Properties

Label 1140.2.e.b
Level $1140$
Weight $2$
Character orbit 1140.e
Analytic conductor $9.103$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1140,2,Mod(569,1140)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1140.569"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1140, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1140 = 2^{2} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1140.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.10294583043\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 16 q^{9} + 24 q^{19} - 12 q^{25} + 24 q^{39} - 52 q^{45} + 16 q^{49} - 28 q^{55} + 8 q^{61} + 56 q^{81} - 28 q^{85} + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
569.1 0 −1.65916 0.497190i 0 −0.826491 + 2.07772i 0 3.18676i 0 2.50560 + 1.64983i 0
569.2 0 −1.65916 0.497190i 0 0.826491 + 2.07772i 0 3.18676i 0 2.50560 + 1.64983i 0
569.3 0 −1.65916 + 0.497190i 0 −0.826491 2.07772i 0 3.18676i 0 2.50560 1.64983i 0
569.4 0 −1.65916 + 0.497190i 0 0.826491 2.07772i 0 3.18676i 0 2.50560 1.64983i 0
569.5 0 −0.800578 1.53593i 0 −2.20515 + 0.370556i 0 2.59637i 0 −1.71815 + 2.45926i 0
569.6 0 −0.800578 1.53593i 0 2.20515 + 0.370556i 0 2.59637i 0 −1.71815 + 2.45926i 0
569.7 0 −0.800578 + 1.53593i 0 −2.20515 0.370556i 0 2.59637i 0 −1.71815 2.45926i 0
569.8 0 −0.800578 + 1.53593i 0 2.20515 0.370556i 0 2.59637i 0 −1.71815 2.45926i 0
569.9 0 −0.325994 1.70110i 0 −1.09737 + 1.94827i 0 1.45033i 0 −2.78746 + 1.10909i 0
569.10 0 −0.325994 1.70110i 0 1.09737 + 1.94827i 0 1.45033i 0 −2.78746 + 1.10909i 0
569.11 0 −0.325994 + 1.70110i 0 −1.09737 1.94827i 0 1.45033i 0 −2.78746 1.10909i 0
569.12 0 −0.325994 + 1.70110i 0 1.09737 1.94827i 0 1.45033i 0 −2.78746 1.10909i 0
569.13 0 0.325994 1.70110i 0 −1.09737 1.94827i 0 1.45033i 0 −2.78746 1.10909i 0
569.14 0 0.325994 1.70110i 0 1.09737 1.94827i 0 1.45033i 0 −2.78746 1.10909i 0
569.15 0 0.325994 + 1.70110i 0 −1.09737 + 1.94827i 0 1.45033i 0 −2.78746 + 1.10909i 0
569.16 0 0.325994 + 1.70110i 0 1.09737 + 1.94827i 0 1.45033i 0 −2.78746 + 1.10909i 0
569.17 0 0.800578 1.53593i 0 −2.20515 0.370556i 0 2.59637i 0 −1.71815 2.45926i 0
569.18 0 0.800578 1.53593i 0 2.20515 0.370556i 0 2.59637i 0 −1.71815 2.45926i 0
569.19 0 0.800578 + 1.53593i 0 −2.20515 + 0.370556i 0 2.59637i 0 −1.71815 + 2.45926i 0
569.20 0 0.800578 + 1.53593i 0 2.20515 + 0.370556i 0 2.59637i 0 −1.71815 + 2.45926i 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 569.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner
19.b odd 2 1 inner
57.d even 2 1 inner
95.d odd 2 1 inner
285.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1140.2.e.b 24
3.b odd 2 1 inner 1140.2.e.b 24
5.b even 2 1 inner 1140.2.e.b 24
15.d odd 2 1 inner 1140.2.e.b 24
19.b odd 2 1 inner 1140.2.e.b 24
57.d even 2 1 inner 1140.2.e.b 24
95.d odd 2 1 inner 1140.2.e.b 24
285.b even 2 1 inner 1140.2.e.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1140.2.e.b 24 1.a even 1 1 trivial
1140.2.e.b 24 3.b odd 2 1 inner
1140.2.e.b 24 5.b even 2 1 inner
1140.2.e.b 24 15.d odd 2 1 inner
1140.2.e.b 24 19.b odd 2 1 inner
1140.2.e.b 24 57.d even 2 1 inner
1140.2.e.b 24 95.d odd 2 1 inner
1140.2.e.b 24 285.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{6} + 19T_{7}^{4} + 104T_{7}^{2} + 144 \) acting on \(S_{2}^{\mathrm{new}}(1140, [\chi])\). Copy content Toggle raw display