Properties

Label 115.2.e
Level $115$
Weight $2$
Character orbit 115.e
Rep. character $\chi_{115}(22,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $20$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 115.e (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 115 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(115, [\chi])\).

Total New Old
Modular forms 28 28 0
Cusp forms 20 20 0
Eisenstein series 8 8 0

Trace form

\( 20 q - 4 q^{2} - 8 q^{3} - 8 q^{6} + 4 q^{8} - 16 q^{12} + 4 q^{13} + 8 q^{16} + 8 q^{18} - 12 q^{25} - 16 q^{26} + 4 q^{27} - 4 q^{31} + 24 q^{32} - 8 q^{35} - 32 q^{36} - 36 q^{41} + 32 q^{46} - 8 q^{47}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(115, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
115.2.e.a 115.e 115.e $20$ $0.918$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 115.2.e.a \(-4\) \(-8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{3}q^{2}+\beta _{2}q^{3}+\beta _{4}q^{4}+\beta _{18}q^{5}+\cdots\)