Defining parameters
Level: | \( N \) | \(=\) | \( 115 = 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 115.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 115 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(115, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28 | 28 | 0 |
Cusp forms | 20 | 20 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(115, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
115.2.e.a | $20$ | $0.918$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(-4\) | \(-8\) | \(0\) | \(0\) | \(q-\beta _{3}q^{2}+\beta _{2}q^{3}+\beta _{4}q^{4}+\beta _{18}q^{5}+\cdots\) |