Properties

Label 1144.2.a.i.1.3
Level $1144$
Weight $2$
Character 1144.1
Self dual yes
Analytic conductor $9.135$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1144,2,Mod(1,1144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1144.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1144, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1144 = 2^{3} \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1144.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,1,0,-4,0,-1,0,-3,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.13488599123\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.86081\) of defining polynomial
Character \(\chi\) \(=\) 1144.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.86081 q^{3} -2.32340 q^{5} -0.537402 q^{7} +0.462598 q^{9} -1.00000 q^{11} -1.00000 q^{13} -4.32340 q^{15} -8.04502 q^{17} -1.53740 q^{19} -1.00000 q^{21} -1.13919 q^{23} +0.398207 q^{25} -4.72161 q^{27} -0.796415 q^{29} +8.36842 q^{31} -1.86081 q^{33} +1.24860 q^{35} +2.60179 q^{37} -1.86081 q^{39} -3.78600 q^{41} -4.60179 q^{43} -1.07480 q^{45} +5.11982 q^{47} -6.71120 q^{49} -14.9702 q^{51} +0.333816 q^{53} +2.32340 q^{55} -2.86081 q^{57} -9.57201 q^{59} +2.64681 q^{61} -0.248601 q^{63} +2.32340 q^{65} +1.05398 q^{67} -2.11982 q^{69} -3.52699 q^{71} +9.10941 q^{73} +0.740987 q^{75} +0.537402 q^{77} -5.20359 q^{79} -10.1738 q^{81} +5.37883 q^{83} +18.6918 q^{85} -1.48197 q^{87} -13.4224 q^{89} +0.537402 q^{91} +15.5720 q^{93} +3.57201 q^{95} +4.49720 q^{97} -0.462598 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{5} - 4 q^{7} - q^{9} - 3 q^{11} - 3 q^{13} - 5 q^{15} - 5 q^{17} - 7 q^{19} - 3 q^{21} - 9 q^{23} - 2 q^{25} - 3 q^{27} + 4 q^{29} - 2 q^{31} - 9 q^{35} + 11 q^{37} - q^{41} - 17 q^{43} - 8 q^{45}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.86081 1.07434 0.537168 0.843475i \(-0.319494\pi\)
0.537168 + 0.843475i \(0.319494\pi\)
\(4\) 0 0
\(5\) −2.32340 −1.03906 −0.519529 0.854453i \(-0.673893\pi\)
−0.519529 + 0.854453i \(0.673893\pi\)
\(6\) 0 0
\(7\) −0.537402 −0.203119 −0.101559 0.994829i \(-0.532383\pi\)
−0.101559 + 0.994829i \(0.532383\pi\)
\(8\) 0 0
\(9\) 0.462598 0.154199
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −4.32340 −1.11630
\(16\) 0 0
\(17\) −8.04502 −1.95120 −0.975601 0.219549i \(-0.929541\pi\)
−0.975601 + 0.219549i \(0.929541\pi\)
\(18\) 0 0
\(19\) −1.53740 −0.352704 −0.176352 0.984327i \(-0.556430\pi\)
−0.176352 + 0.984327i \(0.556430\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −1.13919 −0.237538 −0.118769 0.992922i \(-0.537895\pi\)
−0.118769 + 0.992922i \(0.537895\pi\)
\(24\) 0 0
\(25\) 0.398207 0.0796415
\(26\) 0 0
\(27\) −4.72161 −0.908675
\(28\) 0 0
\(29\) −0.796415 −0.147891 −0.0739453 0.997262i \(-0.523559\pi\)
−0.0739453 + 0.997262i \(0.523559\pi\)
\(30\) 0 0
\(31\) 8.36842 1.50301 0.751506 0.659726i \(-0.229328\pi\)
0.751506 + 0.659726i \(0.229328\pi\)
\(32\) 0 0
\(33\) −1.86081 −0.323925
\(34\) 0 0
\(35\) 1.24860 0.211052
\(36\) 0 0
\(37\) 2.60179 0.427732 0.213866 0.976863i \(-0.431394\pi\)
0.213866 + 0.976863i \(0.431394\pi\)
\(38\) 0 0
\(39\) −1.86081 −0.297967
\(40\) 0 0
\(41\) −3.78600 −0.591274 −0.295637 0.955300i \(-0.595532\pi\)
−0.295637 + 0.955300i \(0.595532\pi\)
\(42\) 0 0
\(43\) −4.60179 −0.701767 −0.350883 0.936419i \(-0.614119\pi\)
−0.350883 + 0.936419i \(0.614119\pi\)
\(44\) 0 0
\(45\) −1.07480 −0.160222
\(46\) 0 0
\(47\) 5.11982 0.746802 0.373401 0.927670i \(-0.378191\pi\)
0.373401 + 0.927670i \(0.378191\pi\)
\(48\) 0 0
\(49\) −6.71120 −0.958743
\(50\) 0 0
\(51\) −14.9702 −2.09625
\(52\) 0 0
\(53\) 0.333816 0.0458532 0.0229266 0.999737i \(-0.492702\pi\)
0.0229266 + 0.999737i \(0.492702\pi\)
\(54\) 0 0
\(55\) 2.32340 0.313288
\(56\) 0 0
\(57\) −2.86081 −0.378923
\(58\) 0 0
\(59\) −9.57201 −1.24617 −0.623084 0.782155i \(-0.714121\pi\)
−0.623084 + 0.782155i \(0.714121\pi\)
\(60\) 0 0
\(61\) 2.64681 0.338889 0.169445 0.985540i \(-0.445803\pi\)
0.169445 + 0.985540i \(0.445803\pi\)
\(62\) 0 0
\(63\) −0.248601 −0.0313208
\(64\) 0 0
\(65\) 2.32340 0.288183
\(66\) 0 0
\(67\) 1.05398 0.128764 0.0643820 0.997925i \(-0.479492\pi\)
0.0643820 + 0.997925i \(0.479492\pi\)
\(68\) 0 0
\(69\) −2.11982 −0.255196
\(70\) 0 0
\(71\) −3.52699 −0.418577 −0.209288 0.977854i \(-0.567115\pi\)
−0.209288 + 0.977854i \(0.567115\pi\)
\(72\) 0 0
\(73\) 9.10941 1.06618 0.533088 0.846060i \(-0.321032\pi\)
0.533088 + 0.846060i \(0.321032\pi\)
\(74\) 0 0
\(75\) 0.740987 0.0855618
\(76\) 0 0
\(77\) 0.537402 0.0612426
\(78\) 0 0
\(79\) −5.20359 −0.585449 −0.292725 0.956197i \(-0.594562\pi\)
−0.292725 + 0.956197i \(0.594562\pi\)
\(80\) 0 0
\(81\) −10.1738 −1.13042
\(82\) 0 0
\(83\) 5.37883 0.590404 0.295202 0.955435i \(-0.404613\pi\)
0.295202 + 0.955435i \(0.404613\pi\)
\(84\) 0 0
\(85\) 18.6918 2.02741
\(86\) 0 0
\(87\) −1.48197 −0.158884
\(88\) 0 0
\(89\) −13.4224 −1.42277 −0.711386 0.702802i \(-0.751932\pi\)
−0.711386 + 0.702802i \(0.751932\pi\)
\(90\) 0 0
\(91\) 0.537402 0.0563350
\(92\) 0 0
\(93\) 15.5720 1.61474
\(94\) 0 0
\(95\) 3.57201 0.366480
\(96\) 0 0
\(97\) 4.49720 0.456622 0.228311 0.973588i \(-0.426680\pi\)
0.228311 + 0.973588i \(0.426680\pi\)
\(98\) 0 0
\(99\) −0.462598 −0.0464929
\(100\) 0 0
\(101\) 5.57201 0.554435 0.277218 0.960807i \(-0.410588\pi\)
0.277218 + 0.960807i \(0.410588\pi\)
\(102\) 0 0
\(103\) −10.9508 −1.07902 −0.539509 0.841980i \(-0.681390\pi\)
−0.539509 + 0.841980i \(0.681390\pi\)
\(104\) 0 0
\(105\) 2.32340 0.226741
\(106\) 0 0
\(107\) −3.44322 −0.332869 −0.166434 0.986053i \(-0.553225\pi\)
−0.166434 + 0.986053i \(0.553225\pi\)
\(108\) 0 0
\(109\) 13.0256 1.24763 0.623815 0.781572i \(-0.285582\pi\)
0.623815 + 0.781572i \(0.285582\pi\)
\(110\) 0 0
\(111\) 4.84143 0.459528
\(112\) 0 0
\(113\) 15.4778 1.45603 0.728016 0.685560i \(-0.240443\pi\)
0.728016 + 0.685560i \(0.240443\pi\)
\(114\) 0 0
\(115\) 2.64681 0.246816
\(116\) 0 0
\(117\) −0.462598 −0.0427672
\(118\) 0 0
\(119\) 4.32340 0.396326
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −7.04502 −0.635228
\(124\) 0 0
\(125\) 10.6918 0.956306
\(126\) 0 0
\(127\) −21.2936 −1.88950 −0.944751 0.327787i \(-0.893697\pi\)
−0.944751 + 0.327787i \(0.893697\pi\)
\(128\) 0 0
\(129\) −8.56304 −0.753934
\(130\) 0 0
\(131\) 8.82061 0.770660 0.385330 0.922779i \(-0.374088\pi\)
0.385330 + 0.922779i \(0.374088\pi\)
\(132\) 0 0
\(133\) 0.826202 0.0716408
\(134\) 0 0
\(135\) 10.9702 0.944166
\(136\) 0 0
\(137\) 14.3684 1.22758 0.613788 0.789471i \(-0.289645\pi\)
0.613788 + 0.789471i \(0.289645\pi\)
\(138\) 0 0
\(139\) −10.9910 −0.932248 −0.466124 0.884720i \(-0.654350\pi\)
−0.466124 + 0.884720i \(0.654350\pi\)
\(140\) 0 0
\(141\) 9.52699 0.802317
\(142\) 0 0
\(143\) 1.00000 0.0836242
\(144\) 0 0
\(145\) 1.85039 0.153667
\(146\) 0 0
\(147\) −12.4882 −1.03001
\(148\) 0 0
\(149\) −20.3040 −1.66337 −0.831685 0.555247i \(-0.812624\pi\)
−0.831685 + 0.555247i \(0.812624\pi\)
\(150\) 0 0
\(151\) 0.751399 0.0611480 0.0305740 0.999533i \(-0.490266\pi\)
0.0305740 + 0.999533i \(0.490266\pi\)
\(152\) 0 0
\(153\) −3.72161 −0.300874
\(154\) 0 0
\(155\) −19.4432 −1.56172
\(156\) 0 0
\(157\) 19.8969 1.58794 0.793971 0.607955i \(-0.208010\pi\)
0.793971 + 0.607955i \(0.208010\pi\)
\(158\) 0 0
\(159\) 0.621168 0.0492618
\(160\) 0 0
\(161\) 0.612205 0.0482485
\(162\) 0 0
\(163\) 12.5180 0.980488 0.490244 0.871585i \(-0.336908\pi\)
0.490244 + 0.871585i \(0.336908\pi\)
\(164\) 0 0
\(165\) 4.32340 0.336577
\(166\) 0 0
\(167\) −8.98062 −0.694942 −0.347471 0.937691i \(-0.612959\pi\)
−0.347471 + 0.937691i \(0.612959\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −0.711200 −0.0543868
\(172\) 0 0
\(173\) −10.2188 −0.776922 −0.388461 0.921465i \(-0.626993\pi\)
−0.388461 + 0.921465i \(0.626993\pi\)
\(174\) 0 0
\(175\) −0.213997 −0.0161767
\(176\) 0 0
\(177\) −17.8116 −1.33881
\(178\) 0 0
\(179\) −19.8954 −1.48705 −0.743526 0.668707i \(-0.766848\pi\)
−0.743526 + 0.668707i \(0.766848\pi\)
\(180\) 0 0
\(181\) 8.89059 0.660833 0.330416 0.943835i \(-0.392811\pi\)
0.330416 + 0.943835i \(0.392811\pi\)
\(182\) 0 0
\(183\) 4.92520 0.364081
\(184\) 0 0
\(185\) −6.04502 −0.444438
\(186\) 0 0
\(187\) 8.04502 0.588310
\(188\) 0 0
\(189\) 2.53740 0.184569
\(190\) 0 0
\(191\) −5.77704 −0.418012 −0.209006 0.977914i \(-0.567023\pi\)
−0.209006 + 0.977914i \(0.567023\pi\)
\(192\) 0 0
\(193\) −4.95084 −0.356369 −0.178185 0.983997i \(-0.557022\pi\)
−0.178185 + 0.983997i \(0.557022\pi\)
\(194\) 0 0
\(195\) 4.32340 0.309605
\(196\) 0 0
\(197\) 0.935609 0.0666594 0.0333297 0.999444i \(-0.489389\pi\)
0.0333297 + 0.999444i \(0.489389\pi\)
\(198\) 0 0
\(199\) 22.1246 1.56837 0.784187 0.620525i \(-0.213080\pi\)
0.784187 + 0.620525i \(0.213080\pi\)
\(200\) 0 0
\(201\) 1.96125 0.138336
\(202\) 0 0
\(203\) 0.427995 0.0300393
\(204\) 0 0
\(205\) 8.79641 0.614368
\(206\) 0 0
\(207\) −0.526989 −0.0366283
\(208\) 0 0
\(209\) 1.53740 0.106344
\(210\) 0 0
\(211\) 2.60179 0.179115 0.0895574 0.995982i \(-0.471455\pi\)
0.0895574 + 0.995982i \(0.471455\pi\)
\(212\) 0 0
\(213\) −6.56304 −0.449692
\(214\) 0 0
\(215\) 10.6918 0.729176
\(216\) 0 0
\(217\) −4.49720 −0.305290
\(218\) 0 0
\(219\) 16.9508 1.14543
\(220\) 0 0
\(221\) 8.04502 0.541166
\(222\) 0 0
\(223\) −12.1350 −0.812623 −0.406311 0.913735i \(-0.633185\pi\)
−0.406311 + 0.913735i \(0.633185\pi\)
\(224\) 0 0
\(225\) 0.184210 0.0122807
\(226\) 0 0
\(227\) −1.53740 −0.102041 −0.0510205 0.998698i \(-0.516247\pi\)
−0.0510205 + 0.998698i \(0.516247\pi\)
\(228\) 0 0
\(229\) 5.15857 0.340888 0.170444 0.985367i \(-0.445480\pi\)
0.170444 + 0.985367i \(0.445480\pi\)
\(230\) 0 0
\(231\) 1.00000 0.0657952
\(232\) 0 0
\(233\) −20.9702 −1.37380 −0.686902 0.726750i \(-0.741030\pi\)
−0.686902 + 0.726750i \(0.741030\pi\)
\(234\) 0 0
\(235\) −11.8954 −0.775971
\(236\) 0 0
\(237\) −9.68286 −0.628969
\(238\) 0 0
\(239\) −0.806827 −0.0521893 −0.0260947 0.999659i \(-0.508307\pi\)
−0.0260947 + 0.999659i \(0.508307\pi\)
\(240\) 0 0
\(241\) −0.770774 −0.0496499 −0.0248250 0.999692i \(-0.507903\pi\)
−0.0248250 + 0.999692i \(0.507903\pi\)
\(242\) 0 0
\(243\) −4.76663 −0.305779
\(244\) 0 0
\(245\) 15.5928 0.996189
\(246\) 0 0
\(247\) 1.53740 0.0978225
\(248\) 0 0
\(249\) 10.0090 0.634292
\(250\) 0 0
\(251\) 26.8608 1.69544 0.847720 0.530445i \(-0.177975\pi\)
0.847720 + 0.530445i \(0.177975\pi\)
\(252\) 0 0
\(253\) 1.13919 0.0716205
\(254\) 0 0
\(255\) 34.7819 2.17812
\(256\) 0 0
\(257\) −0.168981 −0.0105408 −0.00527038 0.999986i \(-0.501678\pi\)
−0.00527038 + 0.999986i \(0.501678\pi\)
\(258\) 0 0
\(259\) −1.39821 −0.0868804
\(260\) 0 0
\(261\) −0.368420 −0.0228046
\(262\) 0 0
\(263\) −28.4376 −1.75354 −0.876770 0.480911i \(-0.840306\pi\)
−0.876770 + 0.480911i \(0.840306\pi\)
\(264\) 0 0
\(265\) −0.775591 −0.0476441
\(266\) 0 0
\(267\) −24.9765 −1.52854
\(268\) 0 0
\(269\) −19.5076 −1.18940 −0.594700 0.803948i \(-0.702729\pi\)
−0.594700 + 0.803948i \(0.702729\pi\)
\(270\) 0 0
\(271\) −19.2832 −1.17137 −0.585686 0.810538i \(-0.699175\pi\)
−0.585686 + 0.810538i \(0.699175\pi\)
\(272\) 0 0
\(273\) 1.00000 0.0605228
\(274\) 0 0
\(275\) −0.398207 −0.0240128
\(276\) 0 0
\(277\) −21.2549 −1.27708 −0.638541 0.769588i \(-0.720462\pi\)
−0.638541 + 0.769588i \(0.720462\pi\)
\(278\) 0 0
\(279\) 3.87122 0.231764
\(280\) 0 0
\(281\) 4.55263 0.271587 0.135794 0.990737i \(-0.456642\pi\)
0.135794 + 0.990737i \(0.456642\pi\)
\(282\) 0 0
\(283\) 27.9404 1.66089 0.830443 0.557104i \(-0.188087\pi\)
0.830443 + 0.557104i \(0.188087\pi\)
\(284\) 0 0
\(285\) 6.64681 0.393723
\(286\) 0 0
\(287\) 2.03460 0.120099
\(288\) 0 0
\(289\) 47.7223 2.80719
\(290\) 0 0
\(291\) 8.36842 0.490565
\(292\) 0 0
\(293\) 2.75140 0.160738 0.0803692 0.996765i \(-0.474390\pi\)
0.0803692 + 0.996765i \(0.474390\pi\)
\(294\) 0 0
\(295\) 22.2396 1.29484
\(296\) 0 0
\(297\) 4.72161 0.273976
\(298\) 0 0
\(299\) 1.13919 0.0658813
\(300\) 0 0
\(301\) 2.47301 0.142542
\(302\) 0 0
\(303\) 10.3684 0.595650
\(304\) 0 0
\(305\) −6.14961 −0.352125
\(306\) 0 0
\(307\) −10.7964 −0.616184 −0.308092 0.951357i \(-0.599690\pi\)
−0.308092 + 0.951357i \(0.599690\pi\)
\(308\) 0 0
\(309\) −20.3774 −1.15923
\(310\) 0 0
\(311\) 14.7714 0.837612 0.418806 0.908076i \(-0.362449\pi\)
0.418806 + 0.908076i \(0.362449\pi\)
\(312\) 0 0
\(313\) 26.3282 1.48816 0.744080 0.668091i \(-0.232888\pi\)
0.744080 + 0.668091i \(0.232888\pi\)
\(314\) 0 0
\(315\) 0.577601 0.0325441
\(316\) 0 0
\(317\) 26.6081 1.49446 0.747229 0.664567i \(-0.231384\pi\)
0.747229 + 0.664567i \(0.231384\pi\)
\(318\) 0 0
\(319\) 0.796415 0.0445907
\(320\) 0 0
\(321\) −6.40717 −0.357613
\(322\) 0 0
\(323\) 12.3684 0.688197
\(324\) 0 0
\(325\) −0.398207 −0.0220886
\(326\) 0 0
\(327\) 24.2382 1.34037
\(328\) 0 0
\(329\) −2.75140 −0.151690
\(330\) 0 0
\(331\) −6.25756 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(332\) 0 0
\(333\) 1.20359 0.0659561
\(334\) 0 0
\(335\) −2.44882 −0.133793
\(336\) 0 0
\(337\) −21.3595 −1.16352 −0.581762 0.813359i \(-0.697636\pi\)
−0.581762 + 0.813359i \(0.697636\pi\)
\(338\) 0 0
\(339\) 28.8012 1.56427
\(340\) 0 0
\(341\) −8.36842 −0.453175
\(342\) 0 0
\(343\) 7.36842 0.397857
\(344\) 0 0
\(345\) 4.92520 0.265164
\(346\) 0 0
\(347\) 5.78745 0.310687 0.155343 0.987861i \(-0.450352\pi\)
0.155343 + 0.987861i \(0.450352\pi\)
\(348\) 0 0
\(349\) 21.3130 1.14086 0.570429 0.821347i \(-0.306777\pi\)
0.570429 + 0.821347i \(0.306777\pi\)
\(350\) 0 0
\(351\) 4.72161 0.252021
\(352\) 0 0
\(353\) −9.22441 −0.490966 −0.245483 0.969401i \(-0.578947\pi\)
−0.245483 + 0.969401i \(0.578947\pi\)
\(354\) 0 0
\(355\) 8.19462 0.434925
\(356\) 0 0
\(357\) 8.04502 0.425787
\(358\) 0 0
\(359\) 28.2653 1.49178 0.745892 0.666067i \(-0.232023\pi\)
0.745892 + 0.666067i \(0.232023\pi\)
\(360\) 0 0
\(361\) −16.6364 −0.875600
\(362\) 0 0
\(363\) 1.86081 0.0976670
\(364\) 0 0
\(365\) −21.1648 −1.10782
\(366\) 0 0
\(367\) 15.2382 0.795427 0.397713 0.917510i \(-0.369804\pi\)
0.397713 + 0.917510i \(0.369804\pi\)
\(368\) 0 0
\(369\) −1.75140 −0.0911742
\(370\) 0 0
\(371\) −0.179393 −0.00931365
\(372\) 0 0
\(373\) 2.12878 0.110224 0.0551121 0.998480i \(-0.482448\pi\)
0.0551121 + 0.998480i \(0.482448\pi\)
\(374\) 0 0
\(375\) 19.8954 1.02739
\(376\) 0 0
\(377\) 0.796415 0.0410175
\(378\) 0 0
\(379\) −25.6025 −1.31511 −0.657555 0.753406i \(-0.728409\pi\)
−0.657555 + 0.753406i \(0.728409\pi\)
\(380\) 0 0
\(381\) −39.6233 −2.02996
\(382\) 0 0
\(383\) −14.1142 −0.721203 −0.360602 0.932720i \(-0.617429\pi\)
−0.360602 + 0.932720i \(0.617429\pi\)
\(384\) 0 0
\(385\) −1.24860 −0.0636346
\(386\) 0 0
\(387\) −2.12878 −0.108212
\(388\) 0 0
\(389\) −3.59698 −0.182374 −0.0911870 0.995834i \(-0.529066\pi\)
−0.0911870 + 0.995834i \(0.529066\pi\)
\(390\) 0 0
\(391\) 9.16484 0.463486
\(392\) 0 0
\(393\) 16.4134 0.827948
\(394\) 0 0
\(395\) 12.0900 0.608316
\(396\) 0 0
\(397\) 25.9404 1.30191 0.650956 0.759115i \(-0.274368\pi\)
0.650956 + 0.759115i \(0.274368\pi\)
\(398\) 0 0
\(399\) 1.53740 0.0769663
\(400\) 0 0
\(401\) −8.11086 −0.405037 −0.202518 0.979278i \(-0.564913\pi\)
−0.202518 + 0.979278i \(0.564913\pi\)
\(402\) 0 0
\(403\) −8.36842 −0.416861
\(404\) 0 0
\(405\) 23.6378 1.17457
\(406\) 0 0
\(407\) −2.60179 −0.128966
\(408\) 0 0
\(409\) −34.6468 −1.71317 −0.856587 0.516002i \(-0.827420\pi\)
−0.856587 + 0.516002i \(0.827420\pi\)
\(410\) 0 0
\(411\) 26.7368 1.31883
\(412\) 0 0
\(413\) 5.14401 0.253120
\(414\) 0 0
\(415\) −12.4972 −0.613464
\(416\) 0 0
\(417\) −20.4522 −1.00155
\(418\) 0 0
\(419\) −4.38780 −0.214358 −0.107179 0.994240i \(-0.534182\pi\)
−0.107179 + 0.994240i \(0.534182\pi\)
\(420\) 0 0
\(421\) 3.09899 0.151036 0.0755179 0.997144i \(-0.475939\pi\)
0.0755179 + 0.997144i \(0.475939\pi\)
\(422\) 0 0
\(423\) 2.36842 0.115157
\(424\) 0 0
\(425\) −3.20359 −0.155397
\(426\) 0 0
\(427\) −1.42240 −0.0688347
\(428\) 0 0
\(429\) 1.86081 0.0898406
\(430\) 0 0
\(431\) −19.1246 −0.921201 −0.460601 0.887607i \(-0.652366\pi\)
−0.460601 + 0.887607i \(0.652366\pi\)
\(432\) 0 0
\(433\) −17.1544 −0.824389 −0.412194 0.911096i \(-0.635238\pi\)
−0.412194 + 0.911096i \(0.635238\pi\)
\(434\) 0 0
\(435\) 3.44322 0.165090
\(436\) 0 0
\(437\) 1.75140 0.0837808
\(438\) 0 0
\(439\) −29.8325 −1.42383 −0.711913 0.702268i \(-0.752171\pi\)
−0.711913 + 0.702268i \(0.752171\pi\)
\(440\) 0 0
\(441\) −3.10459 −0.147838
\(442\) 0 0
\(443\) 7.61220 0.361667 0.180833 0.983514i \(-0.442121\pi\)
0.180833 + 0.983514i \(0.442121\pi\)
\(444\) 0 0
\(445\) 31.1857 1.47834
\(446\) 0 0
\(447\) −37.7819 −1.78702
\(448\) 0 0
\(449\) −13.8116 −0.651812 −0.325906 0.945402i \(-0.605669\pi\)
−0.325906 + 0.945402i \(0.605669\pi\)
\(450\) 0 0
\(451\) 3.78600 0.178276
\(452\) 0 0
\(453\) 1.39821 0.0656935
\(454\) 0 0
\(455\) −1.24860 −0.0585353
\(456\) 0 0
\(457\) 13.7979 0.645437 0.322718 0.946495i \(-0.395403\pi\)
0.322718 + 0.946495i \(0.395403\pi\)
\(458\) 0 0
\(459\) 37.9854 1.77301
\(460\) 0 0
\(461\) −26.4868 −1.23361 −0.616806 0.787115i \(-0.711574\pi\)
−0.616806 + 0.787115i \(0.711574\pi\)
\(462\) 0 0
\(463\) −9.79082 −0.455018 −0.227509 0.973776i \(-0.573058\pi\)
−0.227509 + 0.973776i \(0.573058\pi\)
\(464\) 0 0
\(465\) −36.1801 −1.67781
\(466\) 0 0
\(467\) −42.3297 −1.95878 −0.979392 0.201970i \(-0.935266\pi\)
−0.979392 + 0.201970i \(0.935266\pi\)
\(468\) 0 0
\(469\) −0.566410 −0.0261544
\(470\) 0 0
\(471\) 37.0242 1.70598
\(472\) 0 0
\(473\) 4.60179 0.211591
\(474\) 0 0
\(475\) −0.612205 −0.0280899
\(476\) 0 0
\(477\) 0.154423 0.00707054
\(478\) 0 0
\(479\) −22.0450 −1.00726 −0.503631 0.863919i \(-0.668003\pi\)
−0.503631 + 0.863919i \(0.668003\pi\)
\(480\) 0 0
\(481\) −2.60179 −0.118632
\(482\) 0 0
\(483\) 1.13919 0.0518351
\(484\) 0 0
\(485\) −10.4488 −0.474456
\(486\) 0 0
\(487\) −15.6829 −0.710658 −0.355329 0.934741i \(-0.615631\pi\)
−0.355329 + 0.934741i \(0.615631\pi\)
\(488\) 0 0
\(489\) 23.2936 1.05337
\(490\) 0 0
\(491\) 3.46742 0.156482 0.0782411 0.996934i \(-0.475070\pi\)
0.0782411 + 0.996934i \(0.475070\pi\)
\(492\) 0 0
\(493\) 6.40717 0.288564
\(494\) 0 0
\(495\) 1.07480 0.0483088
\(496\) 0 0
\(497\) 1.89541 0.0850207
\(498\) 0 0
\(499\) 13.6620 0.611597 0.305798 0.952096i \(-0.401077\pi\)
0.305798 + 0.952096i \(0.401077\pi\)
\(500\) 0 0
\(501\) −16.7112 −0.746601
\(502\) 0 0
\(503\) −9.23404 −0.411726 −0.205863 0.978581i \(-0.566000\pi\)
−0.205863 + 0.978581i \(0.566000\pi\)
\(504\) 0 0
\(505\) −12.9460 −0.576090
\(506\) 0 0
\(507\) 1.86081 0.0826413
\(508\) 0 0
\(509\) −29.1261 −1.29099 −0.645496 0.763764i \(-0.723349\pi\)
−0.645496 + 0.763764i \(0.723349\pi\)
\(510\) 0 0
\(511\) −4.89541 −0.216560
\(512\) 0 0
\(513\) 7.25901 0.320493
\(514\) 0 0
\(515\) 25.4432 1.12116
\(516\) 0 0
\(517\) −5.11982 −0.225169
\(518\) 0 0
\(519\) −19.0152 −0.834676
\(520\) 0 0
\(521\) −2.35734 −0.103277 −0.0516384 0.998666i \(-0.516444\pi\)
−0.0516384 + 0.998666i \(0.516444\pi\)
\(522\) 0 0
\(523\) 44.4376 1.94312 0.971561 0.236790i \(-0.0760953\pi\)
0.971561 + 0.236790i \(0.0760953\pi\)
\(524\) 0 0
\(525\) −0.398207 −0.0173792
\(526\) 0 0
\(527\) −67.3241 −2.93268
\(528\) 0 0
\(529\) −21.7022 −0.943576
\(530\) 0 0
\(531\) −4.42799 −0.192159
\(532\) 0 0
\(533\) 3.78600 0.163990
\(534\) 0 0
\(535\) 8.00000 0.345870
\(536\) 0 0
\(537\) −37.0215 −1.59760
\(538\) 0 0
\(539\) 6.71120 0.289072
\(540\) 0 0
\(541\) −28.0290 −1.20506 −0.602531 0.798096i \(-0.705841\pi\)
−0.602531 + 0.798096i \(0.705841\pi\)
\(542\) 0 0
\(543\) 16.5437 0.709957
\(544\) 0 0
\(545\) −30.2638 −1.29636
\(546\) 0 0
\(547\) −39.5783 −1.69224 −0.846122 0.532989i \(-0.821069\pi\)
−0.846122 + 0.532989i \(0.821069\pi\)
\(548\) 0 0
\(549\) 1.22441 0.0522565
\(550\) 0 0
\(551\) 1.22441 0.0521616
\(552\) 0 0
\(553\) 2.79641 0.118916
\(554\) 0 0
\(555\) −11.2486 −0.477477
\(556\) 0 0
\(557\) 35.1246 1.48828 0.744139 0.668024i \(-0.232860\pi\)
0.744139 + 0.668024i \(0.232860\pi\)
\(558\) 0 0
\(559\) 4.60179 0.194635
\(560\) 0 0
\(561\) 14.9702 0.632043
\(562\) 0 0
\(563\) 13.3595 0.563034 0.281517 0.959556i \(-0.409162\pi\)
0.281517 + 0.959556i \(0.409162\pi\)
\(564\) 0 0
\(565\) −35.9612 −1.51290
\(566\) 0 0
\(567\) 5.46742 0.229610
\(568\) 0 0
\(569\) 8.15587 0.341912 0.170956 0.985279i \(-0.445314\pi\)
0.170956 + 0.985279i \(0.445314\pi\)
\(570\) 0 0
\(571\) −17.3082 −0.724325 −0.362162 0.932115i \(-0.617961\pi\)
−0.362162 + 0.932115i \(0.617961\pi\)
\(572\) 0 0
\(573\) −10.7499 −0.449086
\(574\) 0 0
\(575\) −0.453636 −0.0189179
\(576\) 0 0
\(577\) −17.3836 −0.723691 −0.361845 0.932238i \(-0.617853\pi\)
−0.361845 + 0.932238i \(0.617853\pi\)
\(578\) 0 0
\(579\) −9.21255 −0.382860
\(580\) 0 0
\(581\) −2.89059 −0.119922
\(582\) 0 0
\(583\) −0.333816 −0.0138253
\(584\) 0 0
\(585\) 1.07480 0.0444376
\(586\) 0 0
\(587\) 6.23674 0.257418 0.128709 0.991682i \(-0.458917\pi\)
0.128709 + 0.991682i \(0.458917\pi\)
\(588\) 0 0
\(589\) −12.8656 −0.530119
\(590\) 0 0
\(591\) 1.74099 0.0716146
\(592\) 0 0
\(593\) −43.2805 −1.77732 −0.888659 0.458569i \(-0.848362\pi\)
−0.888659 + 0.458569i \(0.848362\pi\)
\(594\) 0 0
\(595\) −10.0450 −0.411806
\(596\) 0 0
\(597\) 41.1697 1.68496
\(598\) 0 0
\(599\) 6.31299 0.257942 0.128971 0.991648i \(-0.458833\pi\)
0.128971 + 0.991648i \(0.458833\pi\)
\(600\) 0 0
\(601\) 9.55745 0.389856 0.194928 0.980818i \(-0.437553\pi\)
0.194928 + 0.980818i \(0.437553\pi\)
\(602\) 0 0
\(603\) 0.487569 0.0198553
\(604\) 0 0
\(605\) −2.32340 −0.0944598
\(606\) 0 0
\(607\) −27.7521 −1.12642 −0.563211 0.826313i \(-0.690434\pi\)
−0.563211 + 0.826313i \(0.690434\pi\)
\(608\) 0 0
\(609\) 0.796415 0.0322724
\(610\) 0 0
\(611\) −5.11982 −0.207126
\(612\) 0 0
\(613\) 20.4626 0.826477 0.413238 0.910623i \(-0.364398\pi\)
0.413238 + 0.910623i \(0.364398\pi\)
\(614\) 0 0
\(615\) 16.3684 0.660038
\(616\) 0 0
\(617\) −32.1496 −1.29429 −0.647147 0.762365i \(-0.724038\pi\)
−0.647147 + 0.762365i \(0.724038\pi\)
\(618\) 0 0
\(619\) −19.3144 −0.776313 −0.388156 0.921593i \(-0.626888\pi\)
−0.388156 + 0.921593i \(0.626888\pi\)
\(620\) 0 0
\(621\) 5.37883 0.215845
\(622\) 0 0
\(623\) 7.21322 0.288991
\(624\) 0 0
\(625\) −26.8325 −1.07330
\(626\) 0 0
\(627\) 2.86081 0.114250
\(628\) 0 0
\(629\) −20.9315 −0.834592
\(630\) 0 0
\(631\) −26.0963 −1.03888 −0.519439 0.854508i \(-0.673859\pi\)
−0.519439 + 0.854508i \(0.673859\pi\)
\(632\) 0 0
\(633\) 4.84143 0.192430
\(634\) 0 0
\(635\) 49.4737 1.96330
\(636\) 0 0
\(637\) 6.71120 0.265907
\(638\) 0 0
\(639\) −1.63158 −0.0645443
\(640\) 0 0
\(641\) −33.1876 −1.31083 −0.655415 0.755269i \(-0.727506\pi\)
−0.655415 + 0.755269i \(0.727506\pi\)
\(642\) 0 0
\(643\) 19.6620 0.775395 0.387698 0.921787i \(-0.373271\pi\)
0.387698 + 0.921787i \(0.373271\pi\)
\(644\) 0 0
\(645\) 19.8954 0.783381
\(646\) 0 0
\(647\) −18.1455 −0.713372 −0.356686 0.934224i \(-0.616093\pi\)
−0.356686 + 0.934224i \(0.616093\pi\)
\(648\) 0 0
\(649\) 9.57201 0.375734
\(650\) 0 0
\(651\) −8.36842 −0.327984
\(652\) 0 0
\(653\) 23.4737 0.918596 0.459298 0.888282i \(-0.348101\pi\)
0.459298 + 0.888282i \(0.348101\pi\)
\(654\) 0 0
\(655\) −20.4938 −0.800760
\(656\) 0 0
\(657\) 4.21400 0.164404
\(658\) 0 0
\(659\) −28.3684 −1.10508 −0.552538 0.833487i \(-0.686341\pi\)
−0.552538 + 0.833487i \(0.686341\pi\)
\(660\) 0 0
\(661\) 21.6412 0.841746 0.420873 0.907120i \(-0.361724\pi\)
0.420873 + 0.907120i \(0.361724\pi\)
\(662\) 0 0
\(663\) 14.9702 0.581395
\(664\) 0 0
\(665\) −1.91960 −0.0744389
\(666\) 0 0
\(667\) 0.907271 0.0351297
\(668\) 0 0
\(669\) −22.5810 −0.873031
\(670\) 0 0
\(671\) −2.64681 −0.102179
\(672\) 0 0
\(673\) −15.4370 −0.595051 −0.297525 0.954714i \(-0.596161\pi\)
−0.297525 + 0.954714i \(0.596161\pi\)
\(674\) 0 0
\(675\) −1.88018 −0.0723682
\(676\) 0 0
\(677\) −21.9821 −0.844840 −0.422420 0.906400i \(-0.638819\pi\)
−0.422420 + 0.906400i \(0.638819\pi\)
\(678\) 0 0
\(679\) −2.41680 −0.0927484
\(680\) 0 0
\(681\) −2.86081 −0.109626
\(682\) 0 0
\(683\) 28.0692 1.07404 0.537019 0.843570i \(-0.319550\pi\)
0.537019 + 0.843570i \(0.319550\pi\)
\(684\) 0 0
\(685\) −33.3836 −1.27552
\(686\) 0 0
\(687\) 9.59910 0.366228
\(688\) 0 0
\(689\) −0.333816 −0.0127174
\(690\) 0 0
\(691\) −16.9944 −0.646498 −0.323249 0.946314i \(-0.604775\pi\)
−0.323249 + 0.946314i \(0.604775\pi\)
\(692\) 0 0
\(693\) 0.248601 0.00944358
\(694\) 0 0
\(695\) 25.5366 0.968659
\(696\) 0 0
\(697\) 30.4585 1.15370
\(698\) 0 0
\(699\) −39.0215 −1.47593
\(700\) 0 0
\(701\) 3.18566 0.120321 0.0601603 0.998189i \(-0.480839\pi\)
0.0601603 + 0.998189i \(0.480839\pi\)
\(702\) 0 0
\(703\) −4.00000 −0.150863
\(704\) 0 0
\(705\) −22.1350 −0.833654
\(706\) 0 0
\(707\) −2.99440 −0.112616
\(708\) 0 0
\(709\) 8.53595 0.320574 0.160287 0.987070i \(-0.448758\pi\)
0.160287 + 0.987070i \(0.448758\pi\)
\(710\) 0 0
\(711\) −2.40717 −0.0902759
\(712\) 0 0
\(713\) −9.53326 −0.357023
\(714\) 0 0
\(715\) −2.32340 −0.0868904
\(716\) 0 0
\(717\) −1.50135 −0.0560689
\(718\) 0 0
\(719\) 7.09563 0.264622 0.132311 0.991208i \(-0.457760\pi\)
0.132311 + 0.991208i \(0.457760\pi\)
\(720\) 0 0
\(721\) 5.88500 0.219169
\(722\) 0 0
\(723\) −1.43426 −0.0533407
\(724\) 0 0
\(725\) −0.317138 −0.0117782
\(726\) 0 0
\(727\) 3.72643 0.138206 0.0691028 0.997610i \(-0.477986\pi\)
0.0691028 + 0.997610i \(0.477986\pi\)
\(728\) 0 0
\(729\) 21.6516 0.801912
\(730\) 0 0
\(731\) 37.0215 1.36929
\(732\) 0 0
\(733\) 37.9598 1.40208 0.701039 0.713123i \(-0.252720\pi\)
0.701039 + 0.713123i \(0.252720\pi\)
\(734\) 0 0
\(735\) 29.0152 1.07024
\(736\) 0 0
\(737\) −1.05398 −0.0388238
\(738\) 0 0
\(739\) 4.78041 0.175850 0.0879251 0.996127i \(-0.471976\pi\)
0.0879251 + 0.996127i \(0.471976\pi\)
\(740\) 0 0
\(741\) 2.86081 0.105094
\(742\) 0 0
\(743\) 20.2847 0.744172 0.372086 0.928198i \(-0.378643\pi\)
0.372086 + 0.928198i \(0.378643\pi\)
\(744\) 0 0
\(745\) 47.1745 1.72834
\(746\) 0 0
\(747\) 2.48824 0.0910399
\(748\) 0 0
\(749\) 1.85039 0.0676119
\(750\) 0 0
\(751\) 32.6427 1.19115 0.595574 0.803301i \(-0.296925\pi\)
0.595574 + 0.803301i \(0.296925\pi\)
\(752\) 0 0
\(753\) 49.9827 1.82147
\(754\) 0 0
\(755\) −1.74580 −0.0635363
\(756\) 0 0
\(757\) −17.4480 −0.634160 −0.317080 0.948399i \(-0.602702\pi\)
−0.317080 + 0.948399i \(0.602702\pi\)
\(758\) 0 0
\(759\) 2.11982 0.0769446
\(760\) 0 0
\(761\) 41.2597 1.49566 0.747831 0.663889i \(-0.231095\pi\)
0.747831 + 0.663889i \(0.231095\pi\)
\(762\) 0 0
\(763\) −7.00000 −0.253417
\(764\) 0 0
\(765\) 8.64681 0.312626
\(766\) 0 0
\(767\) 9.57201 0.345625
\(768\) 0 0
\(769\) 26.4924 0.955340 0.477670 0.878539i \(-0.341481\pi\)
0.477670 + 0.878539i \(0.341481\pi\)
\(770\) 0 0
\(771\) −0.314441 −0.0113243
\(772\) 0 0
\(773\) −38.3747 −1.38024 −0.690121 0.723694i \(-0.742443\pi\)
−0.690121 + 0.723694i \(0.742443\pi\)
\(774\) 0 0
\(775\) 3.33237 0.119702
\(776\) 0 0
\(777\) −2.60179 −0.0933388
\(778\) 0 0
\(779\) 5.82061 0.208545
\(780\) 0 0
\(781\) 3.52699 0.126206
\(782\) 0 0
\(783\) 3.76036 0.134384
\(784\) 0 0
\(785\) −46.2284 −1.64996
\(786\) 0 0
\(787\) 18.7625 0.668810 0.334405 0.942429i \(-0.391465\pi\)
0.334405 + 0.942429i \(0.391465\pi\)
\(788\) 0 0
\(789\) −52.9169 −1.88389
\(790\) 0 0
\(791\) −8.31781 −0.295747
\(792\) 0 0
\(793\) −2.64681 −0.0939909
\(794\) 0 0
\(795\) −1.44322 −0.0511859
\(796\) 0 0
\(797\) 53.7133 1.90262 0.951312 0.308231i \(-0.0997368\pi\)
0.951312 + 0.308231i \(0.0997368\pi\)
\(798\) 0 0
\(799\) −41.1890 −1.45716
\(800\) 0 0
\(801\) −6.20918 −0.219391
\(802\) 0 0
\(803\) −9.10941 −0.321464
\(804\) 0 0
\(805\) −1.42240 −0.0501330
\(806\) 0 0
\(807\) −36.2999 −1.27782
\(808\) 0 0
\(809\) −33.6170 −1.18191 −0.590956 0.806704i \(-0.701249\pi\)
−0.590956 + 0.806704i \(0.701249\pi\)
\(810\) 0 0
\(811\) −32.6516 −1.14655 −0.573277 0.819362i \(-0.694328\pi\)
−0.573277 + 0.819362i \(0.694328\pi\)
\(812\) 0 0
\(813\) −35.8823 −1.25845
\(814\) 0 0
\(815\) −29.0844 −1.01878
\(816\) 0 0
\(817\) 7.07480 0.247516
\(818\) 0 0
\(819\) 0.248601 0.00868683
\(820\) 0 0
\(821\) 48.9619 1.70878 0.854391 0.519630i \(-0.173930\pi\)
0.854391 + 0.519630i \(0.173930\pi\)
\(822\) 0 0
\(823\) 28.7112 1.00081 0.500405 0.865792i \(-0.333185\pi\)
0.500405 + 0.865792i \(0.333185\pi\)
\(824\) 0 0
\(825\) −0.740987 −0.0257978
\(826\) 0 0
\(827\) −40.2839 −1.40081 −0.700404 0.713747i \(-0.746997\pi\)
−0.700404 + 0.713747i \(0.746997\pi\)
\(828\) 0 0
\(829\) 50.4424 1.75194 0.875969 0.482367i \(-0.160223\pi\)
0.875969 + 0.482367i \(0.160223\pi\)
\(830\) 0 0
\(831\) −39.5512 −1.37202
\(832\) 0 0
\(833\) 53.9917 1.87070
\(834\) 0 0
\(835\) 20.8656 0.722085
\(836\) 0 0
\(837\) −39.5124 −1.36575
\(838\) 0 0
\(839\) −26.2701 −0.906944 −0.453472 0.891270i \(-0.649815\pi\)
−0.453472 + 0.891270i \(0.649815\pi\)
\(840\) 0 0
\(841\) −28.3657 −0.978128
\(842\) 0 0
\(843\) 8.47156 0.291776
\(844\) 0 0
\(845\) −2.32340 −0.0799275
\(846\) 0 0
\(847\) −0.537402 −0.0184653
\(848\) 0 0
\(849\) 51.9917 1.78435
\(850\) 0 0
\(851\) −2.96395 −0.101603
\(852\) 0 0
\(853\) −6.02005 −0.206122 −0.103061 0.994675i \(-0.532864\pi\)
−0.103061 + 0.994675i \(0.532864\pi\)
\(854\) 0 0
\(855\) 1.65240 0.0565110
\(856\) 0 0
\(857\) 6.29921 0.215177 0.107589 0.994196i \(-0.465687\pi\)
0.107589 + 0.994196i \(0.465687\pi\)
\(858\) 0 0
\(859\) 8.37257 0.285668 0.142834 0.989747i \(-0.454378\pi\)
0.142834 + 0.989747i \(0.454378\pi\)
\(860\) 0 0
\(861\) 3.78600 0.129027
\(862\) 0 0
\(863\) −26.0063 −0.885264 −0.442632 0.896703i \(-0.645955\pi\)
−0.442632 + 0.896703i \(0.645955\pi\)
\(864\) 0 0
\(865\) 23.7424 0.807267
\(866\) 0 0
\(867\) 88.8019 3.01587
\(868\) 0 0
\(869\) 5.20359 0.176520
\(870\) 0 0
\(871\) −1.05398 −0.0357127
\(872\) 0 0
\(873\) 2.08040 0.0704108
\(874\) 0 0
\(875\) −5.74580 −0.194244
\(876\) 0 0
\(877\) 39.7029 1.34067 0.670336 0.742058i \(-0.266150\pi\)
0.670336 + 0.742058i \(0.266150\pi\)
\(878\) 0 0
\(879\) 5.11982 0.172687
\(880\) 0 0
\(881\) −16.2501 −0.547478 −0.273739 0.961804i \(-0.588260\pi\)
−0.273739 + 0.961804i \(0.588260\pi\)
\(882\) 0 0
\(883\) −22.3968 −0.753711 −0.376855 0.926272i \(-0.622995\pi\)
−0.376855 + 0.926272i \(0.622995\pi\)
\(884\) 0 0
\(885\) 41.3836 1.39110
\(886\) 0 0
\(887\) −7.70369 −0.258664 −0.129332 0.991601i \(-0.541283\pi\)
−0.129332 + 0.991601i \(0.541283\pi\)
\(888\) 0 0
\(889\) 11.4432 0.383793
\(890\) 0 0
\(891\) 10.1738 0.340835
\(892\) 0 0
\(893\) −7.87122 −0.263400
\(894\) 0 0
\(895\) 46.2251 1.54513
\(896\) 0 0
\(897\) 2.11982 0.0707787
\(898\) 0 0
\(899\) −6.66473 −0.222281
\(900\) 0 0
\(901\) −2.68556 −0.0894689
\(902\) 0 0
\(903\) 4.60179 0.153138
\(904\) 0 0
\(905\) −20.6564 −0.686643
\(906\) 0 0
\(907\) −28.7354 −0.954143 −0.477072 0.878864i \(-0.658302\pi\)
−0.477072 + 0.878864i \(0.658302\pi\)
\(908\) 0 0
\(909\) 2.57760 0.0854936
\(910\) 0 0
\(911\) −33.2292 −1.10093 −0.550467 0.834857i \(-0.685550\pi\)
−0.550467 + 0.834857i \(0.685550\pi\)
\(912\) 0 0
\(913\) −5.37883 −0.178013
\(914\) 0 0
\(915\) −11.4432 −0.378301
\(916\) 0 0
\(917\) −4.74021 −0.156535
\(918\) 0 0
\(919\) 44.5097 1.46824 0.734120 0.679019i \(-0.237595\pi\)
0.734120 + 0.679019i \(0.237595\pi\)
\(920\) 0 0
\(921\) −20.0900 −0.661989
\(922\) 0 0
\(923\) 3.52699 0.116092
\(924\) 0 0
\(925\) 1.03605 0.0340652
\(926\) 0 0
\(927\) −5.06584 −0.166384
\(928\) 0 0
\(929\) −34.4889 −1.13154 −0.565772 0.824562i \(-0.691422\pi\)
−0.565772 + 0.824562i \(0.691422\pi\)
\(930\) 0 0
\(931\) 10.3178 0.338153
\(932\) 0 0
\(933\) 27.4868 0.899877
\(934\) 0 0
\(935\) −18.6918 −0.611288
\(936\) 0 0
\(937\) −22.4280 −0.732691 −0.366345 0.930479i \(-0.619391\pi\)
−0.366345 + 0.930479i \(0.619391\pi\)
\(938\) 0 0
\(939\) 48.9917 1.59878
\(940\) 0 0
\(941\) 44.0713 1.43668 0.718342 0.695690i \(-0.244901\pi\)
0.718342 + 0.695690i \(0.244901\pi\)
\(942\) 0 0
\(943\) 4.31299 0.140450
\(944\) 0 0
\(945\) −5.89541 −0.191778
\(946\) 0 0
\(947\) −42.1384 −1.36931 −0.684657 0.728865i \(-0.740048\pi\)
−0.684657 + 0.728865i \(0.740048\pi\)
\(948\) 0 0
\(949\) −9.10941 −0.295704
\(950\) 0 0
\(951\) 49.5124 1.60555
\(952\) 0 0
\(953\) −25.9162 −0.839509 −0.419755 0.907638i \(-0.637884\pi\)
−0.419755 + 0.907638i \(0.637884\pi\)
\(954\) 0 0
\(955\) 13.4224 0.434339
\(956\) 0 0
\(957\) 1.48197 0.0479054
\(958\) 0 0
\(959\) −7.72161 −0.249344
\(960\) 0 0
\(961\) 39.0305 1.25905
\(962\) 0 0
\(963\) −1.59283 −0.0513282
\(964\) 0 0
\(965\) 11.5028 0.370288
\(966\) 0 0
\(967\) −57.7446 −1.85694 −0.928470 0.371408i \(-0.878875\pi\)
−0.928470 + 0.371408i \(0.878875\pi\)
\(968\) 0 0
\(969\) 23.0152 0.739356
\(970\) 0 0
\(971\) −13.4357 −0.431172 −0.215586 0.976485i \(-0.569166\pi\)
−0.215586 + 0.976485i \(0.569166\pi\)
\(972\) 0 0
\(973\) 5.90660 0.189357
\(974\) 0 0
\(975\) −0.740987 −0.0237306
\(976\) 0 0
\(977\) 21.2936 0.681243 0.340622 0.940200i \(-0.389363\pi\)
0.340622 + 0.940200i \(0.389363\pi\)
\(978\) 0 0
\(979\) 13.4224 0.428982
\(980\) 0 0
\(981\) 6.02564 0.192384
\(982\) 0 0
\(983\) 16.5810 0.528851 0.264425 0.964406i \(-0.414818\pi\)
0.264425 + 0.964406i \(0.414818\pi\)
\(984\) 0 0
\(985\) −2.17380 −0.0692630
\(986\) 0 0
\(987\) −5.11982 −0.162966
\(988\) 0 0
\(989\) 5.24234 0.166697
\(990\) 0 0
\(991\) 9.10941 0.289370 0.144685 0.989478i \(-0.453783\pi\)
0.144685 + 0.989478i \(0.453783\pi\)
\(992\) 0 0
\(993\) −11.6441 −0.369515
\(994\) 0 0
\(995\) −51.4045 −1.62963
\(996\) 0 0
\(997\) 1.62329 0.0514100 0.0257050 0.999670i \(-0.491817\pi\)
0.0257050 + 0.999670i \(0.491817\pi\)
\(998\) 0 0
\(999\) −12.2847 −0.388669
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1144.2.a.i.1.3 3
4.3 odd 2 2288.2.a.v.1.1 3
8.3 odd 2 9152.2.a.by.1.3 3
8.5 even 2 9152.2.a.bx.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1144.2.a.i.1.3 3 1.1 even 1 trivial
2288.2.a.v.1.1 3 4.3 odd 2
9152.2.a.bx.1.1 3 8.5 even 2
9152.2.a.by.1.3 3 8.3 odd 2