.0117575
\(162\) 507980.i 1.52075i
\(163\) 91209.3i 0.268887i 0.990921 + 0.134444i \(0.0429247\pi\)
−0.990921 + 0.134444i \(0.957075\pi\)
\(164\) −227420. −0.660265
\(165\) 339430. + 329298.i 0.970600 + 0.941628i
\(166\) 686141. 1.93260
\(167\) 382602.i 1.06159i 0.847501 + 0.530794i \(0.178106\pi\)
−0.847501 + 0.530794i \(0.821894\pi\)
\(168\) 3383.39i 0.00924866i
\(169\) 6579.14 0.0177195
\(170\) 468258. 482665.i 1.24269 1.28092i
\(171\) −64351.4 −0.168294
\(172\) 415292.i 1.07037i
\(173\) 144391.i 0.366796i 0.983039 + 0.183398i \(0.0587098\pi\)
−0.983039 + 0.183398i \(0.941290\pi\)
\(174\) −271324. −0.679382
\(175\) 22833.5 692.051i 0.0563609 0.00170822i
\(176\) 577157. 1.40447
\(177\) 799722.i 1.91869i
\(178\) 477894.i 1.13053i
\(179\) −521036. −1.21544 −0.607722 0.794150i \(-0.707916\pi\)
−0.607722 + 0.794150i \(0.707916\pi\)
\(180\) 32717.4 33724.1i 0.0752658 0.0775816i
\(181\) −103563. −0.234967 −0.117483 0.993075i \(-0.537483\pi\)
−0.117483 + 0.993075i \(0.537483\pi\)
\(182\) 34307.7i 0.0767738i
\(183\) 37333.0i 0.0824071i
\(184\) 14829.2 0.0322905
\(185\) 136596. + 132519.i 0.293433 + 0.284674i
\(186\) −815376. −1.72813
\(187\) 793152.i 1.65864i
\(188\) 65158.5i 0.134455i
\(189\) 25755.9 0.0524471
\(190\) 677798. + 657566.i 1.36212 + 1.32146i
\(191\) 886889. 1.75908 0.879540 0.475824i \(-0.157850\pi\)
0.879540 + 0.475824i \(0.157850\pi\)
\(192\) 412949.i 0.808432i
\(193\) 175474.i 0.339094i 0.985522 + 0.169547i \(0.0542305\pi\)
−0.985522 + 0.169547i \(0.945769\pi\)
\(194\) −434473. −0.828817
\(195\) −388125. + 400067.i −0.730946 + 0.753435i
\(196\) −475680. −0.884454
\(197\) 878098.i 1.61205i −0.591885 0.806023i \(-0.701616\pi\)
0.591885 0.806023i \(-0.298384\pi\)
\(198\) 117877.i 0.213680i
\(199\) 621709. 1.11290 0.556448 0.830882i \(-0.312164\pi\)
0.556448 + 0.830882i \(0.312164\pi\)
\(200\) 87561.7 2653.86i 0.154789 0.00469141i
\(201\) 787571. 1.37499
\(202\) 238911.i 0.411963i
\(203\) 15458.0i 0.0263276i
\(204\) 725665. 1.22085
\(205\) 311781. 321374.i 0.518162 0.534104i
\(206\) −1.25733e6 −2.06434
\(207\) 15660.2i 0.0254022i
\(208\) 680262.i 1.09023i
\(209\) −1.11381e6 −1.76378
\(210\) 37633.2 + 36509.9i 0.0588875 + 0.0571298i
\(211\) 531532. 0.821908 0.410954 0.911656i \(-0.365196\pi\)
0.410954 + 0.911656i \(0.365196\pi\)
\(212\) 561342.i 0.857804i
\(213\) 982344.i 1.48359i
\(214\) −1.28505e6 −1.91817
\(215\) −586862. 569344.i −0.865844 0.839999i
\(216\) 98768.1 0.144040
\(217\) 46453.9i 0.0669689i
\(218\) 1.00165e6i 1.42749i
\(219\) 198793. 0.280086
\(220\) 566281. 583704.i 0.788815 0.813085i
\(221\) −934843. −1.28753
\(222\) 436823.i 0.594872i
\(223\) 148971.i 0.200605i 0.994957 + 0.100302i \(0.0319810\pi\)
−0.994957 + 0.100302i \(0.968019\pi\)
\(224\) 57433.0 0.0764788
\(225\) 2802.57 + 92468.0i 0.00369062 + 0.121769i
\(226\) −345340. −0.449754
\(227\) 912828.i 1.17577i 0.808943 + 0.587887i \(0.200040\pi\)
−0.808943 + 0.587887i \(0.799960\pi\)
\(228\) 1.01904e6i 1.29824i
\(229\) 602691. 0.759462 0.379731 0.925097i \(-0.376017\pi\)
0.379731 + 0.925097i \(0.376017\pi\)
\(230\) 160021. 164945.i 0.199461 0.205598i
\(231\) −61841.8 −0.0762522
\(232\) 59277.9i 0.0723057i
\(233\) 1.08901e6i 1.31414i −0.753829 0.657070i \(-0.771795\pi\)
0.753829 0.657070i \(-0.228205\pi\)
\(234\) −138934. −0.165871
\(235\) −92077.6 89329.1i −0.108764 0.105517i
\(236\) −1.37525e6 −1.60732
\(237\) 975224.i 1.12780i
\(238\) 87938.2i 0.100632i
\(239\) 234332. 0.265361 0.132680 0.991159i \(-0.457642\pi\)
0.132680 + 0.991159i \(0.457642\pi\)
\(240\) 746202. + 723928.i 0.836234 + 0.811273i
\(241\) −179624. −0.199215 −0.0996076 0.995027i \(-0.531759\pi\)
−0.0996076 + 0.995027i \(0.531759\pi\)
\(242\) 788663.i 0.865672i
\(243\) 223074.i 0.242345i
\(244\) 64200.0 0.0690336
\(245\) 652134. 672199.i 0.694100 0.715456i
\(246\) 1.02773e6 1.08278
\(247\) 1.31278e6i 1.36915i
\(248\) 178141.i 0.183922i
\(249\) −1.45776e6 −1.49001
\(250\) 915354. 1.00258e6i 0.926273 1.01454i
\(251\) −526227. −0.527217 −0.263608 0.964630i \(-0.584913\pi\)
−0.263608 + 0.964630i \(0.584913\pi\)
\(252\) 6144.29i 0.00609496i
\(253\) 271050.i 0.266225i
\(254\) −1.20787e6 −1.17472
\(255\) −994851. + 1.02546e6i −0.958093 + 0.987571i
\(256\) 1.24367e6 1.18606
\(257\) 1.81654e6i 1.71558i −0.513997 0.857792i \(-0.671836\pi\)
0.513997 0.857792i \(-0.328164\pi\)
\(258\) 1.87674e6i 1.75531i
\(259\) −24886.9 −0.0230527
\(260\) 687979. + 667443.i 0.631163 + 0.612323i
\(261\) 62599.4 0.0568812
\(262\) 1.41034e6i 1.26932i
\(263\) 153539.i 0.136877i 0.997655 + 0.0684385i \(0.0218017\pi\)
−0.997655 + 0.0684385i \(0.978198\pi\)
\(264\) −237150. −0.209418
\(265\) −793250. 769572.i −0.693898 0.673186i
\(266\) −123490. −0.107011
\(267\) 1.01532e6i 0.871619i
\(268\) 1.35435e6i 1.15185i
\(269\) 733721. 0.618230 0.309115 0.951025i \(-0.399967\pi\)
0.309115 + 0.951025i \(0.399967\pi\)
\(270\) 1.06580e6 1.09859e6i 0.889746 0.917122i
\(271\) 595559. 0.492608 0.246304 0.969193i \(-0.420784\pi\)
0.246304 + 0.969193i \(0.420784\pi\)
\(272\) 1.74366e6i 1.42903i
\(273\) 72889.4i 0.0591913i
\(274\) −2.12643e6 −1.71110
\(275\) 48507.5 + 1.60046e6i 0.0386792 + 1.27618i
\(276\) 247987. 0.195955
\(277\) 1.32205e6i 1.03526i 0.855605 + 0.517629i \(0.173185\pi\)
−0.855605 + 0.517629i \(0.826815\pi\)
\(278\) 3.38170e6i 2.62436i
\(279\) 188122. 0.144687
\(280\) −7976.57 + 8221.99i −0.00608024 + 0.00626732i
\(281\) −1.85236e6 −1.39946 −0.699729 0.714408i \(-0.746696\pi\)
−0.699729 + 0.714408i \(0.746696\pi\)
\(282\) 294457.i 0.220495i
\(283\) 840403.i 0.623766i 0.950121 + 0.311883i \(0.100960\pi\)
−0.950121 + 0.311883i \(0.899040\pi\)
\(284\) 1.68930e6 1.24283
\(285\) −1.44004e6 1.39705e6i −1.05017 1.01883i
\(286\) −2.40471e6 −1.73839
\(287\) 58552.1i 0.0419602i
\(288\) 232584.i 0.165234i
\(289\) −976352. −0.687641
\(290\) −659345. 639664.i −0.460381 0.446639i
\(291\) 923073. 0.639004
\(292\) 341856.i 0.234632i
\(293\) 130541.i 0.0888336i −0.999013 0.0444168i \(-0.985857\pi\)
0.999013 0.0444168i \(-0.0141430\pi\)
\(294\) 2.14964e6 1.45043
\(295\) 1.88540e6 1.94341e6i 1.26139 1.30020i
\(296\) −95435.8 −0.0633114
\(297\) 1.80529e6i 1.18756i
\(298\) 104432.i 0.0681227i
\(299\) −319471. −0.206659
\(300\) 1.46428e6 44380.2i 0.939337 0.0284699i
\(301\) 106922. 0.0680224
\(302\) 1.40677e6i 0.887577i
\(303\) 507585.i 0.317616i
\(304\) −2.44859e6 −1.51961
\(305\) −88015.0 + 90723.0i −0.0541760 + 0.0558429i
\(306\) −356120. −0.217416
\(307\) 371862.i 0.225183i −0.993641 0.112591i \(-0.964085\pi\)
0.993641 0.112591i \(-0.0359151\pi\)
\(308\) 106347.i 0.0638775i
\(309\) 2.67130e6 1.59157
\(310\) −1.98145e6 1.92230e6i −1.17106 1.13610i
\(311\) −1.29561e6 −0.759581 −0.379791 0.925073i \(-0.624004\pi\)
−0.379791 + 0.925073i \(0.624004\pi\)
\(312\) 279515.i 0.162562i
\(313\) 305809.i 0.176437i 0.996101 + 0.0882183i \(0.0281173\pi\)
−0.996101 + 0.0882183i \(0.971883\pi\)
\(314\) 3.25887e6 1.86528
\(315\) −8682.69 8423.52i −0.00493035 0.00478319i
\(316\) 1.67705e6 0.944777
\(317\) 2.57648e6i 1.44005i −0.693946 0.720027i \(-0.744129\pi\)
0.693946 0.720027i \(-0.255871\pi\)
\(318\) 2.53675e6i 1.40673i
\(319\) 1.08349e6 0.596138
\(320\) 973556. 1.00351e6i 0.531479 0.547831i
\(321\) 2.73020e6 1.47888
\(322\) 30051.8i 0.0161522i
\(323\) 3.36496e6i 1.79462i
\(324\) 1.85593e6 0.982198
\(325\) −1.88637e6 + 57173.0i −0.990646 + 0.0300250i
\(326\) −708813. −0.369392
\(327\) 2.12808e6i 1.10057i
\(328\) 224535.i 0.115239i
\(329\) 16775.9 0.00854469
\(330\) −2.55907e6 + 2.63781e6i −1.29359 + 1.33339i
\(331\) 2.22853e6 1.11801 0.559007 0.829163i \(-0.311182\pi\)
0.559007 + 0.829163i \(0.311182\pi\)
\(332\) 2.50685e6i 1.24820i
\(333\) 100783.i 0.0498056i
\(334\) −2.97330e6 −1.45839
\(335\) 1.91388e6 + 1.85675e6i 0.931758 + 0.903945i
\(336\) −135953. −0.0656962
\(337\) 2.26386e6i 1.08586i −0.839777 0.542931i \(-0.817314\pi\)
0.839777 0.542931i \(-0.182686\pi\)
\(338\) 51128.3i 0.0243428i
\(339\) 733702. 0.346753
\(340\) 1.76344e6 + 1.71080e6i 0.827302 + 0.802607i
\(341\) 3.25607e6 1.51638
\(342\) 500093.i 0.231199i
\(343\) 245331.i 0.112594i
\(344\) 410023. 0.186815
\(345\) −339978. + 350439.i −0.153781 + 0.158513i
\(346\) −1.12210e6 −0.503898
\(347\) 2.65136e6i 1.18207i 0.806645 + 0.591037i \(0.201281\pi\)
−0.806645 + 0.591037i \(0.798719\pi\)
\(348\) 991295.i 0.438788i
\(349\) 3.79224e6 1.66660 0.833301 0.552819i \(-0.186448\pi\)
0.833301 + 0.552819i \(0.186448\pi\)
\(350\) 5378.12 + 177446.i 0.00234672 + 0.0774276i
\(351\) −2.12779e6 −0.921853
\(352\) 4.02562e6i 1.73171i
\(353\) 2.17078e6i 0.927213i −0.886041 0.463607i \(-0.846555\pi\)
0.886041 0.463607i \(-0.153445\pi\)
\(354\) 6.21486e6 2.63587
\(355\) −2.31594e6 + 2.38720e6i −0.975342 + 1.00535i
\(356\) −1.74601e6 −0.730167
\(357\) 186832.i 0.0775854i
\(358\) 4.04911e6i 1.66975i
\(359\) −1.75257e6 −0.717695 −0.358847 0.933396i \(-0.616830\pi\)
−0.358847 + 0.933396i \(0.616830\pi\)
\(360\) −33296.2 32302.4i −0.0135406 0.0131365i
\(361\) 2.24925e6 0.908386
\(362\) 804814.i 0.322793i
\(363\) 1.67558e6i 0.667418i
\(364\) −125345. −0.0495854
\(365\) 483088. + 468668.i 0.189799 + 0.184134i
\(366\) −290125. −0.113209
\(367\) 2.76408e6i 1.07124i −0.844460 0.535618i \(-0.820079\pi\)
0.844460 0.535618i \(-0.179921\pi\)
\(368\) 595875.i 0.229370i
\(369\) −237116. −0.0906557
\(370\) −1.02984e6 + 1.06153e6i −0.391080 + 0.403113i
\(371\) 144525. 0.0545139
\(372\) 2.97902e6i 1.11613i
\(373\) 1.89476e6i 0.705151i −0.935783 0.352576i \(-0.885306\pi\)
0.935783 0.352576i \(-0.114694\pi\)
\(374\) −6.16380e6 −2.27861
\(375\) −1.94474e6 + 2.13006e6i −0.714141 + 0.782194i
\(376\) 64331.9 0.0234670
\(377\) 1.27704e6i 0.462756i
\(378\) 200156.i 0.0720508i
\(379\) −209091. −0.0747716 −0.0373858 0.999301i \(-0.511903\pi\)
−0.0373858 + 0.999301i \(0.511903\pi\)
\(380\) −2.40245e6 + 2.47637e6i −0.853486 + 0.879745i
\(381\) 2.56621e6 0.905691
\(382\) 6.89226e6i 2.41659i
\(383\) 3.11090e6i 1.08365i −0.840491 0.541825i \(-0.817733\pi\)
0.840491 0.541825i \(-0.182267\pi\)
\(384\) −941870. −0.325959
\(385\) −150282. 145796.i −0.0516720 0.0501297i
\(386\) −1.36366e6 −0.465842
\(387\) 432998.i 0.146963i
\(388\) 1.58737e6i 0.535303i
\(389\) −1.50348e6 −0.503762 −0.251881 0.967758i \(-0.581049\pi\)
−0.251881 + 0.967758i \(0.581049\pi\)
\(390\) −3.10903e6 3.01623e6i −1.03506 1.00416i
\(391\) −818876. −0.270880
\(392\) 469646.i 0.154367i
\(393\) 2.99639e6i 0.978625i
\(394\) 6.82394e6 2.21460
\(395\) −2.29916e6 + 2.36990e6i −0.741440 + 0.764252i
\(396\) −430668. −0.138008
\(397\) 640908.i 0.204089i −0.994780 0.102044i \(-0.967462\pi\)
0.994780 0.102044i \(-0.0325384\pi\)
\(398\) 4.83148e6i 1.52888i
\(399\) 262365. 0.0825037
\(400\) 106639. + 3.51844e6i 0.0333246 + 1.09951i
\(401\) 5.49966e6 1.70795 0.853975 0.520314i \(-0.174185\pi\)
0.853975 + 0.520314i \(0.174185\pi\)
\(402\) 6.12044e6i 1.88894i
\(403\) 3.83774e6i 1.17710i
\(404\) 872874. 0.266071
\(405\) −2.54439e6 + 2.62267e6i −0.770808 + 0.794524i
\(406\) 120128. 0.0361684
\(407\) 1.74438e6i 0.521982i
\(408\) 716459.i 0.213079i
\(409\) −1.53891e6 −0.454888 −0.227444 0.973791i \(-0.573037\pi\)
−0.227444 + 0.973791i \(0.573037\pi\)
\(410\) 2.49749e6 + 2.42294e6i 0.733742 + 0.711841i
\(411\) 4.51777e6 1.31923
\(412\) 4.59373e6i 1.33328i
\(413\) 354076.i 0.102146i
\(414\) −121700. −0.0348970
\(415\) −3.54251e6 3.43677e6i −1.00970 0.979558i
\(416\) −4.74477e6 −1.34425
\(417\) 7.18470e6i 2.02334i
\(418\) 8.65573e6i 2.42305i
\(419\) −1.43328e6 −0.398837 −0.199419 0.979914i \(-0.563905\pi\)
−0.199419 + 0.979914i \(0.563905\pi\)
\(420\) −133391. + 137495.i −0.0368980 + 0.0380333i
\(421\) −4.41511e6 −1.21405 −0.607024 0.794683i \(-0.707637\pi\)
−0.607024 + 0.794683i \(0.707637\pi\)
\(422\) 4.13068e6i 1.12912i
\(423\) 67936.6i 0.0184609i
\(424\) 554221. 0.149716
\(425\) −4.83518e6 + 146547.i −1.29850 + 0.0393555i
\(426\) −7.63407e6 −2.03813
\(427\) 16529.1i 0.00438712i
\(428\) 4.69501e6i 1.23888i
\(429\) 5.10900e6 1.34027
\(430\) 4.42453e6 4.56067e6i 1.15398 1.18948i
\(431\) −323287. −0.0838291 −0.0419146 0.999121i \(-0.513346\pi\)
−0.0419146 + 0.999121i \(0.513346\pi\)
\(432\) 3.96874e6i 1.02316i
\(433\) 408265.i 0.104646i 0.998630 + 0.0523230i \(0.0166625\pi\)
−0.998630 + 0.0523230i \(0.983337\pi\)
\(434\) 361006. 0.0920006
\(435\) 1.40083e6 + 1.35902e6i 0.354946 + 0.344351i
\(436\) −3.65958e6 −0.921966
\(437\) 1.14993e6i 0.288051i
\(438\) 1.54488e6i 0.384776i
\(439\) −3.88258e6 −0.961521 −0.480761 0.876852i \(-0.659639\pi\)
−0.480761 + 0.876852i \(0.659639\pi\)
\(440\) −576299. 559097.i −0.141911 0.137675i
\(441\) −495962. −0.121437
\(442\) 7.26492e6i 1.76879i
\(443\) 2.35832e6i 0.570943i 0.958387 + 0.285471i \(0.0921502\pi\)
−0.958387 + 0.285471i \(0.907850\pi\)
\(444\) −1.59596e6 −0.384206
\(445\) 2.39370e6 2.46734e6i 0.573019 0.590649i
\(446\) −1.15770e6 −0.275587
\(447\) 221874.i 0.0525214i
\(448\) 182833.i 0.0430387i
\(449\) 6.47326e6 1.51533 0.757665 0.652644i \(-0.226340\pi\)
0.757665 + 0.652644i \(0.226340\pi\)
\(450\) −718595. + 21779.5i −0.167283 + 0.00507011i
\(451\) −4.10406e6 −0.950107
\(452\) 1.26172e6i 0.290480i
\(453\) 2.98880e6i 0.684307i
\(454\) −7.09384e6 −1.61526
\(455\) 171842. 177129.i 0.0389135 0.0401108i
\(456\) 1.00611e6 0.226587
\(457\) 2.07856e6i 0.465557i 0.972530 + 0.232779i \(0.0747817\pi\)
−0.972530 + 0.232779i \(0.925218\pi\)
\(458\) 4.68368e6i 1.04333i
\(459\) −5.45401e6 −1.20833
\(460\) 602635. + 584647.i 0.132788 + 0.128825i
\(461\) 4.43220e6 0.971332 0.485666 0.874145i \(-0.338577\pi\)
0.485666 + 0.874145i \(0.338577\pi\)
\(462\) 480590.i 0.104754i
\(463\) 2.25296e6i 0.488428i 0.969721 + 0.244214i \(0.0785299\pi\)
−0.969721 + 0.244214i \(0.921470\pi\)
\(464\) 2.38193e6 0.513611
\(465\) 4.20975e6 + 4.08409e6i 0.902867 + 0.875917i
\(466\) 8.46300e6 1.80534
\(467\) 1.37928e6i 0.292658i 0.989236 + 0.146329i \(0.0467457\pi\)
−0.989236 + 0.146329i \(0.953254\pi\)
\(468\) 507604.i 0.107130i
\(469\) −348696. −0.0732006
\(470\) 694202. 715561.i 0.144958 0.149418i
\(471\) −6.92374e6 −1.43810
\(472\) 1.35780e6i 0.280532i
\(473\) 7.49444e6i 1.54023i
\(474\) −7.57874e6 −1.54936
\(475\) −205794. 6.78997e6i −0.0418503 1.38081i
\(476\) −321287. −0.0649944
\(477\) 585276.i 0.117778i
\(478\) 1.82106e6i 0.364548i
\(479\) −9.86038e6 −1.96361 −0.981805 0.189894i \(-0.939185\pi\)
−0.981805 + 0.189894i \(0.939185\pi\)
\(480\) −5.04933e6 + 5.20469e6i −1.00030 + 1.03108i
\(481\) 2.05600e6 0.405192
\(482\) 1.39591e6i 0.273678i
\(483\) 63847.5i 0.0124531i
\(484\) −2.88142e6 −0.559106
\(485\) 2.24317e6 + 2.17621e6i 0.433019 + 0.420094i
\(486\) −1.73357e6 −0.332928
\(487\) 5.47539e6i 1.04615i 0.852288 + 0.523073i \(0.175214\pi\)
−0.852288 + 0.523073i \(0.824786\pi\)
\(488\) 63385.5i 0.0120487i
\(489\) 1.50593e6 0.284795
\(490\) 5.22385e6 + 5.06792e6i 0.982879 + 0.953541i
\(491\) −5.62532e6 −1.05304 −0.526519 0.850164i \(-0.676503\pi\)
−0.526519 + 0.850164i \(0.676503\pi\)
\(492\) 3.75486e6i 0.699328i
\(493\) 3.27334e6i 0.606561i
\(494\) 1.02020e7 1.88091
\(495\) 590425. 608591.i 0.108306 0.111638i
\(496\) 7.15813e6 1.30646
\(497\) 434931.i 0.0789823i
\(498\) 1.13287e7i 2.04694i
\(499\) 9.22947e6 1.65930 0.829651 0.558282i \(-0.188539\pi\)
0.829651 + 0.558282i \(0.188539\pi\)
\(500\) 3.66299e6 + 3.34429e6i 0.655255 + 0.598245i
\(501\) 6.31702e6 1.12439
\(502\) 4.08946e6i 0.724280i
\(503\) 965448.i 0.170141i −0.996375 0.0850705i \(-0.972888\pi\)
0.996375 0.0850705i \(-0.0271116\pi\)
\(504\) 6066.35 0.00106378
\(505\) −1.19667e6 + 1.23349e6i −0.208807 + 0.215231i
\(506\) −2.10641e6 −0.365734
\(507\) 108626.i 0.0187679i
\(508\) 4.41301e6i 0.758710i
\(509\) 3.27345e6 0.560030 0.280015 0.959996i \(-0.409661\pi\)
0.280015 + 0.959996i \(0.409661\pi\)
\(510\) −7.96914e6 7.73126e6i −1.35671 1.31621i
\(511\) −88015.3 −0.0149110
\(512\) 7.83945e6i 1.32163i
\(513\) 7.65897e6i 1.28492i
\(514\) 1.41168e7 2.35684
\(515\) 6.49155e6 + 6.29778e6i 1.07853 + 1.04633i
\(516\) 6.85676e6 1.13369
\(517\) 1.17586e6i 0.193478i
\(518\) 193403.i 0.0316693i
\(519\) 2.38400e6 0.388497
\(520\) 658976. 679251.i 0.106871 0.110159i
\(521\) −592762. −0.0956723 −0.0478361 0.998855i \(-0.515233\pi\)
−0.0478361 + 0.998855i \(0.515233\pi\)
\(522\) 486478.i 0.0781424i
\(523\) 822001.i 0.131407i −0.997839 0.0657034i \(-0.979071\pi\)
0.997839 0.0657034i \(-0.0209291\pi\)
\(524\) 5.15276e6 0.819808
\(525\) −11426.2 376998.i −0.00180928 0.0596954i
\(526\) −1.19320e6 −0.188039
\(527\) 9.83699e6i 1.54289i
\(528\) 9.52926e6i 1.48756i
\(529\) −279841. −0.0434783
\(530\) 5.98056e6 6.16457e6i 0.924810 0.953264i
\(531\) −1.43388e6 −0.220688
\(532\) 451178.i 0.0691145i
\(533\) 4.83722e6i 0.737527i
\(534\) 7.89037e6 1.19741
\(535\) 6.63467e6 + 6.43663e6i 1.00216 + 0.972242i
\(536\) −1.33717e6 −0.201037
\(537\) 8.60266e6i 1.28735i
\(538\) 5.70195e6i 0.849313i
\(539\) −8.58422e6 −1.27271
\(540\) 4.01377e6 + 3.89396e6i 0.592335 + 0.574655i
\(541\) 6.54620e6 0.961604 0.480802 0.876829i \(-0.340346\pi\)
0.480802 + 0.876829i \(0.340346\pi\)
\(542\) 4.62826e6i 0.676736i
\(543\) 1.70989e6i 0.248868i
\(544\) −1.21619e7 −1.76199
\(545\) 5.01710e6 5.17146e6i 0.723538 0.745800i
\(546\) 566444. 0.0813159
\(547\) 5.44281e6i 0.777776i −0.921285 0.388888i \(-0.872859\pi\)
0.921285 0.388888i \(-0.127141\pi\)
\(548\) 7.76903e6i 1.10513i
\(549\) 66937.2 0.00947844
\(550\) −1.24376e7 + 376966.i −1.75320 + 0.0531367i
\(551\) −4.59670e6 −0.645011
\(552\) 244841.i 0.0342009i
\(553\) 431779.i 0.0600411i
\(554\) −1.02740e7 −1.42222
\(555\) 2.18798e6 2.25530e6i 0.301516 0.310793i
\(556\) −1.23552e7 −1.69498
\(557\) 1.44274e6i 0.197037i 0.995135 + 0.0985187i \(0.0314104\pi\)
−0.995135 + 0.0985187i \(0.968590\pi\)
\(558\) 1.46195e6i 0.198769i
\(559\) −8.83327e6 −1.19562
\(560\) −330380. 320518.i −0.0445188 0.0431899i
\(561\) 1.30955e7 1.75677
\(562\) 1.43952e7i 1.92255i
\(563\) 1.81146e6i 0.240857i −0.992722 0.120428i \(-0.961573\pi\)
0.992722 0.120428i \(-0.0384268\pi\)
\(564\) 1.07581e6 0.142410
\(565\) 1.78297e6 + 1.72975e6i 0.234976 + 0.227962i
\(566\) −6.53101e6 −0.856918
\(567\) 477833.i 0.0624193i
\(568\) 1.66787e6i 0.216915i
\(569\) −9.21951e6 −1.19379 −0.596894 0.802320i \(-0.703599\pi\)
−0.596894 + 0.802320i \(0.703599\pi\)
\(570\) 1.08569e7 1.11909e7i 1.39965 1.44271i
\(571\) 1.07294e7 1.37716 0.688582 0.725158i \(-0.258234\pi\)
0.688582 + 0.725158i \(0.258234\pi\)
\(572\) 8.78574e6i 1.12276i
\(573\) 1.46432e7i 1.86315i
\(574\) −455025. −0.0576442
\(575\) −1.65237e6 + 50080.8i −0.208419 + 0.00631686i
\(576\) −740410. −0.0929856
\(577\) 9.83068e6i 1.22926i 0.788815 + 0.614630i \(0.210695\pi\)
−0.788815 + 0.614630i \(0.789305\pi\)
\(578\) 7.58751e6i 0.944669i
\(579\) 2.89721e6 0.359156
\(580\) 2.33705e6 2.40895e6i 0.288468 0.297343i
\(581\) 645421. 0.0793237
\(582\) 7.17346e6i 0.877852i
\(583\) 1.01301e7i 1.23436i
\(584\) −337519. −0.0409512
\(585\) 717312. + 695900.i 0.0866599 + 0.0840732i
\(586\) 1.01447e6 0.122038
\(587\) 1.12085e7i 1.34262i −0.741177 0.671310i \(-0.765732\pi\)
0.741177 0.671310i \(-0.234268\pi\)
\(588\) 7.85382e6i 0.936780i
\(589\) −1.38139e7 −1.64070
\(590\) 1.51028e7 + 1.46520e7i 1.78619 + 1.73287i
\(591\) −1.44980e7 −1.70742
\(592\) 3.83484e6i 0.449721i
\(593\) 1.38972e7i 1.62290i −0.584423 0.811449i \(-0.698679\pi\)
0.584423 0.811449i \(-0.301321\pi\)
\(594\) −1.40294e7 −1.63145
\(595\) 440469. 454021.i 0.0510062 0.0525755i
\(596\) 381547. 0.0439979
\(597\) 1.02649e7i 1.17874i
\(598\) 2.48270e6i 0.283904i
\(599\) −5.10108e6 −0.580891 −0.290446 0.956892i \(-0.593804\pi\)
−0.290446 + 0.956892i \(0.593804\pi\)
\(600\) −43817.2 1.44570e6i −0.00496897 0.163946i
\(601\) 9.41211e6 1.06292 0.531461 0.847083i \(-0.321643\pi\)
0.531461 + 0.847083i \(0.321643\pi\)
\(602\) 830922.i 0.0934478i
\(603\) 1.41210e6i 0.158151i
\(604\) −5.13972e6 −0.573254
\(605\) 3.95029e6 4.07183e6i 0.438774 0.452274i
\(606\) −3.94459e6 −0.436335
\(607\) 1.61401e6i 0.177801i −0.996041 0.0889005i \(-0.971665\pi\)
0.996041 0.0889005i \(-0.0283353\pi\)
\(608\) 1.70787e7i 1.87369i
\(609\) −255222. −0.0278852
\(610\) −705034. 683989.i −0.0767159 0.0744260i
\(611\) −1.38592e6 −0.150188
\(612\) 1.30110e6i 0.140421i
\(613\) 1.39952e7i 1.50427i 0.659007 + 0.752137i \(0.270977\pi\)
−0.659007 + 0.752137i \(0.729023\pi\)
\(614\) 2.88984e6 0.309352
\(615\) −5.30611e6 5.14773e6i −0.565703 0.548817i
\(616\) 104998. 0.0111488
\(617\) 1.34927e7i 1.42687i −0.700720 0.713437i \(-0.747138\pi\)
0.700720 0.713437i \(-0.252862\pi\)
\(618\) 2.07594e7i 2.18648i
\(619\) −3.97835e6 −0.417327 −0.208664 0.977987i \(-0.566911\pi\)
−0.208664 + 0.977987i \(0.566911\pi\)
\(620\) 7.02324e6 7.23933e6i 0.733768 0.756344i
\(621\) −1.86384e6 −0.193946
\(622\) 1.00686e7i 1.04350i
\(623\) 449533.i 0.0464025i
\(624\) 1.12316e7 1.15473
\(625\) −9.74770e6 + 591420.i −0.998164 + 0.0605614i
\(626\) −2.37652e6 −0.242385
\(627\) 1.83898e7i 1.86813i
\(628\) 1.19065e7i 1.20471i
\(629\) 5.26999e6 0.531109
\(630\) 65461.6 67475.7i 0.00657105 0.00677323i
\(631\) −1.37318e7 −1.37295 −0.686474 0.727155i \(-0.740842\pi\)
−0.686474 + 0.727155i \(0.740842\pi\)
\(632\) 1.65578e6i 0.164896i
\(633\) 8.77597e6i 0.870534i
\(634\) 2.00226e7 1.97832
\(635\) 6.23617e6 + 6.05002e6i 0.613738 + 0.595419i
\(636\) 9.26816e6 0.908554
\(637\) 1.01177e7i 0.987949i
\(638\) 8.42007e6i 0.818963i
\(639\) 1.76132e6 0.170642
\(640\) −2.28884e6 2.22052e6i −0.220885 0.214292i
\(641\) −1.70708e7 −1.64100 −0.820499 0.571649i \(-0.806304\pi\)
−0.820499 + 0.571649i \(0.806304\pi\)
\(642\) 2.12171e7i 2.03165i
\(643\) 1.32344e7i 1.26234i 0.775645 + 0.631169i \(0.217424\pi\)
−0.775645 + 0.631169i \(0.782576\pi\)
\(644\) −109796. −0.0104321
\(645\) −9.40028e6 + 9.68950e6i −0.889695 + 0.917069i
\(646\) 2.61500e7 2.46542
\(647\) 6.34727e6i 0.596110i −0.954549 0.298055i \(-0.903662\pi\)
0.954549 0.298055i \(-0.0963378\pi\)
\(648\) 1.83239e6i 0.171427i
\(649\) −2.48180e7 −2.31289
\(650\) −444308. 1.46595e7i −0.0412478 1.36093i
\(651\) −766987. −0.0709309
\(652\) 2.58969e6i 0.238577i
\(653\) 1.60903e7i 1.47666i 0.674437 + 0.738332i \(0.264386\pi\)
−0.674437 + 0.738332i \(0.735614\pi\)
\(654\) 1.65379e7 1.51195
\(655\) −7.06418e6 + 7.28153e6i −0.643367 + 0.663162i
\(656\) −9.02235e6 −0.818578
\(657\) 356432.i 0.0322154i
\(658\) 130370.i 0.0117385i
\(659\) −2.11630e6 −0.189830 −0.0949148 0.995485i \(-0.530258\pi\)
−0.0949148 + 0.995485i \(0.530258\pi\)
\(660\) −9.63737e6 9.34970e6i −0.861189 0.835483i
\(661\) 5.77601e6 0.514191 0.257095 0.966386i \(-0.417235\pi\)
0.257095 + 0.966386i \(0.417235\pi\)
\(662\) 1.73185e7i 1.53591i
\(663\) 1.54349e7i 1.36370i
\(664\) 2.47505e6 0.217853
\(665\) 637574. + 618543.i 0.0559083 + 0.0542395i
\(666\) 783216. 0.0684220
\(667\) 1.11863e6i 0.0973577i
\(668\) 1.08631e7i 0.941919i
\(669\) 2.45962e6 0.212473
\(670\) −1.44293e7 + 1.48733e7i −1.24182 + 1.28003i
\(671\) 1.15857e6 0.0993378
\(672\) 948259.i 0.0810035i
\(673\) 8.72533e6i 0.742582i 0.928517 + 0.371291i \(0.121085\pi\)
−0.928517 + 0.371291i \(0.878915\pi\)
\(674\) 1.75931e7 1.49174
\(675\) −1.10053e7 + 333556.i −0.929703 + 0.0281779i
\(676\) −186800. −0.0157221
\(677\) 2.64813e6i 0.222058i 0.993817 + 0.111029i \(0.0354147\pi\)
−0.993817 + 0.111029i \(0.964585\pi\)
\(678\) 5.70180e6i 0.476363i
\(679\) −408689. −0.0340188
\(680\) 1.68910e6 1.74107e6i 0.140082 0.144392i
\(681\) 1.50714e7 1.24534
\(682\) 2.53038e7i 2.08317i
\(683\) 2.03196e6i 0.166673i −0.996521 0.0833363i \(-0.973442\pi\)
0.996521 0.0833363i \(-0.0265576\pi\)
\(684\) 1.82712e6 0.149323
\(685\) 1.09787e7 + 1.06510e7i 0.893970 + 0.867285i
\(686\) −1.90653e6 −0.154680
\(687\) 9.95085e6i 0.804393i
\(688\) 1.64757e7i 1.32701i
\(689\) −1.19398e7 −0.958181
\(690\) −2.72336e6 2.64207e6i −0.217762 0.211262i
\(691\) 1.68677e7 1.34388 0.671942 0.740604i \(-0.265460\pi\)
0.671942 + 0.740604i \(0.265460\pi\)
\(692\) 4.09967e6i 0.325449i
\(693\) 110881.i 0.00877051i
\(694\) −2.06044e7 −1.62391
\(695\) 1.69384e7 1.74596e7i 1.33018 1.37111i
\(696\) −978720. −0.0765835
\(697\) 1.23989e7i 0.966719i
\(698\) 2.94705e7i 2.28955i
\(699\) −1.79803e7 −1.39189
\(700\) −648308. + 19649.3i −0.0500077 + 0.00151566i
\(701\) −9.68545e6 −0.744431 −0.372216 0.928146i \(-0.621402\pi\)
−0.372216 + 0.928146i \(0.621402\pi\)
\(702\) 1.65357e7i 1.26642i
\(703\) 7.40057e6i 0.564776i
\(704\) −1.28152e7 −0.974526
\(705\) −1.47489e6 + 1.52027e6i −0.111760 + 0.115198i
\(706\) 1.68698e7 1.27379
\(707\) 224733.i 0.0169090i
\(708\) 2.27063e7i 1.70241i
\(709\) −6.35593e6 −0.474858 −0.237429 0.971405i \(-0.576305\pi\)
−0.237429 + 0.971405i \(0.576305\pi\)
\(710\) −1.85516e7 1.79978e7i −1.38113 1.33991i
\(711\) 1.74856e6 0.129720
\(712\) 1.72386e6i 0.127439i
\(713\) 3.36167e6i 0.247646i
\(714\) 1.45192e6 0.106585
\(715\) 1.24154e7 + 1.20448e7i 0.908230 + 0.881120i
\(716\) 1.47937e7 1.07843
\(717\) 3.86898e6i 0.281060i
\(718\) 1.36197e7i 0.985955i
\(719\) 2.63364e7 1.89991 0.949956 0.312384i \(-0.101128\pi\)
0.949956 + 0.312384i \(0.101128\pi\)
\(720\) 1.29799e6 1.33792e6i 0.0933124 0.0961835i
\(721\) −1.18272e6 −0.0847310
\(722\) 1.74796e7i 1.24792i
\(723\) 2.96572e6i 0.211001i
\(724\) 2.94043e6 0.208480
\(725\) 200191. + 6.60511e6i 0.0141449 + 0.466697i
\(726\) 1.30214e7 0.916887
\(727\) 1.98997e7i 1.39640i −0.715902 0.698200i \(-0.753984\pi\)
0.715902 0.698200i \(-0.246016\pi\)
\(728\) 123755.i 0.00865434i
\(729\) −1.22009e7 −0.850301
\(730\) −3.64215e6 + 3.75421e6i −0.252959 + 0.260742i
\(731\) −2.26416e7 −1.56716
\(732\) 1.05999e6i 0.0731178i
\(733\) 1.47917e7i 1.01685i 0.861106 + 0.508425i \(0.169772\pi\)
−0.861106 + 0.508425i \(0.830228\pi\)
\(734\) 2.14804e7 1.47164
\(735\) −1.10985e7 1.07672e7i −0.757784 0.735164i
\(736\) −4.15618e6 −0.282813
\(737\) 2.44410e7i 1.65748i
\(738\) 1.84270e6i 0.124541i
\(739\) 2.93771e7 1.97878 0.989391 0.145278i \(-0.0464075\pi\)
0.989391 + 0.145278i \(0.0464075\pi\)
\(740\) −3.87835e6 3.76258e6i −0.260356 0.252584i
\(741\) −2.16750e7 −1.45015
\(742\) 1.12314e6i 0.0748902i
\(743\) 8.89487e6i 0.591109i 0.955326 + 0.295555i \(0.0955044\pi\)
−0.955326 + 0.295555i \(0.904496\pi\)
\(744\) −2.94123e6 −0.194803
\(745\) −523082. + 539176.i −0.0345286 + 0.0355910i
\(746\) 1.47247e7 0.968723
\(747\) 2.61374e6i 0.171380i
\(748\) 2.25198e7i 1.47167i
\(749\) −1.20879e6 −0.0787312
\(750\) −1.65533e7 1.51131e7i −1.07456 0.981073i
\(751\) −2.45791e7 −1.59025 −0.795125 0.606445i \(-0.792595\pi\)
−0.795125 + 0.606445i \(0.792595\pi\)
\(752\) 2.58501e6i 0.166693i
\(753\) 8.68838e6i 0.558408i
\(754\) −9.92426e6 −0.635725
\(755\) 7.04630e6 7.26310e6i 0.449877 0.463718i
\(756\) −731281. −0.0465350
\(757\) 2.57709e7i 1.63452i −0.576268 0.817261i \(-0.695492\pi\)
0.576268 0.817261i \(-0.304508\pi\)
\(758\) 1.62490e6i 0.102720i
\(759\) 4.47523e6 0.281975
\(760\) 2.44496e6 + 2.37198e6i 0.153546 + 0.148962i
\(761\) 1.91790e7 1.20051 0.600253 0.799810i \(-0.295067\pi\)
0.600253 + 0.799810i \(0.295067\pi\)
\(762\) 1.99428e7i 1.24422i
\(763\) 942205.i 0.0585915i
\(764\) −2.51813e7 −1.56079
\(765\) 1.83863e6 + 1.78375e6i 0.113590 + 0.110200i
\(766\) 2.41757e7 1.48870
\(767\) 2.92516e7i 1.79540i
\(768\) 2.05339e7i 1.25623i
\(769\) 1.95840e7 1.19422 0.597111 0.802159i \(-0.296315\pi\)
0.597111 + 0.802159i \(0.296315\pi\)
\(770\) 1.13302e6 1.16788e6i 0.0688672 0.0709861i
\(771\) −2.99923e7 −1.81708
\(772\) 4.98221e6i 0.300870i
\(773\) 1.93830e7i 1.16674i −0.812208 0.583368i \(-0.801734\pi\)
0.812208 0.583368i \(-0.198266\pi\)
\(774\) −3.36495e6 −0.201895
\(775\) 601610. + 1.98495e7i 0.0359799 + 1.18712i
\(776\) −1.56723e6 −0.0934286
\(777\) 410900.i 0.0244165i
\(778\) 1.16840e7i 0.692058i
\(779\) 1.74115e7 1.02800
\(780\) 1.10200e7 1.13590e7i 0.648550 0.668504i
\(781\) 3.04854e7 1.78840
\(782\) 6.36371e6i 0.372129i
\(783\) 7.45045e6i 0.434288i
\(784\) −1.88715e7 −1.09652
\(785\) −1.68254e7 1.63232e7i −0.974522 0.945433i
\(786\) −2.32858e7 −1.34442
\(787\) 2.91524e7i 1.67779i 0.544294 + 0.838895i \(0.316798\pi\)
−0.544294 + 0.838895i \(0.683202\pi\)
\(788\) 2.49316e7i 1.43033i
\(789\) 2.53504e6 0.144975
\(790\) −1.84171e7 1.78674e7i −1.04992 1.01858i
\(791\) −324845. −0.0184602
\(792\) 425205.i 0.0240871i
\(793\) 1.36554e6i 0.0771116i
\(794\) 4.98067e6 0.280373
\(795\) −1.27062e7 + 1.30971e7i −0.713013 + 0.734950i
\(796\) −1.76521e7 −0.987445
\(797\) 1.26902e7i 0.707659i −0.935310 0.353829i \(-0.884879\pi\)
0.935310 0.353829i \(-0.115121\pi\)
\(798\) 2.03891e6i 0.113342i
\(799\) −3.55243e6 −0.196860
\(800\) −2.45408e7 + 743796.i −1.35570 + 0.0410893i
\(801\) −1.82046e6 −0.100253
\(802\) 4.27394e7i 2.34635i
\(803\) 6.16921e6i 0.337630i
\(804\) −2.23613e7 −1.21999
\(805\) 150525. 155156.i 0.00818688 0.00843878i
\(806\) −2.98242e7 −1.61708
\(807\) 1.21143e7i 0.654806i
\(808\) 861801.i 0.0464385i
\(809\) 2.51445e7 1.35074 0.675369 0.737480i \(-0.263985\pi\)
0.675369 + 0.737480i \(0.263985\pi\)
\(810\) −2.03815e7 1.97732e7i −1.09150 1.05892i
\(811\) −2.62629e7 −1.40214 −0.701069 0.713094i \(-0.747293\pi\)
−0.701069 + 0.713094i \(0.747293\pi\)
\(812\) 438895.i 0.0233599i
\(813\) 9.83310e6i 0.521752i
\(814\) 1.35561e7 0.717089
\(815\) 3.65957e6 + 3.55033e6i 0.192990 + 0.187230i
\(816\) 2.87891e7 1.51357
\(817\) 3.17953e7i 1.66651i
\(818\) 1.19593e7i 0.624917i
\(819\) −130689. −0.00680817
\(820\) −8.85234e6 + 9.12470e6i −0.459752 + 0.473897i
\(821\) −3.02297e7 −1.56522 −0.782612 0.622510i \(-0.786113\pi\)
−0.782612 + 0.622510i \(0.786113\pi\)
\(822\) 3.51089e7i 1.81233i
\(823\) 5.41689e6i 0.278773i −0.990238 0.139386i \(-0.955487\pi\)
0.990238 0.139386i \(-0.0445130\pi\)
\(824\) −4.53546e6 −0.232704
\(825\) 2.64247e7 800893.i 1.35168 0.0409675i
\(826\) −2.75162e6 −0.140326
\(827\) 1.84505e7i 0.938088i 0.883175 + 0.469044i \(0.155401\pi\)
−0.883175 + 0.469044i \(0.844599\pi\)
\(828\) 444636.i 0.0225387i
\(829\) 2.08062e7 1.05149 0.525747 0.850641i \(-0.323786\pi\)
0.525747 + 0.850641i \(0.323786\pi\)
\(830\) 2.67081e7 2.75298e7i 1.34570 1.38710i
\(831\) 2.18280e7 1.09651
\(832\) 1.51045e7i 0.756482i
\(833\) 2.59340e7i 1.29496i
\(834\) 5.58343e7 2.77962
\(835\) 1.53510e7 + 1.48928e7i 0.761941 + 0.739198i
\(836\) 3.16242e7 1.56496
\(837\) 2.23899e7i 1.10469i
\(838\) 1.11384e7i 0.547915i
\(839\) 3.38768e7 1.66149 0.830744 0.556655i \(-0.187915\pi\)
0.830744 + 0.556655i \(0.187915\pi\)
\(840\) 135751. + 131699.i 0.00663811 + 0.00643997i
\(841\) −1.60396e7 −0.781994
\(842\) 3.43110e7i 1.66784i
\(843\) 3.05838e7i 1.48225i
\(844\) −1.50917e7 −0.729258
\(845\) 256094. 263973.i 0.0123384 0.0127180i
\(846\) −527955. −0.0253613
\(847\) 741860.i 0.0355315i
\(848\) 2.22700e7i 1.06348i
\(849\) 1.38756e7 0.660669
\(850\) −1.13886e6 3.75756e7i −0.0540658 1.78385i
\(851\) 1.80096e6 0.0852471
\(852\) 2.78915e7i 1.31635i
\(853\) 1.79175e7i 0.843150i −0.906793 0.421575i \(-0.861477\pi\)
0.906793 0.421575i \(-0.138523\pi\)
\(854\) 128452. 0.00602695
\(855\) −2.50489e6 + 2.58196e6i −0.117185 + 0.120791i
\(856\) −4.63545e6 −0.216226
\(857\) 730568.i 0.0339788i −0.999856 0.0169894i \(-0.994592\pi\)
0.999856 0.0169894i \(-0.00540816\pi\)
\(858\) 3.97034e7i 1.84124i
\(859\) 2.57647e7 1.19136 0.595679 0.803223i \(-0.296883\pi\)
0.595679 + 0.803223i \(0.296883\pi\)
\(860\) 1.66626e7 + 1.61653e7i 0.768242 + 0.745310i
\(861\) 966737. 0.0444427
\(862\) 2.51235e6i 0.115163i
\(863\) 1.02389e7i 0.467980i −0.972239 0.233990i \(-0.924822\pi\)
0.972239 0.233990i \(-0.0751782\pi\)
\(864\) −2.76816e7 −1.26156
\(865\) 5.79337e6 + 5.62044e6i 0.263264 + 0.255405i
\(866\) −3.17274e6 −0.143761
\(867\) 1.61203e7i 0.728324i
\(868\) 1.31896e6i 0.0594198i
\(869\) 3.02644e7 1.35951
\(870\) −1.05613e7 + 1.08862e7i −0.473063 + 0.487618i
\(871\) 2.88072e7 1.28663
\(872\) 3.61315e6i 0.160914i
\(873\) 1.65505e6i 0.0734981i
\(874\) 8.93646e6 0.395719
\(875\) 861032. 943083.i 0.0380188 0.0416418i
\(876\) −5.64429e6 −0.248513
\(877\) 3.81971e7i 1.67699i 0.544907 + 0.838497i \(0.316565\pi\)
−0.544907 + 0.838497i \(0.683435\pi\)
\(878\) 3.01726e7i 1.32092i
\(879\) −2.15532e6 −0.0940891
\(880\) 2.24659e7 2.31571e7i 0.977951 1.00804i
\(881\) 3.54313e7 1.53797 0.768983 0.639269i \(-0.220763\pi\)
0.768983 + 0.639269i \(0.220763\pi\)
\(882\) 3.85426e6i 0.166828i
\(883\) 1.38612e7i 0.598270i −0.954211 0.299135i \(-0.903302\pi\)
0.954211 0.299135i \(-0.0966982\pi\)
\(884\) 2.65428e7 1.14239
\(885\) −3.20870e7 3.11293e7i −1.37712 1.33601i
\(886\) −1.83271e7 −0.784351
\(887\) 1.95520e7i 0.834417i −0.908811 0.417208i \(-0.863009\pi\)
0.908811 0.417208i \(-0.136991\pi\)
\(888\) 1.57571e6i 0.0670570i
\(889\) −1.13619e6 −0.0482165
\(890\) 1.91744e7 + 1.86021e7i 0.811423 + 0.787202i
\(891\) 3.34925e7 1.41336
\(892\) 4.22971e6i 0.177991i
\(893\) 4.98862e6i 0.209340i
\(894\) −1.72424e6 −0.0721530
\(895\) −2.02814e7 + 2.09054e7i −0.846330 + 0.872370i
\(896\) 417012. 0.0173531
\(897\) 5.27470e6i 0.218885i
\(898\) 5.03055e7i 2.08173i
\(899\) 1.34378e7 0.554536
\(900\) −79572.7 2.62543e6i −0.00327460 0.108042i
\(901\) −3.06043e7 −1.25594
\(902\) 3.18938e7i 1.30524i
\(903\) 1.76536e6i 0.0720467i
\(904\) −1.24571e6 −0.0506986
\(905\) −4.03119e6 + 4.15522e6i −0.163611 + 0.168645i
\(906\) 2.32268e7 0.940088
\(907\) 1.43934e7i 0.580960i 0.956881 + 0.290480i \(0.0938149\pi\)
−0.956881 + 0.290480i \(0.906185\pi\)
\(908\) 2.59177e7i 1.04324i
\(909\) 910091. 0.0365321
\(910\) 1.37652e6 + 1.33543e6i 0.0551034 + 0.0534586i
\(911\) −1.75068e7 −0.698893 −0.349446 0.936956i \(-0.613630\pi\)
−0.349446 + 0.936956i \(0.613630\pi\)
\(912\) 4.04280e7i 1.60952i
\(913\) 4.52392e7i 1.79613i
\(914\) −1.61531e7 −0.639573
\(915\) 1.49790e6 + 1.45319e6i 0.0591467 + 0.0573812i
\(916\) −1.71121e7 −0.673851
\(917\) 1.32665e6i 0.0520993i
\(918\) 4.23846e7i 1.65997i
\(919\) −3.61554e7 −1.41216 −0.706081 0.708131i \(-0.749539\pi\)
−0.706081 + 0.708131i \(0.749539\pi\)
\(920\) 577230. 594990.i 0.0224843 0.0231761i
\(921\) −6.13970e6 −0.238505
\(922\) 3.44439e7i 1.33440i
\(923\) 3.59314e7i 1.38826i
\(924\) 1.75586e6 0.0676566
\(925\) 1.06340e7 322302.i 0.408643 0.0123854i
\(926\) −1.75084e7 −0.670993
\(927\) 4.78959e6i 0.183062i
\(928\) 1.66138e7i 0.633283i
\(929\) 4.18440e6 0.159072 0.0795361 0.996832i \(-0.474656\pi\)
0.0795361 + 0.996832i \(0.474656\pi\)
\(930\) −3.17386e7 + 3.27151e7i −1.20332 + 1.24034i
\(931\) 3.64187e7 1.37705
\(932\) 3.09200e7i 1.16600i
\(933\) 2.13915e7i 0.804520i
\(934\) −1.07188e7 −0.402047
\(935\) 3.18234e7 + 3.08735e7i 1.19047 + 1.15493i
\(936\) −501165. −0.0186978
\(937\) 2.01116e7i 0.748337i −0.927361 0.374168i \(-0.877928\pi\)
0.927361 0.374168i \(-0.122072\pi\)
\(938\) 2.70981e6i 0.100562i
\(939\) 5.04911e6 0.186875
\(940\) 2.61434e6 + 2.53630e6i 0.0965033 + 0.0936228i
\(941\) −2.16937e7 −0.798654 −0.399327 0.916808i \(-0.630756\pi\)
−0.399327 + 0.916808i \(0.630756\pi\)
\(942\) 5.38063e7i 1.97563i
\(943\) 4.23717e6i 0.155166i
\(944\) −5.45598e7 −1.99271
\(945\) 1.00255e6 1.03340e6i 0.0365196 0.0376433i
\(946\) −5.82414e7 −2.11594
\(947\) 3.88024e7i 1.40600i 0.711192 + 0.702998i \(0.248156\pi\)
−0.711192 + 0.702998i \(0.751844\pi\)
\(948\) 2.76893e7i 1.00067i
\(949\) 7.27129e6 0.262087
\(950\) 5.27667e7 1.59928e6i 1.89693 0.0574931i
\(951\) −4.25395e7 −1.52525
\(952\) 317211.i 0.0113437i
\(953\) 4.09847e7i 1.46181i 0.682481 + 0.730903i \(0.260901\pi\)
−0.682481 + 0.730903i \(0.739099\pi\)
\(954\) −4.54834e6 −0.161801
\(955\) 3.45222e7 3.55844e7i 1.22487 1.26256i
\(956\) −6.65334e6 −0.235448
\(957\) 1.78891e7i 0.631406i
\(958\) 7.66278e7i 2.69757i
\(959\) −2.00024e6 −0.0702320
\(960\) −1.65687e7 1.60741e7i −0.580242 0.562922i
\(961\) 1.17539e7 0.410558
\(962\) 1.59778e7i 0.556646i
\(963\) 4.89519e6i 0.170100i
\(964\) 5.10004e6 0.176759
\(965\) 7.04052e6 + 6.83036e6i 0.243381 + 0.236116i
\(966\) 496177. 0.0171078
\(967\) 3.06485e7i 1.05401i −0.849864 0.527003i \(-0.823316\pi\)
0.849864 0.527003i \(-0.176684\pi\)
\(968\) 2.84487e6i 0.0975830i
\(969\) −5.55578e7 −1.90080
\(970\) −1.69119e7 + 1.74323e7i −0.577117 + 0.594873i
\(971\) −4.41972e7 −1.50434 −0.752172 0.658967i \(-0.770994\pi\)
−0.752172 + 0.658967i \(0.770994\pi\)
\(972\) 6.33370e6i 0.215026i
\(973\) 3.18102e6i 0.107717i
\(974\) −4.25508e7 −1.43718
\(975\) 943967. + 3.11453e7i 0.0318013 + 1.04925i
\(976\) 2.54699e6 0.0855859
\(977\) 2.11557e7i 0.709073i 0.935042 + 0.354537i \(0.115361\pi\)
−0.935042 + 0.354537i \(0.884639\pi\)
\(978\) 1.17030e7i 0.391246i
\(979\) −3.15089e7 −1.05069
\(980\) −1.85159e7 + 1.90856e7i −0.615857 + 0.634806i
\(981\) −3.81561e6 −0.126588
\(982\) 4.37160e7i 1.44664i
\(983\) 2.27966e7i 0.752466i −0.926525 0.376233i \(-0.877219\pi\)
0.926525 0.376233i \(-0.122781\pi\)
\(984\) 3.70723e6 0.122057
\(985\) −3.52317e7 3.41801e7i −1.15703 1.12249i
\(986\) −2.54381e7 −0.833282
\(987\) 276982.i 0.00905021i
\(988\) 3.72736e7i 1.21481i
\(989\) −7.73750e6 −0.251542
\(990\) 4.72953e6 + 4.58836e6i 0.153366 + 0.148789i
\(991\) 3.93077e7 1.27143 0.635716 0.771923i \(-0.280705\pi\)
0.635716 + 0.771923i \(0.280705\pi\)
\(992\) 4.99273e7i 1.61086i
\(993\) 3.67945e7i 1.18416i
\(994\) 3.37997e6 0.108504
\(995\) 2.42001e7 2.49447e7i 0.774925 0.798767i
\(996\) 4.13899e7 1.32204
\(997\) 2.02220e7i 0.644298i −0.946689 0.322149i \(-0.895595\pi\)
0.946689 0.322149i \(-0.104405\pi\)
\(998\) 7.17248e7i 2.27952i
\(999\) 1.19950e7 0.380266
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 115.6.b.a.24.45 yes 54
5.2 odd 4 575.6.a.m.1.6 27
5.3 odd 4 575.6.a.l.1.22 27
5.4 even 2 inner 115.6.b.a.24.10 54
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.6.b.a.24.10 54 5.4 even 2 inner
115.6.b.a.24.45 yes 54 1.1 even 1 trivial
575.6.a.l.1.22 27 5.3 odd 4
575.6.a.m.1.6 27 5.2 odd 4