Newspace parameters
| Level: | \( N \) | \(=\) | \( 1140 = 2^{2} \cdot 3 \cdot 5 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1140.e (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(9.10294583043\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 569.1 | 0 | −1.65916 | − | 0.497190i | 0 | −0.826491 | + | 2.07772i | 0 | 3.18676i | 0 | 2.50560 | + | 1.64983i | 0 | ||||||||||||
| 569.2 | 0 | −1.65916 | − | 0.497190i | 0 | 0.826491 | + | 2.07772i | 0 | − | 3.18676i | 0 | 2.50560 | + | 1.64983i | 0 | |||||||||||
| 569.3 | 0 | −1.65916 | + | 0.497190i | 0 | −0.826491 | − | 2.07772i | 0 | − | 3.18676i | 0 | 2.50560 | − | 1.64983i | 0 | |||||||||||
| 569.4 | 0 | −1.65916 | + | 0.497190i | 0 | 0.826491 | − | 2.07772i | 0 | 3.18676i | 0 | 2.50560 | − | 1.64983i | 0 | ||||||||||||
| 569.5 | 0 | −0.800578 | − | 1.53593i | 0 | −2.20515 | + | 0.370556i | 0 | − | 2.59637i | 0 | −1.71815 | + | 2.45926i | 0 | |||||||||||
| 569.6 | 0 | −0.800578 | − | 1.53593i | 0 | 2.20515 | + | 0.370556i | 0 | 2.59637i | 0 | −1.71815 | + | 2.45926i | 0 | ||||||||||||
| 569.7 | 0 | −0.800578 | + | 1.53593i | 0 | −2.20515 | − | 0.370556i | 0 | 2.59637i | 0 | −1.71815 | − | 2.45926i | 0 | ||||||||||||
| 569.8 | 0 | −0.800578 | + | 1.53593i | 0 | 2.20515 | − | 0.370556i | 0 | − | 2.59637i | 0 | −1.71815 | − | 2.45926i | 0 | |||||||||||
| 569.9 | 0 | −0.325994 | − | 1.70110i | 0 | −1.09737 | + | 1.94827i | 0 | − | 1.45033i | 0 | −2.78746 | + | 1.10909i | 0 | |||||||||||
| 569.10 | 0 | −0.325994 | − | 1.70110i | 0 | 1.09737 | + | 1.94827i | 0 | 1.45033i | 0 | −2.78746 | + | 1.10909i | 0 | ||||||||||||
| 569.11 | 0 | −0.325994 | + | 1.70110i | 0 | −1.09737 | − | 1.94827i | 0 | 1.45033i | 0 | −2.78746 | − | 1.10909i | 0 | ||||||||||||
| 569.12 | 0 | −0.325994 | + | 1.70110i | 0 | 1.09737 | − | 1.94827i | 0 | − | 1.45033i | 0 | −2.78746 | − | 1.10909i | 0 | |||||||||||
| 569.13 | 0 | 0.325994 | − | 1.70110i | 0 | −1.09737 | − | 1.94827i | 0 | 1.45033i | 0 | −2.78746 | − | 1.10909i | 0 | ||||||||||||
| 569.14 | 0 | 0.325994 | − | 1.70110i | 0 | 1.09737 | − | 1.94827i | 0 | − | 1.45033i | 0 | −2.78746 | − | 1.10909i | 0 | |||||||||||
| 569.15 | 0 | 0.325994 | + | 1.70110i | 0 | −1.09737 | + | 1.94827i | 0 | − | 1.45033i | 0 | −2.78746 | + | 1.10909i | 0 | |||||||||||
| 569.16 | 0 | 0.325994 | + | 1.70110i | 0 | 1.09737 | + | 1.94827i | 0 | 1.45033i | 0 | −2.78746 | + | 1.10909i | 0 | ||||||||||||
| 569.17 | 0 | 0.800578 | − | 1.53593i | 0 | −2.20515 | − | 0.370556i | 0 | 2.59637i | 0 | −1.71815 | − | 2.45926i | 0 | ||||||||||||
| 569.18 | 0 | 0.800578 | − | 1.53593i | 0 | 2.20515 | − | 0.370556i | 0 | − | 2.59637i | 0 | −1.71815 | − | 2.45926i | 0 | |||||||||||
| 569.19 | 0 | 0.800578 | + | 1.53593i | 0 | −2.20515 | + | 0.370556i | 0 | − | 2.59637i | 0 | −1.71815 | + | 2.45926i | 0 | |||||||||||
| 569.20 | 0 | 0.800578 | + | 1.53593i | 0 | 2.20515 | + | 0.370556i | 0 | 2.59637i | 0 | −1.71815 | + | 2.45926i | 0 | ||||||||||||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 5.b | even | 2 | 1 | inner |
| 15.d | odd | 2 | 1 | inner |
| 19.b | odd | 2 | 1 | inner |
| 57.d | even | 2 | 1 | inner |
| 95.d | odd | 2 | 1 | inner |
| 285.b | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 1140.2.e.b | ✓ | 24 |
| 3.b | odd | 2 | 1 | inner | 1140.2.e.b | ✓ | 24 |
| 5.b | even | 2 | 1 | inner | 1140.2.e.b | ✓ | 24 |
| 15.d | odd | 2 | 1 | inner | 1140.2.e.b | ✓ | 24 |
| 19.b | odd | 2 | 1 | inner | 1140.2.e.b | ✓ | 24 |
| 57.d | even | 2 | 1 | inner | 1140.2.e.b | ✓ | 24 |
| 95.d | odd | 2 | 1 | inner | 1140.2.e.b | ✓ | 24 |
| 285.b | even | 2 | 1 | inner | 1140.2.e.b | ✓ | 24 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 1140.2.e.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 1140.2.e.b | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
| 1140.2.e.b | ✓ | 24 | 5.b | even | 2 | 1 | inner |
| 1140.2.e.b | ✓ | 24 | 15.d | odd | 2 | 1 | inner |
| 1140.2.e.b | ✓ | 24 | 19.b | odd | 2 | 1 | inner |
| 1140.2.e.b | ✓ | 24 | 57.d | even | 2 | 1 | inner |
| 1140.2.e.b | ✓ | 24 | 95.d | odd | 2 | 1 | inner |
| 1140.2.e.b | ✓ | 24 | 285.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{6} + 19T_{7}^{4} + 104T_{7}^{2} + 144 \)
acting on \(S_{2}^{\mathrm{new}}(1140, [\chi])\).