Properties

Label 1140.2.f.a.229.6
Level $1140$
Weight $2$
Character 1140.229
Analytic conductor $9.103$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1140,2,Mod(229,1140)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1140, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1140.229"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1140 = 2^{2} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1140.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.10294583043\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 229.6
Root \(1.45161 - 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 1140.229
Dual form 1140.2.f.a.229.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(2.21432 - 0.311108i) q^{5} +2.21432i q^{7} -1.00000 q^{9} -1.31111 q^{11} +0.836535i q^{13} +(0.311108 + 2.21432i) q^{15} +4.90321i q^{17} -1.00000 q^{19} -2.21432 q^{21} +5.33185i q^{23} +(4.80642 - 1.37778i) q^{25} -1.00000i q^{27} -1.31111 q^{29} -1.71900 q^{31} -1.31111i q^{33} +(0.688892 + 4.90321i) q^{35} +1.03011i q^{37} -0.836535 q^{39} +5.87310 q^{41} +0.214320i q^{43} +(-2.21432 + 0.311108i) q^{45} +5.33185i q^{47} +2.09679 q^{49} -4.90321 q^{51} -8.70964i q^{53} +(-2.90321 + 0.407896i) q^{55} -1.00000i q^{57} -8.10171 q^{59} +3.33185 q^{61} -2.21432i q^{63} +(0.260253 + 1.85236i) q^{65} +9.61285i q^{67} -5.33185 q^{69} -7.80642 q^{71} -0.193576i q^{73} +(1.37778 + 4.80642i) q^{75} -2.90321i q^{77} +12.9906 q^{79} +1.00000 q^{81} -0.0459330i q^{83} +(1.52543 + 10.8573i) q^{85} -1.31111i q^{87} +2.92396 q^{89} -1.85236 q^{91} -1.71900i q^{93} +(-2.21432 + 0.311108i) q^{95} +2.60147i q^{97} +1.31111 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{9} - 8 q^{11} + 2 q^{15} - 6 q^{19} + 2 q^{25} - 8 q^{29} - 24 q^{31} + 4 q^{35} + 8 q^{39} + 8 q^{41} + 26 q^{49} - 16 q^{51} - 4 q^{55} + 4 q^{59} - 20 q^{61} + 28 q^{65} + 8 q^{69} - 20 q^{71}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1140\mathbb{Z}\right)^\times\).

\(n\) \(457\) \(571\) \(761\) \(781\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 2.21432 0.311108i 0.990274 0.139132i
\(6\) 0 0
\(7\) 2.21432i 0.836934i 0.908232 + 0.418467i \(0.137432\pi\)
−0.908232 + 0.418467i \(0.862568\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.31111 −0.395314 −0.197657 0.980271i \(-0.563333\pi\)
−0.197657 + 0.980271i \(0.563333\pi\)
\(12\) 0 0
\(13\) 0.836535i 0.232013i 0.993248 + 0.116007i \(0.0370094\pi\)
−0.993248 + 0.116007i \(0.962991\pi\)
\(14\) 0 0
\(15\) 0.311108 + 2.21432i 0.0803277 + 0.571735i
\(16\) 0 0
\(17\) 4.90321i 1.18920i 0.804020 + 0.594602i \(0.202690\pi\)
−0.804020 + 0.594602i \(0.797310\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −2.21432 −0.483204
\(22\) 0 0
\(23\) 5.33185i 1.11177i 0.831260 + 0.555884i \(0.187620\pi\)
−0.831260 + 0.555884i \(0.812380\pi\)
\(24\) 0 0
\(25\) 4.80642 1.37778i 0.961285 0.275557i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −1.31111 −0.243467 −0.121733 0.992563i \(-0.538845\pi\)
−0.121733 + 0.992563i \(0.538845\pi\)
\(30\) 0 0
\(31\) −1.71900 −0.308742 −0.154371 0.988013i \(-0.549335\pi\)
−0.154371 + 0.988013i \(0.549335\pi\)
\(32\) 0 0
\(33\) 1.31111i 0.228235i
\(34\) 0 0
\(35\) 0.688892 + 4.90321i 0.116444 + 0.828794i
\(36\) 0 0
\(37\) 1.03011i 0.169349i 0.996409 + 0.0846746i \(0.0269851\pi\)
−0.996409 + 0.0846746i \(0.973015\pi\)
\(38\) 0 0
\(39\) −0.836535 −0.133953
\(40\) 0 0
\(41\) 5.87310 0.917224 0.458612 0.888637i \(-0.348347\pi\)
0.458612 + 0.888637i \(0.348347\pi\)
\(42\) 0 0
\(43\) 0.214320i 0.0326835i 0.999866 + 0.0163417i \(0.00520196\pi\)
−0.999866 + 0.0163417i \(0.994798\pi\)
\(44\) 0 0
\(45\) −2.21432 + 0.311108i −0.330091 + 0.0463772i
\(46\) 0 0
\(47\) 5.33185i 0.777730i 0.921295 + 0.388865i \(0.127133\pi\)
−0.921295 + 0.388865i \(0.872867\pi\)
\(48\) 0 0
\(49\) 2.09679 0.299541
\(50\) 0 0
\(51\) −4.90321 −0.686587
\(52\) 0 0
\(53\) 8.70964i 1.19636i −0.801362 0.598180i \(-0.795891\pi\)
0.801362 0.598180i \(-0.204109\pi\)
\(54\) 0 0
\(55\) −2.90321 + 0.407896i −0.391469 + 0.0550007i
\(56\) 0 0
\(57\) 1.00000i 0.132453i
\(58\) 0 0
\(59\) −8.10171 −1.05475 −0.527376 0.849632i \(-0.676824\pi\)
−0.527376 + 0.849632i \(0.676824\pi\)
\(60\) 0 0
\(61\) 3.33185 0.426600 0.213300 0.976987i \(-0.431579\pi\)
0.213300 + 0.976987i \(0.431579\pi\)
\(62\) 0 0
\(63\) 2.21432i 0.278978i
\(64\) 0 0
\(65\) 0.260253 + 1.85236i 0.0322804 + 0.229757i
\(66\) 0 0
\(67\) 9.61285i 1.17440i 0.809443 + 0.587198i \(0.199769\pi\)
−0.809443 + 0.587198i \(0.800231\pi\)
\(68\) 0 0
\(69\) −5.33185 −0.641879
\(70\) 0 0
\(71\) −7.80642 −0.926452 −0.463226 0.886240i \(-0.653308\pi\)
−0.463226 + 0.886240i \(0.653308\pi\)
\(72\) 0 0
\(73\) 0.193576i 0.0226564i −0.999936 0.0113282i \(-0.996394\pi\)
0.999936 0.0113282i \(-0.00360595\pi\)
\(74\) 0 0
\(75\) 1.37778 + 4.80642i 0.159093 + 0.554998i
\(76\) 0 0
\(77\) 2.90321i 0.330852i
\(78\) 0 0
\(79\) 12.9906 1.46156 0.730780 0.682613i \(-0.239156\pi\)
0.730780 + 0.682613i \(0.239156\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0.0459330i 0.00504180i −0.999997 0.00252090i \(-0.999198\pi\)
0.999997 0.00252090i \(-0.000802428\pi\)
\(84\) 0 0
\(85\) 1.52543 + 10.8573i 0.165456 + 1.17764i
\(86\) 0 0
\(87\) 1.31111i 0.140566i
\(88\) 0 0
\(89\) 2.92396 0.309939 0.154969 0.987919i \(-0.450472\pi\)
0.154969 + 0.987919i \(0.450472\pi\)
\(90\) 0 0
\(91\) −1.85236 −0.194180
\(92\) 0 0
\(93\) 1.71900i 0.178252i
\(94\) 0 0
\(95\) −2.21432 + 0.311108i −0.227184 + 0.0319190i
\(96\) 0 0
\(97\) 2.60147i 0.264139i 0.991240 + 0.132070i \(0.0421623\pi\)
−0.991240 + 0.132070i \(0.957838\pi\)
\(98\) 0 0
\(99\) 1.31111 0.131771
\(100\) 0 0
\(101\) −7.61285 −0.757507 −0.378753 0.925498i \(-0.623647\pi\)
−0.378753 + 0.925498i \(0.623647\pi\)
\(102\) 0 0
\(103\) 3.05086i 0.300610i 0.988640 + 0.150305i \(0.0480255\pi\)
−0.988640 + 0.150305i \(0.951974\pi\)
\(104\) 0 0
\(105\) −4.90321 + 0.688892i −0.478504 + 0.0672290i
\(106\) 0 0
\(107\) 8.99063i 0.869157i 0.900634 + 0.434579i \(0.143103\pi\)
−0.900634 + 0.434579i \(0.856897\pi\)
\(108\) 0 0
\(109\) 13.9081 1.33216 0.666079 0.745881i \(-0.267971\pi\)
0.666079 + 0.745881i \(0.267971\pi\)
\(110\) 0 0
\(111\) −1.03011 −0.0977739
\(112\) 0 0
\(113\) 10.7699i 1.01314i −0.862198 0.506572i \(-0.830913\pi\)
0.862198 0.506572i \(-0.169087\pi\)
\(114\) 0 0
\(115\) 1.65878 + 11.8064i 0.154682 + 1.10095i
\(116\) 0 0
\(117\) 0.836535i 0.0773377i
\(118\) 0 0
\(119\) −10.8573 −0.995285
\(120\) 0 0
\(121\) −9.28100 −0.843727
\(122\) 0 0
\(123\) 5.87310i 0.529560i
\(124\) 0 0
\(125\) 10.2143 4.54617i 0.913597 0.406622i
\(126\) 0 0
\(127\) 2.29529i 0.203674i 0.994801 + 0.101837i \(0.0324720\pi\)
−0.994801 + 0.101837i \(0.967528\pi\)
\(128\) 0 0
\(129\) −0.214320 −0.0188698
\(130\) 0 0
\(131\) −3.87310 −0.338394 −0.169197 0.985582i \(-0.554117\pi\)
−0.169197 + 0.985582i \(0.554117\pi\)
\(132\) 0 0
\(133\) 2.21432i 0.192006i
\(134\) 0 0
\(135\) −0.311108 2.21432i −0.0267759 0.190578i
\(136\) 0 0
\(137\) 13.6128i 1.16302i 0.813538 + 0.581512i \(0.197539\pi\)
−0.813538 + 0.581512i \(0.802461\pi\)
\(138\) 0 0
\(139\) 6.19358 0.525332 0.262666 0.964887i \(-0.415398\pi\)
0.262666 + 0.964887i \(0.415398\pi\)
\(140\) 0 0
\(141\) −5.33185 −0.449023
\(142\) 0 0
\(143\) 1.09679i 0.0917180i
\(144\) 0 0
\(145\) −2.90321 + 0.407896i −0.241099 + 0.0338739i
\(146\) 0 0
\(147\) 2.09679i 0.172940i
\(148\) 0 0
\(149\) −22.1748 −1.81663 −0.908317 0.418283i \(-0.862632\pi\)
−0.908317 + 0.418283i \(0.862632\pi\)
\(150\) 0 0
\(151\) 15.2716 1.24279 0.621394 0.783498i \(-0.286567\pi\)
0.621394 + 0.783498i \(0.286567\pi\)
\(152\) 0 0
\(153\) 4.90321i 0.396401i
\(154\) 0 0
\(155\) −3.80642 + 0.534795i −0.305739 + 0.0429558i
\(156\) 0 0
\(157\) 8.23506i 0.657230i −0.944464 0.328615i \(-0.893418\pi\)
0.944464 0.328615i \(-0.106582\pi\)
\(158\) 0 0
\(159\) 8.70964 0.690719
\(160\) 0 0
\(161\) −11.8064 −0.930477
\(162\) 0 0
\(163\) 21.8272i 1.70964i −0.518928 0.854818i \(-0.673669\pi\)
0.518928 0.854818i \(-0.326331\pi\)
\(164\) 0 0
\(165\) −0.407896 2.90321i −0.0317547 0.226015i
\(166\) 0 0
\(167\) 18.9447i 1.46598i −0.680237 0.732992i \(-0.738123\pi\)
0.680237 0.732992i \(-0.261877\pi\)
\(168\) 0 0
\(169\) 12.3002 0.946170
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 0 0
\(173\) 17.5254i 1.33243i −0.745758 0.666217i \(-0.767913\pi\)
0.745758 0.666217i \(-0.232087\pi\)
\(174\) 0 0
\(175\) 3.05086 + 10.6430i 0.230623 + 0.804532i
\(176\) 0 0
\(177\) 8.10171i 0.608962i
\(178\) 0 0
\(179\) 0.101710 0.00760218 0.00380109 0.999993i \(-0.498790\pi\)
0.00380109 + 0.999993i \(0.498790\pi\)
\(180\) 0 0
\(181\) 13.3461 0.992011 0.496005 0.868319i \(-0.334800\pi\)
0.496005 + 0.868319i \(0.334800\pi\)
\(182\) 0 0
\(183\) 3.33185i 0.246298i
\(184\) 0 0
\(185\) 0.320476 + 2.28100i 0.0235618 + 0.167702i
\(186\) 0 0
\(187\) 6.42864i 0.470109i
\(188\) 0 0
\(189\) 2.21432 0.161068
\(190\) 0 0
\(191\) 5.01582 0.362932 0.181466 0.983397i \(-0.441916\pi\)
0.181466 + 0.983397i \(0.441916\pi\)
\(192\) 0 0
\(193\) 19.7669i 1.42286i −0.702759 0.711428i \(-0.748049\pi\)
0.702759 0.711428i \(-0.251951\pi\)
\(194\) 0 0
\(195\) −1.85236 + 0.260253i −0.132650 + 0.0186371i
\(196\) 0 0
\(197\) 9.19850i 0.655366i 0.944788 + 0.327683i \(0.106268\pi\)
−0.944788 + 0.327683i \(0.893732\pi\)
\(198\) 0 0
\(199\) −4.29529 −0.304485 −0.152242 0.988343i \(-0.548649\pi\)
−0.152242 + 0.988343i \(0.548649\pi\)
\(200\) 0 0
\(201\) −9.61285 −0.678038
\(202\) 0 0
\(203\) 2.90321i 0.203766i
\(204\) 0 0
\(205\) 13.0049 1.82717i 0.908303 0.127615i
\(206\) 0 0
\(207\) 5.33185i 0.370589i
\(208\) 0 0
\(209\) 1.31111 0.0906912
\(210\) 0 0
\(211\) 15.0923 1.03900 0.519500 0.854471i \(-0.326118\pi\)
0.519500 + 0.854471i \(0.326118\pi\)
\(212\) 0 0
\(213\) 7.80642i 0.534887i
\(214\) 0 0
\(215\) 0.0666765 + 0.474572i 0.00454730 + 0.0323656i
\(216\) 0 0
\(217\) 3.80642i 0.258397i
\(218\) 0 0
\(219\) 0.193576 0.0130807
\(220\) 0 0
\(221\) −4.10171 −0.275911
\(222\) 0 0
\(223\) 7.05086i 0.472160i −0.971734 0.236080i \(-0.924137\pi\)
0.971734 0.236080i \(-0.0758628\pi\)
\(224\) 0 0
\(225\) −4.80642 + 1.37778i −0.320428 + 0.0918523i
\(226\) 0 0
\(227\) 6.94470i 0.460936i −0.973080 0.230468i \(-0.925974\pi\)
0.973080 0.230468i \(-0.0740257\pi\)
\(228\) 0 0
\(229\) 19.6686 1.29974 0.649870 0.760046i \(-0.274823\pi\)
0.649870 + 0.760046i \(0.274823\pi\)
\(230\) 0 0
\(231\) 2.90321 0.191017
\(232\) 0 0
\(233\) 16.5303i 1.08294i −0.840720 0.541470i \(-0.817868\pi\)
0.840720 0.541470i \(-0.182132\pi\)
\(234\) 0 0
\(235\) 1.65878 + 11.8064i 0.108207 + 0.770166i
\(236\) 0 0
\(237\) 12.9906i 0.843832i
\(238\) 0 0
\(239\) 11.0573 0.715238 0.357619 0.933868i \(-0.383589\pi\)
0.357619 + 0.933868i \(0.383589\pi\)
\(240\) 0 0
\(241\) 8.75557 0.563996 0.281998 0.959415i \(-0.409003\pi\)
0.281998 + 0.959415i \(0.409003\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 4.64296 0.652327i 0.296628 0.0416757i
\(246\) 0 0
\(247\) 0.836535i 0.0532275i
\(248\) 0 0
\(249\) 0.0459330 0.00291088
\(250\) 0 0
\(251\) 25.0257 1.57961 0.789803 0.613361i \(-0.210183\pi\)
0.789803 + 0.613361i \(0.210183\pi\)
\(252\) 0 0
\(253\) 6.99063i 0.439497i
\(254\) 0 0
\(255\) −10.8573 + 1.52543i −0.679909 + 0.0955260i
\(256\) 0 0
\(257\) 12.0558i 0.752019i −0.926616 0.376009i \(-0.877296\pi\)
0.926616 0.376009i \(-0.122704\pi\)
\(258\) 0 0
\(259\) −2.28100 −0.141734
\(260\) 0 0
\(261\) 1.31111 0.0811555
\(262\) 0 0
\(263\) 8.08742i 0.498692i −0.968415 0.249346i \(-0.919784\pi\)
0.968415 0.249346i \(-0.0802156\pi\)
\(264\) 0 0
\(265\) −2.70964 19.2859i −0.166452 1.18472i
\(266\) 0 0
\(267\) 2.92396i 0.178943i
\(268\) 0 0
\(269\) −6.49532 −0.396026 −0.198013 0.980199i \(-0.563449\pi\)
−0.198013 + 0.980199i \(0.563449\pi\)
\(270\) 0 0
\(271\) −21.3274 −1.29555 −0.647774 0.761833i \(-0.724300\pi\)
−0.647774 + 0.761833i \(0.724300\pi\)
\(272\) 0 0
\(273\) 1.85236i 0.112110i
\(274\) 0 0
\(275\) −6.30174 + 1.80642i −0.380009 + 0.108931i
\(276\) 0 0
\(277\) 2.10171i 0.126280i −0.998005 0.0631398i \(-0.979889\pi\)
0.998005 0.0631398i \(-0.0201114\pi\)
\(278\) 0 0
\(279\) 1.71900 0.102914
\(280\) 0 0
\(281\) 8.85083 0.527996 0.263998 0.964523i \(-0.414959\pi\)
0.263998 + 0.964523i \(0.414959\pi\)
\(282\) 0 0
\(283\) 19.0716i 1.13369i −0.823825 0.566844i \(-0.808164\pi\)
0.823825 0.566844i \(-0.191836\pi\)
\(284\) 0 0
\(285\) −0.311108 2.21432i −0.0184284 0.131165i
\(286\) 0 0
\(287\) 13.0049i 0.767656i
\(288\) 0 0
\(289\) −7.04149 −0.414205
\(290\) 0 0
\(291\) −2.60147 −0.152501
\(292\) 0 0
\(293\) 17.3002i 1.01069i −0.862918 0.505344i \(-0.831365\pi\)
0.862918 0.505344i \(-0.168635\pi\)
\(294\) 0 0
\(295\) −17.9398 + 2.52051i −1.04449 + 0.146749i
\(296\) 0 0
\(297\) 1.31111i 0.0760782i
\(298\) 0 0
\(299\) −4.46028 −0.257945
\(300\) 0 0
\(301\) −0.474572 −0.0273539
\(302\) 0 0
\(303\) 7.61285i 0.437347i
\(304\) 0 0
\(305\) 7.37778 1.03657i 0.422451 0.0593535i
\(306\) 0 0
\(307\) 16.6953i 0.952854i −0.879214 0.476427i \(-0.841932\pi\)
0.879214 0.476427i \(-0.158068\pi\)
\(308\) 0 0
\(309\) −3.05086 −0.173557
\(310\) 0 0
\(311\) −8.85083 −0.501884 −0.250942 0.968002i \(-0.580740\pi\)
−0.250942 + 0.968002i \(0.580740\pi\)
\(312\) 0 0
\(313\) 21.5625i 1.21878i 0.792870 + 0.609391i \(0.208586\pi\)
−0.792870 + 0.609391i \(0.791414\pi\)
\(314\) 0 0
\(315\) −0.688892 4.90321i −0.0388147 0.276265i
\(316\) 0 0
\(317\) 20.2810i 1.13909i 0.821959 + 0.569547i \(0.192881\pi\)
−0.821959 + 0.569547i \(0.807119\pi\)
\(318\) 0 0
\(319\) 1.71900 0.0962457
\(320\) 0 0
\(321\) −8.99063 −0.501808
\(322\) 0 0
\(323\) 4.90321i 0.272822i
\(324\) 0 0
\(325\) 1.15257 + 4.02074i 0.0639328 + 0.223031i
\(326\) 0 0
\(327\) 13.9081i 0.769122i
\(328\) 0 0
\(329\) −11.8064 −0.650909
\(330\) 0 0
\(331\) −2.11906 −0.116474 −0.0582371 0.998303i \(-0.518548\pi\)
−0.0582371 + 0.998303i \(0.518548\pi\)
\(332\) 0 0
\(333\) 1.03011i 0.0564498i
\(334\) 0 0
\(335\) 2.99063 + 21.2859i 0.163396 + 1.16297i
\(336\) 0 0
\(337\) 12.5511i 0.683702i −0.939754 0.341851i \(-0.888946\pi\)
0.939754 0.341851i \(-0.111054\pi\)
\(338\) 0 0
\(339\) 10.7699 0.584938
\(340\) 0 0
\(341\) 2.25380 0.122050
\(342\) 0 0
\(343\) 20.1432i 1.08763i
\(344\) 0 0
\(345\) −11.8064 + 1.65878i −0.635636 + 0.0893057i
\(346\) 0 0
\(347\) 8.63651i 0.463632i −0.972760 0.231816i \(-0.925533\pi\)
0.972760 0.231816i \(-0.0744667\pi\)
\(348\) 0 0
\(349\) 9.45091 0.505896 0.252948 0.967480i \(-0.418600\pi\)
0.252948 + 0.967480i \(0.418600\pi\)
\(350\) 0 0
\(351\) 0.836535 0.0446510
\(352\) 0 0
\(353\) 5.21279i 0.277449i −0.990331 0.138724i \(-0.955700\pi\)
0.990331 0.138724i \(-0.0443002\pi\)
\(354\) 0 0
\(355\) −17.2859 + 2.42864i −0.917441 + 0.128899i
\(356\) 0 0
\(357\) 10.8573i 0.574628i
\(358\) 0 0
\(359\) 4.22861 0.223177 0.111589 0.993754i \(-0.464406\pi\)
0.111589 + 0.993754i \(0.464406\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 9.28100i 0.487126i
\(364\) 0 0
\(365\) −0.0602231 0.428639i −0.00315222 0.0224360i
\(366\) 0 0
\(367\) 6.15410i 0.321241i 0.987016 + 0.160621i \(0.0513496\pi\)
−0.987016 + 0.160621i \(0.948650\pi\)
\(368\) 0 0
\(369\) −5.87310 −0.305741
\(370\) 0 0
\(371\) 19.2859 1.00127
\(372\) 0 0
\(373\) 15.1635i 0.785134i −0.919723 0.392567i \(-0.871587\pi\)
0.919723 0.392567i \(-0.128413\pi\)
\(374\) 0 0
\(375\) 4.54617 + 10.2143i 0.234763 + 0.527465i
\(376\) 0 0
\(377\) 1.09679i 0.0564875i
\(378\) 0 0
\(379\) −12.5161 −0.642907 −0.321453 0.946925i \(-0.604171\pi\)
−0.321453 + 0.946925i \(0.604171\pi\)
\(380\) 0 0
\(381\) −2.29529 −0.117591
\(382\) 0 0
\(383\) 19.5210i 0.997476i 0.866753 + 0.498738i \(0.166203\pi\)
−0.866753 + 0.498738i \(0.833797\pi\)
\(384\) 0 0
\(385\) −0.903212 6.42864i −0.0460319 0.327634i
\(386\) 0 0
\(387\) 0.214320i 0.0108945i
\(388\) 0 0
\(389\) −29.5812 −1.49983 −0.749913 0.661536i \(-0.769905\pi\)
−0.749913 + 0.661536i \(0.769905\pi\)
\(390\) 0 0
\(391\) −26.1432 −1.32212
\(392\) 0 0
\(393\) 3.87310i 0.195372i
\(394\) 0 0
\(395\) 28.7654 4.04149i 1.44735 0.203349i
\(396\) 0 0
\(397\) 29.1526i 1.46313i 0.681774 + 0.731563i \(0.261209\pi\)
−0.681774 + 0.731563i \(0.738791\pi\)
\(398\) 0 0
\(399\) 2.21432 0.110855
\(400\) 0 0
\(401\) −14.7304 −0.735600 −0.367800 0.929905i \(-0.619889\pi\)
−0.367800 + 0.929905i \(0.619889\pi\)
\(402\) 0 0
\(403\) 1.43801i 0.0716323i
\(404\) 0 0
\(405\) 2.21432 0.311108i 0.110030 0.0154591i
\(406\) 0 0
\(407\) 1.35059i 0.0669461i
\(408\) 0 0
\(409\) −10.3368 −0.511121 −0.255560 0.966793i \(-0.582260\pi\)
−0.255560 + 0.966793i \(0.582260\pi\)
\(410\) 0 0
\(411\) −13.6128 −0.671472
\(412\) 0 0
\(413\) 17.9398i 0.882759i
\(414\) 0 0
\(415\) −0.0142901 0.101710i −0.000701473 0.00499276i
\(416\) 0 0
\(417\) 6.19358i 0.303301i
\(418\) 0 0
\(419\) −30.9842 −1.51368 −0.756838 0.653602i \(-0.773257\pi\)
−0.756838 + 0.653602i \(0.773257\pi\)
\(420\) 0 0
\(421\) 32.1432 1.56656 0.783282 0.621667i \(-0.213544\pi\)
0.783282 + 0.621667i \(0.213544\pi\)
\(422\) 0 0
\(423\) 5.33185i 0.259243i
\(424\) 0 0
\(425\) 6.75557 + 23.5669i 0.327693 + 1.14316i
\(426\) 0 0
\(427\) 7.37778i 0.357036i
\(428\) 0 0
\(429\) 1.09679 0.0529534
\(430\) 0 0
\(431\) 30.9719 1.49186 0.745932 0.666022i \(-0.232004\pi\)
0.745932 + 0.666022i \(0.232004\pi\)
\(432\) 0 0
\(433\) 40.9195i 1.96647i −0.182353 0.983233i \(-0.558371\pi\)
0.182353 0.983233i \(-0.441629\pi\)
\(434\) 0 0
\(435\) −0.407896 2.90321i −0.0195571 0.139198i
\(436\) 0 0
\(437\) 5.33185i 0.255057i
\(438\) 0 0
\(439\) 4.26671 0.203639 0.101819 0.994803i \(-0.467534\pi\)
0.101819 + 0.994803i \(0.467534\pi\)
\(440\) 0 0
\(441\) −2.09679 −0.0998471
\(442\) 0 0
\(443\) 4.34122i 0.206258i −0.994668 0.103129i \(-0.967115\pi\)
0.994668 0.103129i \(-0.0328854\pi\)
\(444\) 0 0
\(445\) 6.47457 0.909665i 0.306924 0.0431223i
\(446\) 0 0
\(447\) 22.1748i 1.04883i
\(448\) 0 0
\(449\) 2.56845 0.121212 0.0606062 0.998162i \(-0.480697\pi\)
0.0606062 + 0.998162i \(0.480697\pi\)
\(450\) 0 0
\(451\) −7.70027 −0.362591
\(452\) 0 0
\(453\) 15.2716i 0.717524i
\(454\) 0 0
\(455\) −4.10171 + 0.576283i −0.192291 + 0.0270165i
\(456\) 0 0
\(457\) 27.2859i 1.27638i 0.769878 + 0.638191i \(0.220317\pi\)
−0.769878 + 0.638191i \(0.779683\pi\)
\(458\) 0 0
\(459\) 4.90321 0.228862
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) 37.2464i 1.73099i 0.500919 + 0.865494i \(0.332996\pi\)
−0.500919 + 0.865494i \(0.667004\pi\)
\(464\) 0 0
\(465\) −0.534795 3.80642i −0.0248005 0.176519i
\(466\) 0 0
\(467\) 13.8809i 0.642333i 0.947023 + 0.321167i \(0.104075\pi\)
−0.947023 + 0.321167i \(0.895925\pi\)
\(468\) 0 0
\(469\) −21.2859 −0.982892
\(470\) 0 0
\(471\) 8.23506 0.379452
\(472\) 0 0
\(473\) 0.280996i 0.0129202i
\(474\) 0 0
\(475\) −4.80642 + 1.37778i −0.220534 + 0.0632171i
\(476\) 0 0
\(477\) 8.70964i 0.398787i
\(478\) 0 0
\(479\) −1.07604 −0.0491657 −0.0245829 0.999698i \(-0.507826\pi\)
−0.0245829 + 0.999698i \(0.507826\pi\)
\(480\) 0 0
\(481\) −0.861725 −0.0392913
\(482\) 0 0
\(483\) 11.8064i 0.537211i
\(484\) 0 0
\(485\) 0.809338 + 5.76049i 0.0367502 + 0.261570i
\(486\) 0 0
\(487\) 26.8069i 1.21474i 0.794420 + 0.607368i \(0.207775\pi\)
−0.794420 + 0.607368i \(0.792225\pi\)
\(488\) 0 0
\(489\) 21.8272 0.987059
\(490\) 0 0
\(491\) 18.6474 0.841546 0.420773 0.907166i \(-0.361759\pi\)
0.420773 + 0.907166i \(0.361759\pi\)
\(492\) 0 0
\(493\) 6.42864i 0.289531i
\(494\) 0 0
\(495\) 2.90321 0.407896i 0.130490 0.0183336i
\(496\) 0 0
\(497\) 17.2859i 0.775379i
\(498\) 0 0
\(499\) 8.94914 0.400619 0.200309 0.979733i \(-0.435805\pi\)
0.200309 + 0.979733i \(0.435805\pi\)
\(500\) 0 0
\(501\) 18.9447 0.846387
\(502\) 0 0
\(503\) 21.3604i 0.952415i 0.879333 + 0.476207i \(0.157989\pi\)
−0.879333 + 0.476207i \(0.842011\pi\)
\(504\) 0 0
\(505\) −16.8573 + 2.36842i −0.750139 + 0.105393i
\(506\) 0 0
\(507\) 12.3002i 0.546271i
\(508\) 0 0
\(509\) −12.4953 −0.553845 −0.276923 0.960892i \(-0.589315\pi\)
−0.276923 + 0.960892i \(0.589315\pi\)
\(510\) 0 0
\(511\) 0.428639 0.0189619
\(512\) 0 0
\(513\) 1.00000i 0.0441511i
\(514\) 0 0
\(515\) 0.949145 + 6.75557i 0.0418243 + 0.297686i
\(516\) 0 0
\(517\) 6.99063i 0.307448i
\(518\) 0 0
\(519\) 17.5254 0.769281
\(520\) 0 0
\(521\) 34.7116 1.52074 0.760372 0.649487i \(-0.225016\pi\)
0.760372 + 0.649487i \(0.225016\pi\)
\(522\) 0 0
\(523\) 41.2958i 1.80574i −0.429916 0.902869i \(-0.641457\pi\)
0.429916 0.902869i \(-0.358543\pi\)
\(524\) 0 0
\(525\) −10.6430 + 3.05086i −0.464497 + 0.133150i
\(526\) 0 0
\(527\) 8.42864i 0.367157i
\(528\) 0 0
\(529\) −5.42864 −0.236028
\(530\) 0 0
\(531\) 8.10171 0.351584
\(532\) 0 0
\(533\) 4.91306i 0.212808i
\(534\) 0 0
\(535\) 2.79706 + 19.9081i 0.120927 + 0.860704i
\(536\) 0 0
\(537\) 0.101710i 0.00438912i
\(538\) 0 0
\(539\) −2.74912 −0.118413
\(540\) 0 0
\(541\) 21.4924 0.924031 0.462015 0.886872i \(-0.347127\pi\)
0.462015 + 0.886872i \(0.347127\pi\)
\(542\) 0 0
\(543\) 13.3461i 0.572738i
\(544\) 0 0
\(545\) 30.7971 4.32693i 1.31920 0.185345i
\(546\) 0 0
\(547\) 4.45722i 0.190577i −0.995450 0.0952885i \(-0.969623\pi\)
0.995450 0.0952885i \(-0.0303774\pi\)
\(548\) 0 0
\(549\) −3.33185 −0.142200
\(550\) 0 0
\(551\) 1.31111 0.0558551
\(552\) 0 0
\(553\) 28.7654i 1.22323i
\(554\) 0 0
\(555\) −2.28100 + 0.320476i −0.0968229 + 0.0136034i
\(556\) 0 0
\(557\) 23.6860i 1.00361i −0.864982 0.501804i \(-0.832670\pi\)
0.864982 0.501804i \(-0.167330\pi\)
\(558\) 0 0
\(559\) −0.179286 −0.00758299
\(560\) 0 0
\(561\) 6.42864 0.271417
\(562\) 0 0
\(563\) 22.5575i 0.950687i 0.879800 + 0.475344i \(0.157676\pi\)
−0.879800 + 0.475344i \(0.842324\pi\)
\(564\) 0 0
\(565\) −3.35059 23.8479i −0.140960 1.00329i
\(566\) 0 0
\(567\) 2.21432i 0.0929927i
\(568\) 0 0
\(569\) −34.8222 −1.45982 −0.729912 0.683541i \(-0.760439\pi\)
−0.729912 + 0.683541i \(0.760439\pi\)
\(570\) 0 0
\(571\) −25.0192 −1.04702 −0.523511 0.852019i \(-0.675378\pi\)
−0.523511 + 0.852019i \(0.675378\pi\)
\(572\) 0 0
\(573\) 5.01582i 0.209539i
\(574\) 0 0
\(575\) 7.34614 + 25.6271i 0.306355 + 1.06873i
\(576\) 0 0
\(577\) 26.1245i 1.08758i 0.839223 + 0.543788i \(0.183010\pi\)
−0.839223 + 0.543788i \(0.816990\pi\)
\(578\) 0 0
\(579\) 19.7669 0.821486
\(580\) 0 0
\(581\) 0.101710 0.00421965
\(582\) 0 0
\(583\) 11.4193i 0.472938i
\(584\) 0 0
\(585\) −0.260253 1.85236i −0.0107601 0.0765855i
\(586\) 0 0
\(587\) 40.8943i 1.68789i −0.536430 0.843945i \(-0.680228\pi\)
0.536430 0.843945i \(-0.319772\pi\)
\(588\) 0 0
\(589\) 1.71900 0.0708303
\(590\) 0 0
\(591\) −9.19850 −0.378376
\(592\) 0 0
\(593\) 8.78415i 0.360722i 0.983601 + 0.180361i \(0.0577266\pi\)
−0.983601 + 0.180361i \(0.942273\pi\)
\(594\) 0 0
\(595\) −24.0415 + 3.37778i −0.985605 + 0.138476i
\(596\) 0 0
\(597\) 4.29529i 0.175794i
\(598\) 0 0
\(599\) −14.0415 −0.573720 −0.286860 0.957973i \(-0.592611\pi\)
−0.286860 + 0.957973i \(0.592611\pi\)
\(600\) 0 0
\(601\) −24.3051 −0.991427 −0.495713 0.868486i \(-0.665093\pi\)
−0.495713 + 0.868486i \(0.665093\pi\)
\(602\) 0 0
\(603\) 9.61285i 0.391465i
\(604\) 0 0
\(605\) −20.5511 + 2.88739i −0.835521 + 0.117389i
\(606\) 0 0
\(607\) 23.1655i 0.940258i 0.882598 + 0.470129i \(0.155793\pi\)
−0.882598 + 0.470129i \(0.844207\pi\)
\(608\) 0 0
\(609\) 2.90321 0.117644
\(610\) 0 0
\(611\) −4.46028 −0.180444
\(612\) 0 0
\(613\) 33.7462i 1.36300i 0.731820 + 0.681498i \(0.238671\pi\)
−0.731820 + 0.681498i \(0.761329\pi\)
\(614\) 0 0
\(615\) 1.82717 + 13.0049i 0.0736785 + 0.524409i
\(616\) 0 0
\(617\) 41.5768i 1.67382i 0.547343 + 0.836909i \(0.315639\pi\)
−0.547343 + 0.836909i \(0.684361\pi\)
\(618\) 0 0
\(619\) −16.8988 −0.679219 −0.339609 0.940567i \(-0.610295\pi\)
−0.339609 + 0.940567i \(0.610295\pi\)
\(620\) 0 0
\(621\) 5.33185 0.213960
\(622\) 0 0
\(623\) 6.47457i 0.259398i
\(624\) 0 0
\(625\) 21.2034 13.2444i 0.848137 0.529777i
\(626\) 0 0
\(627\) 1.31111i 0.0523606i
\(628\) 0 0
\(629\) −5.05086 −0.201391
\(630\) 0 0
\(631\) −23.7748 −0.946459 −0.473230 0.880939i \(-0.656912\pi\)
−0.473230 + 0.880939i \(0.656912\pi\)
\(632\) 0 0
\(633\) 15.0923i 0.599867i
\(634\) 0 0
\(635\) 0.714082 + 5.08250i 0.0283375 + 0.201693i
\(636\) 0 0
\(637\) 1.75404i 0.0694975i
\(638\) 0 0
\(639\) 7.80642 0.308817
\(640\) 0 0
\(641\) −21.5877 −0.852661 −0.426331 0.904567i \(-0.640194\pi\)
−0.426331 + 0.904567i \(0.640194\pi\)
\(642\) 0 0
\(643\) 26.2242i 1.03418i −0.855931 0.517090i \(-0.827015\pi\)
0.855931 0.517090i \(-0.172985\pi\)
\(644\) 0 0
\(645\) −0.474572 + 0.0666765i −0.0186863 + 0.00262539i
\(646\) 0 0
\(647\) 23.9037i 0.939751i 0.882733 + 0.469875i \(0.155701\pi\)
−0.882733 + 0.469875i \(0.844299\pi\)
\(648\) 0 0
\(649\) 10.6222 0.416958
\(650\) 0 0
\(651\) 3.80642 0.149186
\(652\) 0 0
\(653\) 29.6686i 1.16102i 0.814252 + 0.580512i \(0.197147\pi\)
−0.814252 + 0.580512i \(0.802853\pi\)
\(654\) 0 0
\(655\) −8.57628 + 1.20495i −0.335103 + 0.0470814i
\(656\) 0 0
\(657\) 0.193576i 0.00755212i
\(658\) 0 0
\(659\) 28.3180 1.10311 0.551557 0.834137i \(-0.314034\pi\)
0.551557 + 0.834137i \(0.314034\pi\)
\(660\) 0 0
\(661\) 4.06022 0.157924 0.0789622 0.996878i \(-0.474839\pi\)
0.0789622 + 0.996878i \(0.474839\pi\)
\(662\) 0 0
\(663\) 4.10171i 0.159297i
\(664\) 0 0
\(665\) −0.688892 4.90321i −0.0267141 0.190138i
\(666\) 0 0
\(667\) 6.99063i 0.270678i
\(668\) 0 0
\(669\) 7.05086 0.272602
\(670\) 0 0
\(671\) −4.36842 −0.168641
\(672\) 0 0
\(673\) 2.27454i 0.0876772i 0.999039 + 0.0438386i \(0.0139587\pi\)
−0.999039 + 0.0438386i \(0.986041\pi\)
\(674\) 0 0
\(675\) −1.37778 4.80642i −0.0530309 0.184999i
\(676\) 0 0
\(677\) 23.9857i 0.921846i 0.887440 + 0.460923i \(0.152482\pi\)
−0.887440 + 0.460923i \(0.847518\pi\)
\(678\) 0 0
\(679\) −5.76049 −0.221067
\(680\) 0 0
\(681\) 6.94470 0.266121
\(682\) 0 0
\(683\) 12.4001i 0.474475i −0.971452 0.237238i \(-0.923758\pi\)
0.971452 0.237238i \(-0.0762420\pi\)
\(684\) 0 0
\(685\) 4.23506 + 30.1432i 0.161813 + 1.15171i
\(686\) 0 0
\(687\) 19.6686i 0.750405i
\(688\) 0 0
\(689\) 7.28592 0.277571
\(690\) 0 0
\(691\) −35.9782 −1.36868 −0.684338 0.729165i \(-0.739909\pi\)
−0.684338 + 0.729165i \(0.739909\pi\)
\(692\) 0 0
\(693\) 2.90321i 0.110284i
\(694\) 0 0
\(695\) 13.7146 1.92687i 0.520223 0.0730903i
\(696\) 0 0
\(697\) 28.7971i 1.09077i
\(698\) 0 0
\(699\) 16.5303 0.625235
\(700\) 0 0
\(701\) 2.65386 0.100235 0.0501174 0.998743i \(-0.484040\pi\)
0.0501174 + 0.998743i \(0.484040\pi\)
\(702\) 0 0
\(703\) 1.03011i 0.0388514i
\(704\) 0 0
\(705\) −11.8064 + 1.65878i −0.444656 + 0.0624733i
\(706\) 0 0
\(707\) 16.8573i 0.633983i
\(708\) 0 0
\(709\) 28.4844 1.06975 0.534877 0.844930i \(-0.320358\pi\)
0.534877 + 0.844930i \(0.320358\pi\)
\(710\) 0 0
\(711\) −12.9906 −0.487187
\(712\) 0 0
\(713\) 9.16547i 0.343250i
\(714\) 0 0
\(715\) −0.341219 2.42864i −0.0127609 0.0908260i
\(716\) 0 0
\(717\) 11.0573i 0.412943i
\(718\) 0 0
\(719\) 12.6800 0.472884 0.236442 0.971646i \(-0.424019\pi\)
0.236442 + 0.971646i \(0.424019\pi\)
\(720\) 0 0
\(721\) −6.75557 −0.251591
\(722\) 0 0
\(723\) 8.75557i 0.325623i
\(724\) 0 0
\(725\) −6.30174 + 1.80642i −0.234041 + 0.0670889i
\(726\) 0 0
\(727\) 50.5096i 1.87330i −0.350270 0.936649i \(-0.613910\pi\)
0.350270 0.936649i \(-0.386090\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −1.05086 −0.0388673
\(732\) 0 0
\(733\) 17.4380i 0.644087i −0.946725 0.322044i \(-0.895630\pi\)
0.946725 0.322044i \(-0.104370\pi\)
\(734\) 0 0
\(735\) 0.652327 + 4.64296i 0.0240614 + 0.171258i
\(736\) 0 0
\(737\) 12.6035i 0.464255i
\(738\) 0 0
\(739\) 41.6731 1.53297 0.766484 0.642263i \(-0.222004\pi\)
0.766484 + 0.642263i \(0.222004\pi\)
\(740\) 0 0
\(741\) 0.836535 0.0307309
\(742\) 0 0
\(743\) 6.07313i 0.222802i 0.993776 + 0.111401i \(0.0355337\pi\)
−0.993776 + 0.111401i \(0.964466\pi\)
\(744\) 0 0
\(745\) −49.1022 + 6.89877i −1.79896 + 0.252751i
\(746\) 0 0
\(747\) 0.0459330i 0.00168060i
\(748\) 0 0
\(749\) −19.9081 −0.727427
\(750\) 0 0
\(751\) −14.0272 −0.511860 −0.255930 0.966695i \(-0.582382\pi\)
−0.255930 + 0.966695i \(0.582382\pi\)
\(752\) 0 0
\(753\) 25.0257i 0.911986i
\(754\) 0 0
\(755\) 33.8163 4.75112i 1.23070 0.172911i
\(756\) 0 0
\(757\) 5.76494i 0.209530i −0.994497 0.104765i \(-0.966591\pi\)
0.994497 0.104765i \(-0.0334091\pi\)
\(758\) 0 0
\(759\) 6.99063 0.253744
\(760\) 0 0
\(761\) −47.5910 −1.72517 −0.862587 0.505909i \(-0.831157\pi\)
−0.862587 + 0.505909i \(0.831157\pi\)
\(762\) 0 0
\(763\) 30.7971i 1.11493i
\(764\) 0 0
\(765\) −1.52543 10.8573i −0.0551519 0.392546i
\(766\) 0 0
\(767\) 6.77737i 0.244717i
\(768\) 0 0
\(769\) 7.39069 0.266515 0.133258 0.991081i \(-0.457456\pi\)
0.133258 + 0.991081i \(0.457456\pi\)
\(770\) 0 0
\(771\) 12.0558 0.434178
\(772\) 0 0
\(773\) 53.8533i 1.93697i 0.249074 + 0.968484i \(0.419874\pi\)
−0.249074 + 0.968484i \(0.580126\pi\)
\(774\) 0 0
\(775\) −8.26226 + 2.36842i −0.296789 + 0.0850760i
\(776\) 0 0
\(777\) 2.28100i 0.0818303i
\(778\) 0 0
\(779\) −5.87310 −0.210426
\(780\) 0 0
\(781\) 10.2351 0.366239
\(782\) 0 0
\(783\) 1.31111i 0.0468552i
\(784\) 0 0
\(785\) −2.56199 18.2351i −0.0914414 0.650837i
\(786\) 0 0
\(787\) 42.8069i 1.52590i −0.646457 0.762951i \(-0.723750\pi\)
0.646457 0.762951i \(-0.276250\pi\)
\(788\) 0 0
\(789\) 8.08742 0.287920
\(790\) 0 0
\(791\) 23.8479 0.847934
\(792\) 0 0
\(793\) 2.78721i 0.0989768i
\(794\) 0 0
\(795\) 19.2859 2.70964i 0.684001 0.0961009i
\(796\) 0 0
\(797\) 38.7828i 1.37376i 0.726773 + 0.686878i \(0.241019\pi\)
−0.726773 + 0.686878i \(0.758981\pi\)
\(798\) 0 0
\(799\) −26.1432 −0.924880
\(800\) 0 0
\(801\) −2.92396 −0.103313
\(802\) 0 0
\(803\) 0.253799i 0.00895638i
\(804\) 0 0
\(805\) −26.1432 + 3.67307i −0.921427 + 0.129459i
\(806\) 0 0
\(807\) 6.49532i 0.228646i
\(808\) 0 0
\(809\) 2.88586 0.101461 0.0507307 0.998712i \(-0.483845\pi\)
0.0507307 + 0.998712i \(0.483845\pi\)
\(810\) 0 0
\(811\) −40.9403 −1.43761 −0.718803 0.695213i \(-0.755310\pi\)
−0.718803 + 0.695213i \(0.755310\pi\)
\(812\) 0 0
\(813\) 21.3274i 0.747985i
\(814\) 0 0
\(815\) −6.79060 48.3323i −0.237864 1.69301i
\(816\) 0 0
\(817\) 0.214320i 0.00749810i
\(818\) 0 0
\(819\) 1.85236 0.0647266
\(820\) 0 0
\(821\) 18.6637 0.651368 0.325684 0.945479i \(-0.394405\pi\)
0.325684 + 0.945479i \(0.394405\pi\)
\(822\) 0 0
\(823\) 27.5319i 0.959701i 0.877350 + 0.479851i \(0.159309\pi\)
−0.877350 + 0.479851i \(0.840691\pi\)
\(824\) 0 0
\(825\) −1.80642 6.30174i −0.0628916 0.219398i
\(826\) 0 0
\(827\) 44.3007i 1.54049i −0.637751 0.770243i \(-0.720135\pi\)
0.637751 0.770243i \(-0.279865\pi\)
\(828\) 0 0
\(829\) 14.9621 0.519654 0.259827 0.965655i \(-0.416335\pi\)
0.259827 + 0.965655i \(0.416335\pi\)
\(830\) 0 0
\(831\) 2.10171 0.0729075
\(832\) 0 0
\(833\) 10.2810i 0.356215i
\(834\) 0 0
\(835\) −5.89384 41.9496i −0.203965 1.45173i
\(836\) 0 0
\(837\) 1.71900i 0.0594175i
\(838\) 0 0
\(839\) −15.1526 −0.523125 −0.261562 0.965187i \(-0.584238\pi\)
−0.261562 + 0.965187i \(0.584238\pi\)
\(840\) 0 0
\(841\) −27.2810 −0.940724
\(842\) 0 0
\(843\) 8.85083i 0.304839i
\(844\) 0 0
\(845\) 27.2366 3.82669i 0.936967 0.131642i
\(846\) 0 0
\(847\) 20.5511i 0.706144i
\(848\) 0 0
\(849\) 19.0716 0.654536
\(850\) 0 0
\(851\) −5.49240 −0.188277
\(852\) 0 0
\(853\) 13.4608i 0.460888i −0.973086 0.230444i \(-0.925982\pi\)
0.973086 0.230444i \(-0.0740178\pi\)
\(854\) 0 0
\(855\) 2.21432 0.311108i 0.0757281 0.0106397i
\(856\) 0 0
\(857\) 32.8845i 1.12331i 0.827371 + 0.561656i \(0.189836\pi\)
−0.827371 + 0.561656i \(0.810164\pi\)
\(858\) 0 0
\(859\) 9.76494 0.333175 0.166588 0.986027i \(-0.446725\pi\)
0.166588 + 0.986027i \(0.446725\pi\)
\(860\) 0 0
\(861\) −13.0049 −0.443207
\(862\) 0 0
\(863\) 8.05038i 0.274038i 0.990568 + 0.137019i \(0.0437522\pi\)
−0.990568 + 0.137019i \(0.956248\pi\)
\(864\) 0 0
\(865\) −5.45230 38.8069i −0.185384 1.31947i
\(866\) 0 0
\(867\) 7.04149i 0.239141i
\(868\) 0 0
\(869\) −17.0321 −0.577775
\(870\) 0 0
\(871\) −8.04149 −0.272475
\(872\) 0 0
\(873\) 2.60147i 0.0880465i
\(874\) 0 0
\(875\) 10.0667 + 22.6178i 0.340316 + 0.764620i
\(876\) 0 0
\(877\) 11.4400i 0.386302i 0.981169 + 0.193151i \(0.0618707\pi\)
−0.981169 + 0.193151i \(0.938129\pi\)
\(878\) 0 0
\(879\) 17.3002 0.583522
\(880\) 0 0
\(881\) 42.3279 1.42606 0.713031 0.701132i \(-0.247322\pi\)
0.713031 + 0.701132i \(0.247322\pi\)
\(882\) 0 0
\(883\) 30.5926i 1.02952i −0.857334 0.514761i \(-0.827881\pi\)
0.857334 0.514761i \(-0.172119\pi\)
\(884\) 0 0
\(885\) −2.52051 17.9398i −0.0847259 0.603039i
\(886\) 0 0
\(887\) 13.1240i 0.440660i 0.975425 + 0.220330i \(0.0707135\pi\)
−0.975425 + 0.220330i \(0.929287\pi\)
\(888\) 0 0
\(889\) −5.08250 −0.170462
\(890\) 0 0
\(891\) −1.31111 −0.0439238
\(892\) 0 0
\(893\) 5.33185i 0.178424i
\(894\) 0 0
\(895\) 0.225219 0.0316429i 0.00752824 0.00105770i
\(896\) 0 0
\(897\) 4.46028i 0.148924i
\(898\) 0 0
\(899\) 2.25380 0.0751684
\(900\) 0 0
\(901\) 42.7052 1.42272
\(902\) 0 0
\(903\) 0.474572i 0.0157928i
\(904\) 0 0
\(905\) 29.5526 4.15209i 0.982362 0.138020i
\(906\) 0 0
\(907\) 58.2449i 1.93399i −0.254795 0.966995i \(-0.582008\pi\)
0.254795 0.966995i \(-0.417992\pi\)
\(908\) 0 0
\(909\) 7.61285 0.252502
\(910\) 0 0
\(911\) 40.3783 1.33779 0.668896 0.743356i \(-0.266767\pi\)
0.668896 + 0.743356i \(0.266767\pi\)
\(912\) 0 0
\(913\) 0.0602231i 0.00199309i
\(914\) 0 0
\(915\) 1.03657 + 7.37778i 0.0342678 + 0.243902i
\(916\) 0 0
\(917\) 8.57628i 0.283214i
\(918\) 0 0
\(919\) −53.2770 −1.75745 −0.878723 0.477331i \(-0.841604\pi\)
−0.878723 + 0.477331i \(0.841604\pi\)
\(920\) 0 0
\(921\) 16.6953 0.550130
\(922\) 0 0
\(923\) 6.53035i 0.214949i
\(924\) 0 0
\(925\) 1.41927 + 4.95115i 0.0466654 + 0.162793i
\(926\) 0 0
\(927\) 3.05086i 0.100203i
\(928\) 0 0
\(929\) 7.61285 0.249769 0.124885 0.992171i \(-0.460144\pi\)
0.124885 + 0.992171i \(0.460144\pi\)
\(930\) 0 0
\(931\) −2.09679 −0.0687195
\(932\) 0 0
\(933\) 8.85083i 0.289763i
\(934\) 0 0
\(935\) −2.00000 14.2351i −0.0654070 0.465536i
\(936\) 0 0
\(937\) 17.0825i 0.558061i 0.960282 + 0.279030i \(0.0900130\pi\)
−0.960282 + 0.279030i \(0.909987\pi\)
\(938\) 0 0
\(939\) −21.5625 −0.703665
\(940\) 0 0
\(941\) −17.5965 −0.573631 −0.286816 0.957986i \(-0.592597\pi\)
−0.286816 + 0.957986i \(0.592597\pi\)
\(942\) 0 0
\(943\) 31.3145i 1.01974i
\(944\) 0 0
\(945\) 4.90321 0.688892i 0.159501 0.0224097i
\(946\) 0 0
\(947\) 49.2529i 1.60050i −0.599664 0.800252i \(-0.704699\pi\)
0.599664 0.800252i \(-0.295301\pi\)
\(948\) 0 0
\(949\) 0.161933 0.00525658
\(950\) 0 0
\(951\) −20.2810 −0.657656
\(952\) 0 0
\(953\) 28.8430i 0.934316i 0.884174 + 0.467158i \(0.154722\pi\)
−0.884174 + 0.467158i \(0.845278\pi\)
\(954\) 0 0
\(955\) 11.1066 1.56046i 0.359402 0.0504953i
\(956\) 0 0
\(957\) 1.71900i 0.0555675i
\(958\) 0 0
\(959\) −30.1432 −0.973375
\(960\) 0 0
\(961\) −28.0450 −0.904678
\(962\) 0 0
\(963\) 8.99063i 0.289719i
\(964\) 0 0
\(965\) −6.14965 43.7703i −0.197964 1.40902i
\(966\) 0 0
\(967\) 56.1867i 1.80684i −0.428754 0.903421i \(-0.641047\pi\)
0.428754 0.903421i \(-0.358953\pi\)
\(968\) 0 0
\(969\) 4.90321 0.157514
\(970\) 0 0
\(971\) −1.00937 −0.0323922 −0.0161961 0.999869i \(-0.505156\pi\)
−0.0161961 + 0.999869i \(0.505156\pi\)
\(972\) 0 0
\(973\) 13.7146i 0.439669i
\(974\) 0 0
\(975\) −4.02074 + 1.15257i −0.128767 + 0.0369116i
\(976\) 0 0
\(977\) 27.8938i 0.892403i −0.894932 0.446202i \(-0.852776\pi\)
0.894932 0.446202i \(-0.147224\pi\)
\(978\) 0 0
\(979\) −3.83362 −0.122523
\(980\) 0 0
\(981\) −13.9081 −0.444053
\(982\) 0 0
\(983\) 45.1294i 1.43940i −0.694283 0.719702i \(-0.744278\pi\)
0.694283 0.719702i \(-0.255722\pi\)
\(984\) 0 0
\(985\) 2.86172 + 20.3684i 0.0911821 + 0.648992i
\(986\) 0 0
\(987\) 11.8064i 0.375803i
\(988\) 0 0
\(989\) −1.14272 −0.0363364
\(990\) 0 0
\(991\) −22.2854 −0.707920 −0.353960 0.935260i \(-0.615165\pi\)
−0.353960 + 0.935260i \(0.615165\pi\)
\(992\) 0 0
\(993\) 2.11906i 0.0672464i
\(994\) 0 0
\(995\) −9.51114 + 1.33630i −0.301523 + 0.0423635i
\(996\) 0 0
\(997\) 49.7748i 1.57638i 0.615430 + 0.788192i \(0.288982\pi\)
−0.615430 + 0.788192i \(0.711018\pi\)
\(998\) 0 0
\(999\) 1.03011 0.0325913
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1140.2.f.a.229.6 yes 6
3.2 odd 2 3420.2.f.b.1369.2 6
5.2 odd 4 5700.2.a.y.1.1 3
5.3 odd 4 5700.2.a.x.1.3 3
5.4 even 2 inner 1140.2.f.a.229.3 6
15.14 odd 2 3420.2.f.b.1369.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1140.2.f.a.229.3 6 5.4 even 2 inner
1140.2.f.a.229.6 yes 6 1.1 even 1 trivial
3420.2.f.b.1369.1 6 15.14 odd 2
3420.2.f.b.1369.2 6 3.2 odd 2
5700.2.a.x.1.3 3 5.3 odd 4
5700.2.a.y.1.1 3 5.2 odd 4