Properties

Label 1140.2.e.a
Level $1140$
Weight $2$
Character orbit 1140.e
Analytic conductor $9.103$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1140,2,Mod(569,1140)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1140.569"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1140, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1140 = 2^{2} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1140.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.10294583043\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.11007531417600000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{12} + 48x^{8} - 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{6} q^{3} + \beta_{5} q^{5} - \beta_{9} q^{7} + ( - \beta_{5} - \beta_{4} + 1) q^{9} - \beta_{3} q^{11} + (\beta_{7} - \beta_{6}) q^{13} - \beta_{14} q^{15} + (\beta_{8} + \beta_{5}) q^{17} + ( - \beta_{2} - 2) q^{19}+ \cdots + ( - \beta_{3} - 2 \beta_1 - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{9} - 32 q^{19} + 16 q^{25} - 48 q^{39} + 64 q^{45} - 32 q^{49} + 16 q^{55} + 16 q^{61} - 112 q^{81} + 48 q^{85} - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 7x^{12} + 48x^{8} - 7x^{4} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{12} + 161 ) / 24 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{12} + 14\nu^{8} - 94\nu^{4} + 7 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -7\nu^{15} - 131\nu^{13} + 912\nu^{9} - 6288\nu^{5} - 2351\nu^{3} + 917\nu ) / 144 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - \nu^{15} - 27 \nu^{14} - 17 \nu^{13} + 192 \nu^{10} + 120 \nu^{9} - 1320 \nu^{6} - 816 \nu^{5} + \cdots + 119 \nu ) / 72 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - \nu^{15} + 27 \nu^{14} - 17 \nu^{13} - 192 \nu^{10} + 120 \nu^{9} + 1320 \nu^{6} - 816 \nu^{5} + \cdots + 119 \nu ) / 72 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - \nu^{15} - 28 \nu^{14} + 17 \nu^{13} + 192 \nu^{10} - 120 \nu^{9} - 1320 \nu^{6} + 816 \nu^{5} + \cdots - 119 \nu ) / 72 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 5 \nu^{15} - 56 \nu^{14} + 97 \nu^{13} + 384 \nu^{10} - 672 \nu^{9} - 2640 \nu^{6} + 4656 \nu^{5} + \cdots - 679 \nu ) / 144 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( \nu^{15} - 60 \nu^{14} + 17 \nu^{13} + 432 \nu^{10} - 120 \nu^{9} - 2952 \nu^{6} + 816 \nu^{5} + \cdots - 119 \nu ) / 72 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 37\nu^{15} + 7\nu^{13} - 256\nu^{11} - 48\nu^{9} + 1760\nu^{7} + 336\nu^{5} - 131\nu^{3} + 47\nu ) / 48 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - \nu^{15} - 133 \nu^{14} + 17 \nu^{13} + 912 \nu^{10} - 120 \nu^{9} - 6216 \nu^{6} + 816 \nu^{5} + \cdots - 119 \nu ) / 72 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 37 \nu^{15} - 7 \nu^{13} - 14 \nu^{12} - 256 \nu^{11} + 48 \nu^{9} + 96 \nu^{8} + 1760 \nu^{7} + \cdots + 50 ) / 48 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 89\nu^{15} + \nu^{13} - 624\nu^{11} + 4272\nu^{7} - 623\nu^{3} + 233\nu ) / 72 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 89 \nu^{15} - 56 \nu^{14} + \nu^{13} + 21 \nu^{12} + 624 \nu^{11} + 384 \nu^{10} - 144 \nu^{8} + \cdots - 75 ) / 72 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 91 \nu^{15} - 56 \nu^{14} - 35 \nu^{13} - 21 \nu^{12} - 624 \nu^{11} + 384 \nu^{10} + 240 \nu^{9} + \cdots + 75 ) / 72 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 289 \nu^{15} + 112 \nu^{14} - 23 \nu^{13} + 42 \nu^{12} - 2016 \nu^{11} - 768 \nu^{10} + 144 \nu^{9} + \cdots - 150 ) / 144 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{15} - \beta_{13} - 2\beta_{11} + 3\beta_{9} - \beta_{7} + \beta_{6} - \beta_{5} - \beta_{4} + \beta_{3} ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{14} - \beta_{13} + \beta_{10} - 3\beta_{8} - 3\beta_{6} - 6\beta_{5} + 3\beta_{4} ) / 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{14} - \beta_{13} - 4\beta_{7} + 8\beta_{6} + 7\beta_{5} + 7\beta_{4} - 4\beta_{3} ) / 12 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 7\beta_{15} + 7\beta_{13} - 7\beta_{11} + 9\beta_{2} - 3\beta _1 + 21 ) / 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 2 \beta_{15} + 6 \beta_{14} - 5 \beta_{13} - 9 \beta_{12} - 13 \beta_{11} + 15 \beta_{9} + \cdots - 5 \beta_{3} ) / 12 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -5\beta_{14} - 5\beta_{13} + 8\beta_{10} - 18\beta_{6} ) / 6 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 5 \beta_{15} - 16 \beta_{14} + 13 \beta_{13} - 24 \beta_{12} + 34 \beta_{11} + 39 \beta_{9} + \cdots - 13 \beta_{3} ) / 12 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 47\beta_{15} + 47\beta_{13} - 47\beta_{11} + 63\beta_{2} + 21\beta _1 - 141 ) / 12 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 21\beta_{14} + 21\beta_{13} + 68\beta_{7} - 152\beta_{6} + 131\beta_{5} + 131\beta_{4} - 68\beta_{3} ) / 12 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( -34\beta_{14} - 34\beta_{13} + 55\beta_{10} + 165\beta_{8} - 123\beta_{6} + 267\beta_{5} - 102\beta_{4} ) / 12 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 34 \beta_{15} - 55 \beta_{14} + 144 \beta_{13} - 165 \beta_{12} + 233 \beta_{11} + 267 \beta_{9} + \cdots + 89 \beta_{3} ) / 12 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 24\beta _1 - 161 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 89 \beta_{15} - 144 \beta_{14} + 377 \beta_{13} + 432 \beta_{12} + 610 \beta_{11} + \cdots - 233 \beta_{3} ) / 12 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 233\beta_{14} + 233\beta_{13} - 377\beta_{10} + 1131\beta_{8} + 843\beta_{6} + 1830\beta_{5} - 699\beta_{4} ) / 12 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 377\beta_{14} + 377\beta_{13} + 1220\beta_{7} - 2728\beta_{6} - 2351\beta_{5} - 2351\beta_{4} + 1220\beta_{3} ) / 12 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1140\mathbb{Z}\right)^\times\).

\(n\) \(457\) \(571\) \(761\) \(781\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
569.1
0.596975 + 0.159959i
−1.56290 0.418778i
0.418778 + 1.56290i
−0.159959 0.596975i
−1.56290 + 0.418778i
0.596975 0.159959i
−0.159959 + 0.596975i
0.418778 1.56290i
1.56290 + 0.418778i
−0.596975 0.159959i
0.159959 + 0.596975i
−0.418778 1.56290i
−0.596975 + 0.159959i
1.56290 0.418778i
−0.418778 + 1.56290i
0.159959 0.596975i
0 −1.41421 1.00000i 0 −1.73205 1.41421i 0 1.51387i 0 1.00000 + 2.82843i 0
569.2 0 −1.41421 1.00000i 0 −1.73205 1.41421i 0 3.96336i 0 1.00000 + 2.82843i 0
569.3 0 −1.41421 1.00000i 0 1.73205 1.41421i 0 3.96336i 0 1.00000 + 2.82843i 0
569.4 0 −1.41421 1.00000i 0 1.73205 1.41421i 0 1.51387i 0 1.00000 + 2.82843i 0
569.5 0 −1.41421 + 1.00000i 0 −1.73205 + 1.41421i 0 3.96336i 0 1.00000 2.82843i 0
569.6 0 −1.41421 + 1.00000i 0 −1.73205 + 1.41421i 0 1.51387i 0 1.00000 2.82843i 0
569.7 0 −1.41421 + 1.00000i 0 1.73205 + 1.41421i 0 1.51387i 0 1.00000 2.82843i 0
569.8 0 −1.41421 + 1.00000i 0 1.73205 + 1.41421i 0 3.96336i 0 1.00000 2.82843i 0
569.9 0 1.41421 1.00000i 0 −1.73205 + 1.41421i 0 3.96336i 0 1.00000 2.82843i 0
569.10 0 1.41421 1.00000i 0 −1.73205 + 1.41421i 0 1.51387i 0 1.00000 2.82843i 0
569.11 0 1.41421 1.00000i 0 1.73205 + 1.41421i 0 1.51387i 0 1.00000 2.82843i 0
569.12 0 1.41421 1.00000i 0 1.73205 + 1.41421i 0 3.96336i 0 1.00000 2.82843i 0
569.13 0 1.41421 + 1.00000i 0 −1.73205 1.41421i 0 1.51387i 0 1.00000 + 2.82843i 0
569.14 0 1.41421 + 1.00000i 0 −1.73205 1.41421i 0 3.96336i 0 1.00000 + 2.82843i 0
569.15 0 1.41421 + 1.00000i 0 1.73205 1.41421i 0 3.96336i 0 1.00000 + 2.82843i 0
569.16 0 1.41421 + 1.00000i 0 1.73205 1.41421i 0 1.51387i 0 1.00000 + 2.82843i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 569.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner
19.b odd 2 1 inner
57.d even 2 1 inner
95.d odd 2 1 inner
285.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1140.2.e.a 16
3.b odd 2 1 inner 1140.2.e.a 16
5.b even 2 1 inner 1140.2.e.a 16
15.d odd 2 1 inner 1140.2.e.a 16
19.b odd 2 1 inner 1140.2.e.a 16
57.d even 2 1 inner 1140.2.e.a 16
95.d odd 2 1 inner 1140.2.e.a 16
285.b even 2 1 inner 1140.2.e.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1140.2.e.a 16 1.a even 1 1 trivial
1140.2.e.a 16 3.b odd 2 1 inner
1140.2.e.a 16 5.b even 2 1 inner
1140.2.e.a 16 15.d odd 2 1 inner
1140.2.e.a 16 19.b odd 2 1 inner
1140.2.e.a 16 57.d even 2 1 inner
1140.2.e.a 16 95.d odd 2 1 inner
1140.2.e.a 16 285.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 18T_{7}^{2} + 36 \) acting on \(S_{2}^{\mathrm{new}}(1140, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{4} - 2 T^{2} + 9)^{4} \) Copy content Toggle raw display
$5$ \( (T^{4} - 2 T^{2} + 25)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 18 T^{2} + 36)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} + 46 T^{2} + 484)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} - 54 T^{2} + 324)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} - 36 T^{2} + 144)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 4 T + 19)^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} - 84 T^{2} + 144)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} - 42 T^{2} + 36)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 84 T^{2} + 144)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} - 126 T^{2} + 324)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} - 42 T^{2} + 36)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 90 T^{2} + 900)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} - 36 T^{2} + 144)^{4} \) Copy content Toggle raw display
$53$ \( (T^{4} + 108 T^{2} + 1296)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 120)^{8} \) Copy content Toggle raw display
$61$ \( (T^{2} - 2 T - 44)^{8} \) Copy content Toggle raw display
$67$ \( (T^{4} - 216 T^{2} + 5184)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} - 168 T^{2} + 576)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} + 72 T^{2} + 576)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 108)^{8} \) Copy content Toggle raw display
$83$ \( (T^{4} - 324 T^{2} + 11664)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} - 258 T^{2} + 12996)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} - 54 T^{2} + 324)^{4} \) Copy content Toggle raw display
show more
show less