Properties

Label 1120.2.x.f.127.6
Level $1120$
Weight $2$
Character 1120.127
Analytic conductor $8.943$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(127,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.x (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,-4,0,0,0,0,0,0,0,-12,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} + 4 x^{18} + 16 x^{17} - 56 x^{16} - 24 x^{15} + 512 x^{14} + 856 x^{13} + 402 x^{12} + \cdots + 5000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 127.6
Root \(-1.87480 + 0.776568i\) of defining polynomial
Character \(\chi\) \(=\) 1120.127
Dual form 1120.2.x.f.1023.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.254210 + 0.254210i) q^{3} +(-0.655120 + 2.13795i) q^{5} +(0.707107 - 0.707107i) q^{7} -2.87075i q^{9} +3.31853i q^{11} +(-4.49218 + 4.49218i) q^{13} +(-0.710025 + 0.376949i) q^{15} +(-1.16279 - 1.16279i) q^{17} -5.55688 q^{19} +0.359507 q^{21} +(3.40931 + 3.40931i) q^{23} +(-4.14164 - 2.80122i) q^{25} +(1.49240 - 1.49240i) q^{27} -2.45071i q^{29} +4.69312i q^{31} +(-0.843603 + 0.843603i) q^{33} +(1.04852 + 1.97500i) q^{35} +(-1.50708 - 1.50708i) q^{37} -2.28391 q^{39} -5.25434 q^{41} +(5.00470 + 5.00470i) q^{43} +(6.13752 + 1.88069i) q^{45} +(-4.11978 + 4.11978i) q^{47} -1.00000i q^{49} -0.591185i q^{51} +(2.04151 - 2.04151i) q^{53} +(-7.09485 - 2.17404i) q^{55} +(-1.41261 - 1.41261i) q^{57} -4.21228 q^{59} -6.22068 q^{61} +(-2.02993 - 2.02993i) q^{63} +(-6.66113 - 12.5470i) q^{65} +(-6.24893 + 6.24893i) q^{67} +1.73336i q^{69} +9.56426i q^{71} +(-3.14663 + 3.14663i) q^{73} +(-0.340746 - 1.76494i) q^{75} +(2.34656 + 2.34656i) q^{77} +3.81321 q^{79} -7.85350 q^{81} +(-5.49953 - 5.49953i) q^{83} +(3.24775 - 1.72422i) q^{85} +(0.622993 - 0.622993i) q^{87} -10.9771i q^{89} +6.35291i q^{91} +(-1.19304 + 1.19304i) q^{93} +(3.64042 - 11.8803i) q^{95} +(-5.57435 - 5.57435i) q^{97} +9.52670 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{5} - 12 q^{13} + 8 q^{15} - 4 q^{17} - 24 q^{19} + 8 q^{23} + 4 q^{25} - 16 q^{33} - 4 q^{35} + 4 q^{37} + 8 q^{39} + 32 q^{41} - 8 q^{43} + 32 q^{45} + 24 q^{47} + 28 q^{53} + 24 q^{59} + 24 q^{61}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.254210 + 0.254210i 0.146768 + 0.146768i 0.776673 0.629905i \(-0.216906\pi\)
−0.629905 + 0.776673i \(0.716906\pi\)
\(4\) 0 0
\(5\) −0.655120 + 2.13795i −0.292979 + 0.956119i
\(6\) 0 0
\(7\) 0.707107 0.707107i 0.267261 0.267261i
\(8\) 0 0
\(9\) 2.87075i 0.956918i
\(10\) 0 0
\(11\) 3.31853i 1.00058i 0.865859 + 0.500288i \(0.166772\pi\)
−0.865859 + 0.500288i \(0.833228\pi\)
\(12\) 0 0
\(13\) −4.49218 + 4.49218i −1.24591 + 1.24591i −0.288396 + 0.957511i \(0.593122\pi\)
−0.957511 + 0.288396i \(0.906878\pi\)
\(14\) 0 0
\(15\) −0.710025 + 0.376949i −0.183328 + 0.0973278i
\(16\) 0 0
\(17\) −1.16279 1.16279i −0.282018 0.282018i 0.551895 0.833913i \(-0.313905\pi\)
−0.833913 + 0.551895i \(0.813905\pi\)
\(18\) 0 0
\(19\) −5.55688 −1.27484 −0.637418 0.770518i \(-0.719997\pi\)
−0.637418 + 0.770518i \(0.719997\pi\)
\(20\) 0 0
\(21\) 0.359507 0.0784508
\(22\) 0 0
\(23\) 3.40931 + 3.40931i 0.710890 + 0.710890i 0.966721 0.255832i \(-0.0823493\pi\)
−0.255832 + 0.966721i \(0.582349\pi\)
\(24\) 0 0
\(25\) −4.14164 2.80122i −0.828327 0.560245i
\(26\) 0 0
\(27\) 1.49240 1.49240i 0.287213 0.287213i
\(28\) 0 0
\(29\) 2.45071i 0.455085i −0.973768 0.227542i \(-0.926931\pi\)
0.973768 0.227542i \(-0.0730690\pi\)
\(30\) 0 0
\(31\) 4.69312i 0.842908i 0.906850 + 0.421454i \(0.138480\pi\)
−0.906850 + 0.421454i \(0.861520\pi\)
\(32\) 0 0
\(33\) −0.843603 + 0.843603i −0.146853 + 0.146853i
\(34\) 0 0
\(35\) 1.04852 + 1.97500i 0.177232 + 0.333835i
\(36\) 0 0
\(37\) −1.50708 1.50708i −0.247763 0.247763i 0.572289 0.820052i \(-0.306055\pi\)
−0.820052 + 0.572289i \(0.806055\pi\)
\(38\) 0 0
\(39\) −2.28391 −0.365719
\(40\) 0 0
\(41\) −5.25434 −0.820590 −0.410295 0.911953i \(-0.634574\pi\)
−0.410295 + 0.911953i \(0.634574\pi\)
\(42\) 0 0
\(43\) 5.00470 + 5.00470i 0.763210 + 0.763210i 0.976901 0.213692i \(-0.0685488\pi\)
−0.213692 + 0.976901i \(0.568549\pi\)
\(44\) 0 0
\(45\) 6.13752 + 1.88069i 0.914928 + 0.280356i
\(46\) 0 0
\(47\) −4.11978 + 4.11978i −0.600931 + 0.600931i −0.940560 0.339628i \(-0.889699\pi\)
0.339628 + 0.940560i \(0.389699\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 0.591185i 0.0827825i
\(52\) 0 0
\(53\) 2.04151 2.04151i 0.280422 0.280422i −0.552855 0.833277i \(-0.686462\pi\)
0.833277 + 0.552855i \(0.186462\pi\)
\(54\) 0 0
\(55\) −7.09485 2.17404i −0.956669 0.293147i
\(56\) 0 0
\(57\) −1.41261 1.41261i −0.187105 0.187105i
\(58\) 0 0
\(59\) −4.21228 −0.548393 −0.274196 0.961674i \(-0.588412\pi\)
−0.274196 + 0.961674i \(0.588412\pi\)
\(60\) 0 0
\(61\) −6.22068 −0.796476 −0.398238 0.917282i \(-0.630378\pi\)
−0.398238 + 0.917282i \(0.630378\pi\)
\(62\) 0 0
\(63\) −2.02993 2.02993i −0.255747 0.255747i
\(64\) 0 0
\(65\) −6.66113 12.5470i −0.826212 1.55626i
\(66\) 0 0
\(67\) −6.24893 + 6.24893i −0.763429 + 0.763429i −0.976940 0.213512i \(-0.931510\pi\)
0.213512 + 0.976940i \(0.431510\pi\)
\(68\) 0 0
\(69\) 1.73336i 0.208672i
\(70\) 0 0
\(71\) 9.56426i 1.13507i 0.823350 + 0.567534i \(0.192103\pi\)
−0.823350 + 0.567534i \(0.807897\pi\)
\(72\) 0 0
\(73\) −3.14663 + 3.14663i −0.368286 + 0.368286i −0.866852 0.498566i \(-0.833860\pi\)
0.498566 + 0.866852i \(0.333860\pi\)
\(74\) 0 0
\(75\) −0.340746 1.76494i −0.0393460 0.203798i
\(76\) 0 0
\(77\) 2.34656 + 2.34656i 0.267415 + 0.267415i
\(78\) 0 0
\(79\) 3.81321 0.429019 0.214510 0.976722i \(-0.431185\pi\)
0.214510 + 0.976722i \(0.431185\pi\)
\(80\) 0 0
\(81\) −7.85350 −0.872611
\(82\) 0 0
\(83\) −5.49953 5.49953i −0.603652 0.603652i 0.337628 0.941280i \(-0.390376\pi\)
−0.941280 + 0.337628i \(0.890376\pi\)
\(84\) 0 0
\(85\) 3.24775 1.72422i 0.352268 0.187018i
\(86\) 0 0
\(87\) 0.622993 0.622993i 0.0667919 0.0667919i
\(88\) 0 0
\(89\) 10.9771i 1.16357i −0.813341 0.581787i \(-0.802354\pi\)
0.813341 0.581787i \(-0.197646\pi\)
\(90\) 0 0
\(91\) 6.35291i 0.665965i
\(92\) 0 0
\(93\) −1.19304 + 1.19304i −0.123712 + 0.123712i
\(94\) 0 0
\(95\) 3.64042 11.8803i 0.373500 1.21889i
\(96\) 0 0
\(97\) −5.57435 5.57435i −0.565990 0.565990i 0.365013 0.931003i \(-0.381065\pi\)
−0.931003 + 0.365013i \(0.881065\pi\)
\(98\) 0 0
\(99\) 9.52670 0.957469
\(100\) 0 0
\(101\) −7.63835 −0.760044 −0.380022 0.924977i \(-0.624084\pi\)
−0.380022 + 0.924977i \(0.624084\pi\)
\(102\) 0 0
\(103\) 12.6697 + 12.6697i 1.24838 + 1.24838i 0.956436 + 0.291942i \(0.0943013\pi\)
0.291942 + 0.956436i \(0.405699\pi\)
\(104\) 0 0
\(105\) −0.235520 + 0.768607i −0.0229844 + 0.0750083i
\(106\) 0 0
\(107\) 9.28851 9.28851i 0.897954 0.897954i −0.0973005 0.995255i \(-0.531021\pi\)
0.995255 + 0.0973005i \(0.0310208\pi\)
\(108\) 0 0
\(109\) 19.2678i 1.84552i 0.385376 + 0.922760i \(0.374072\pi\)
−0.385376 + 0.922760i \(0.625928\pi\)
\(110\) 0 0
\(111\) 0.766229i 0.0727273i
\(112\) 0 0
\(113\) −4.63119 + 4.63119i −0.435666 + 0.435666i −0.890550 0.454885i \(-0.849680\pi\)
0.454885 + 0.890550i \(0.349680\pi\)
\(114\) 0 0
\(115\) −9.52242 + 5.05541i −0.887970 + 0.471420i
\(116\) 0 0
\(117\) 12.8960 + 12.8960i 1.19223 + 1.19223i
\(118\) 0 0
\(119\) −1.64443 −0.150745
\(120\) 0 0
\(121\) −0.0126652 −0.00115139
\(122\) 0 0
\(123\) −1.33570 1.33570i −0.120436 0.120436i
\(124\) 0 0
\(125\) 8.70214 7.01946i 0.778343 0.627840i
\(126\) 0 0
\(127\) 7.98110 7.98110i 0.708208 0.708208i −0.257950 0.966158i \(-0.583047\pi\)
0.966158 + 0.257950i \(0.0830471\pi\)
\(128\) 0 0
\(129\) 2.54449i 0.224030i
\(130\) 0 0
\(131\) 1.55532i 0.135889i −0.997689 0.0679443i \(-0.978356\pi\)
0.997689 0.0679443i \(-0.0216440\pi\)
\(132\) 0 0
\(133\) −3.92931 + 3.92931i −0.340714 + 0.340714i
\(134\) 0 0
\(135\) 2.21298 + 4.16838i 0.190463 + 0.358757i
\(136\) 0 0
\(137\) 15.8901 + 15.8901i 1.35758 + 1.35758i 0.876887 + 0.480697i \(0.159616\pi\)
0.480697 + 0.876887i \(0.340384\pi\)
\(138\) 0 0
\(139\) 21.5437 1.82731 0.913656 0.406488i \(-0.133247\pi\)
0.913656 + 0.406488i \(0.133247\pi\)
\(140\) 0 0
\(141\) −2.09457 −0.176395
\(142\) 0 0
\(143\) −14.9075 14.9075i −1.24662 1.24662i
\(144\) 0 0
\(145\) 5.23948 + 1.60551i 0.435115 + 0.133330i
\(146\) 0 0
\(147\) 0.254210 0.254210i 0.0209669 0.0209669i
\(148\) 0 0
\(149\) 5.14952i 0.421865i −0.977501 0.210933i \(-0.932350\pi\)
0.977501 0.210933i \(-0.0676501\pi\)
\(150\) 0 0
\(151\) 9.45373i 0.769333i 0.923056 + 0.384667i \(0.125684\pi\)
−0.923056 + 0.384667i \(0.874316\pi\)
\(152\) 0 0
\(153\) −3.33809 + 3.33809i −0.269868 + 0.269868i
\(154\) 0 0
\(155\) −10.0336 3.07455i −0.805921 0.246954i
\(156\) 0 0
\(157\) 7.78569 + 7.78569i 0.621365 + 0.621365i 0.945880 0.324515i \(-0.105201\pi\)
−0.324515 + 0.945880i \(0.605201\pi\)
\(158\) 0 0
\(159\) 1.03794 0.0823141
\(160\) 0 0
\(161\) 4.82149 0.379986
\(162\) 0 0
\(163\) 6.12207 + 6.12207i 0.479517 + 0.479517i 0.904977 0.425460i \(-0.139888\pi\)
−0.425460 + 0.904977i \(0.639888\pi\)
\(164\) 0 0
\(165\) −1.25092 2.35624i −0.0973839 0.183433i
\(166\) 0 0
\(167\) 0.311698 0.311698i 0.0241199 0.0241199i −0.694944 0.719064i \(-0.744571\pi\)
0.719064 + 0.694944i \(0.244571\pi\)
\(168\) 0 0
\(169\) 27.3594i 2.10457i
\(170\) 0 0
\(171\) 15.9524i 1.21991i
\(172\) 0 0
\(173\) 13.4563 13.4563i 1.02307 1.02307i 0.0233381 0.999728i \(-0.492571\pi\)
0.999728 0.0233381i \(-0.00742941\pi\)
\(174\) 0 0
\(175\) −4.90934 + 0.947815i −0.371111 + 0.0716481i
\(176\) 0 0
\(177\) −1.07080 1.07080i −0.0804865 0.0804865i
\(178\) 0 0
\(179\) −17.3632 −1.29779 −0.648894 0.760879i \(-0.724768\pi\)
−0.648894 + 0.760879i \(0.724768\pi\)
\(180\) 0 0
\(181\) −5.72430 −0.425484 −0.212742 0.977108i \(-0.568239\pi\)
−0.212742 + 0.977108i \(0.568239\pi\)
\(182\) 0 0
\(183\) −1.58136 1.58136i −0.116897 0.116897i
\(184\) 0 0
\(185\) 4.20938 2.23474i 0.309480 0.164301i
\(186\) 0 0
\(187\) 3.85876 3.85876i 0.282181 0.282181i
\(188\) 0 0
\(189\) 2.11058i 0.153522i
\(190\) 0 0
\(191\) 20.6512i 1.49426i −0.664675 0.747132i \(-0.731430\pi\)
0.664675 0.747132i \(-0.268570\pi\)
\(192\) 0 0
\(193\) −0.417957 + 0.417957i −0.0300852 + 0.0300852i −0.721989 0.691904i \(-0.756772\pi\)
0.691904 + 0.721989i \(0.256772\pi\)
\(194\) 0 0
\(195\) 1.49624 4.88289i 0.107148 0.349671i
\(196\) 0 0
\(197\) 4.65803 + 4.65803i 0.331871 + 0.331871i 0.853297 0.521426i \(-0.174600\pi\)
−0.521426 + 0.853297i \(0.674600\pi\)
\(198\) 0 0
\(199\) −22.3934 −1.58743 −0.793713 0.608293i \(-0.791855\pi\)
−0.793713 + 0.608293i \(0.791855\pi\)
\(200\) 0 0
\(201\) −3.17708 −0.224094
\(202\) 0 0
\(203\) −1.73291 1.73291i −0.121626 0.121626i
\(204\) 0 0
\(205\) 3.44222 11.2335i 0.240415 0.784582i
\(206\) 0 0
\(207\) 9.78728 9.78728i 0.680263 0.680263i
\(208\) 0 0
\(209\) 18.4407i 1.27557i
\(210\) 0 0
\(211\) 28.6661i 1.97346i −0.162384 0.986728i \(-0.551918\pi\)
0.162384 0.986728i \(-0.448082\pi\)
\(212\) 0 0
\(213\) −2.43133 + 2.43133i −0.166592 + 0.166592i
\(214\) 0 0
\(215\) −13.9785 + 7.42111i −0.953323 + 0.506115i
\(216\) 0 0
\(217\) 3.31853 + 3.31853i 0.225277 + 0.225277i
\(218\) 0 0
\(219\) −1.59981 −0.108105
\(220\) 0 0
\(221\) 10.4469 0.702737
\(222\) 0 0
\(223\) 6.72214 + 6.72214i 0.450148 + 0.450148i 0.895403 0.445256i \(-0.146887\pi\)
−0.445256 + 0.895403i \(0.646887\pi\)
\(224\) 0 0
\(225\) −8.04163 + 11.8896i −0.536108 + 0.792641i
\(226\) 0 0
\(227\) 12.2339 12.2339i 0.811993 0.811993i −0.172940 0.984932i \(-0.555327\pi\)
0.984932 + 0.172940i \(0.0553266\pi\)
\(228\) 0 0
\(229\) 22.3611i 1.47767i 0.673889 + 0.738833i \(0.264623\pi\)
−0.673889 + 0.738833i \(0.735377\pi\)
\(230\) 0 0
\(231\) 1.19304i 0.0784960i
\(232\) 0 0
\(233\) 5.75039 5.75039i 0.376720 0.376720i −0.493197 0.869918i \(-0.664172\pi\)
0.869918 + 0.493197i \(0.164172\pi\)
\(234\) 0 0
\(235\) −6.10892 11.5068i −0.398502 0.750622i
\(236\) 0 0
\(237\) 0.969354 + 0.969354i 0.0629663 + 0.0629663i
\(238\) 0 0
\(239\) −15.6017 −1.00919 −0.504594 0.863357i \(-0.668358\pi\)
−0.504594 + 0.863357i \(0.668358\pi\)
\(240\) 0 0
\(241\) 15.6819 1.01016 0.505080 0.863073i \(-0.331463\pi\)
0.505080 + 0.863073i \(0.331463\pi\)
\(242\) 0 0
\(243\) −6.47364 6.47364i −0.415284 0.415284i
\(244\) 0 0
\(245\) 2.13795 + 0.655120i 0.136588 + 0.0418541i
\(246\) 0 0
\(247\) 24.9625 24.9625i 1.58833 1.58833i
\(248\) 0 0
\(249\) 2.79607i 0.177194i
\(250\) 0 0
\(251\) 17.8444i 1.12633i 0.826344 + 0.563166i \(0.190417\pi\)
−0.826344 + 0.563166i \(0.809583\pi\)
\(252\) 0 0
\(253\) −11.3139 + 11.3139i −0.711299 + 0.711299i
\(254\) 0 0
\(255\) 1.26392 + 0.387297i 0.0791499 + 0.0242535i
\(256\) 0 0
\(257\) 20.3587 + 20.3587i 1.26994 + 1.26994i 0.946118 + 0.323822i \(0.104968\pi\)
0.323822 + 0.946118i \(0.395032\pi\)
\(258\) 0 0
\(259\) −2.13133 −0.132435
\(260\) 0 0
\(261\) −7.03537 −0.435479
\(262\) 0 0
\(263\) 21.0482 + 21.0482i 1.29789 + 1.29789i 0.929785 + 0.368104i \(0.119993\pi\)
0.368104 + 0.929785i \(0.380007\pi\)
\(264\) 0 0
\(265\) 3.02720 + 5.70206i 0.185959 + 0.350275i
\(266\) 0 0
\(267\) 2.79050 2.79050i 0.170776 0.170776i
\(268\) 0 0
\(269\) 19.6406i 1.19751i 0.800932 + 0.598755i \(0.204338\pi\)
−0.800932 + 0.598755i \(0.795662\pi\)
\(270\) 0 0
\(271\) 6.47759i 0.393486i −0.980455 0.196743i \(-0.936964\pi\)
0.980455 0.196743i \(-0.0630364\pi\)
\(272\) 0 0
\(273\) −1.61497 + 1.61497i −0.0977424 + 0.0977424i
\(274\) 0 0
\(275\) 9.29595 13.7442i 0.560567 0.828804i
\(276\) 0 0
\(277\) 0.354423 + 0.354423i 0.0212952 + 0.0212952i 0.717674 0.696379i \(-0.245207\pi\)
−0.696379 + 0.717674i \(0.745207\pi\)
\(278\) 0 0
\(279\) 13.4728 0.806594
\(280\) 0 0
\(281\) 4.02107 0.239877 0.119938 0.992781i \(-0.461730\pi\)
0.119938 + 0.992781i \(0.461730\pi\)
\(282\) 0 0
\(283\) 18.7541 + 18.7541i 1.11482 + 1.11482i 0.992490 + 0.122328i \(0.0390359\pi\)
0.122328 + 0.992490i \(0.460964\pi\)
\(284\) 0 0
\(285\) 3.94552 2.09466i 0.233713 0.124077i
\(286\) 0 0
\(287\) −3.71538 + 3.71538i −0.219312 + 0.219312i
\(288\) 0 0
\(289\) 14.2958i 0.840931i
\(290\) 0 0
\(291\) 2.83411i 0.166138i
\(292\) 0 0
\(293\) 14.1778 14.1778i 0.828275 0.828275i −0.159003 0.987278i \(-0.550828\pi\)
0.987278 + 0.159003i \(0.0508279\pi\)
\(294\) 0 0
\(295\) 2.75955 9.00564i 0.160667 0.524329i
\(296\) 0 0
\(297\) 4.95259 + 4.95259i 0.287378 + 0.287378i
\(298\) 0 0
\(299\) −30.6305 −1.77141
\(300\) 0 0
\(301\) 7.07771 0.407953
\(302\) 0 0
\(303\) −1.94174 1.94174i −0.111550 0.111550i
\(304\) 0 0
\(305\) 4.07529 13.2995i 0.233350 0.761526i
\(306\) 0 0
\(307\) 18.0261 18.0261i 1.02880 1.02880i 0.0292309 0.999573i \(-0.490694\pi\)
0.999573 0.0292309i \(-0.00930582\pi\)
\(308\) 0 0
\(309\) 6.44150i 0.366444i
\(310\) 0 0
\(311\) 10.5871i 0.600338i −0.953886 0.300169i \(-0.902957\pi\)
0.953886 0.300169i \(-0.0970432\pi\)
\(312\) 0 0
\(313\) −14.4178 + 14.4178i −0.814944 + 0.814944i −0.985370 0.170426i \(-0.945485\pi\)
0.170426 + 0.985370i \(0.445485\pi\)
\(314\) 0 0
\(315\) 5.66973 3.01004i 0.319453 0.169596i
\(316\) 0 0
\(317\) −22.6954 22.6954i −1.27470 1.27470i −0.943594 0.331104i \(-0.892579\pi\)
−0.331104 0.943594i \(-0.607421\pi\)
\(318\) 0 0
\(319\) 8.13275 0.455346
\(320\) 0 0
\(321\) 4.72246 0.263582
\(322\) 0 0
\(323\) 6.46149 + 6.46149i 0.359527 + 0.359527i
\(324\) 0 0
\(325\) 31.1886 6.02138i 1.73003 0.334006i
\(326\) 0 0
\(327\) −4.89806 + 4.89806i −0.270863 + 0.270863i
\(328\) 0 0
\(329\) 5.82625i 0.321211i
\(330\) 0 0
\(331\) 17.8219i 0.979582i 0.871840 + 0.489791i \(0.162927\pi\)
−0.871840 + 0.489791i \(0.837073\pi\)
\(332\) 0 0
\(333\) −4.32646 + 4.32646i −0.237089 + 0.237089i
\(334\) 0 0
\(335\) −9.26609 17.4537i −0.506260 0.953597i
\(336\) 0 0
\(337\) 16.2021 + 16.2021i 0.882586 + 0.882586i 0.993797 0.111211i \(-0.0354730\pi\)
−0.111211 + 0.993797i \(0.535473\pi\)
\(338\) 0 0
\(339\) −2.35459 −0.127884
\(340\) 0 0
\(341\) −15.5743 −0.843393
\(342\) 0 0
\(343\) −0.707107 0.707107i −0.0381802 0.0381802i
\(344\) 0 0
\(345\) −3.70583 1.13556i −0.199515 0.0611363i
\(346\) 0 0
\(347\) −13.2131 + 13.2131i −0.709318 + 0.709318i −0.966392 0.257074i \(-0.917242\pi\)
0.257074 + 0.966392i \(0.417242\pi\)
\(348\) 0 0
\(349\) 12.4841i 0.668256i −0.942528 0.334128i \(-0.891558\pi\)
0.942528 0.334128i \(-0.108442\pi\)
\(350\) 0 0
\(351\) 13.4083i 0.715682i
\(352\) 0 0
\(353\) −3.51115 + 3.51115i −0.186880 + 0.186880i −0.794346 0.607466i \(-0.792186\pi\)
0.607466 + 0.794346i \(0.292186\pi\)
\(354\) 0 0
\(355\) −20.4479 6.26574i −1.08526 0.332551i
\(356\) 0 0
\(357\) −0.418031 0.418031i −0.0221246 0.0221246i
\(358\) 0 0
\(359\) 10.7418 0.566930 0.283465 0.958983i \(-0.408516\pi\)
0.283465 + 0.958983i \(0.408516\pi\)
\(360\) 0 0
\(361\) 11.8789 0.625206
\(362\) 0 0
\(363\) −0.00321963 0.00321963i −0.000168987 0.000168987i
\(364\) 0 0
\(365\) −4.66591 8.78876i −0.244225 0.460025i
\(366\) 0 0
\(367\) −14.4828 + 14.4828i −0.755998 + 0.755998i −0.975591 0.219594i \(-0.929527\pi\)
0.219594 + 0.975591i \(0.429527\pi\)
\(368\) 0 0
\(369\) 15.0839i 0.785238i
\(370\) 0 0
\(371\) 2.88713i 0.149892i
\(372\) 0 0
\(373\) −6.19138 + 6.19138i −0.320577 + 0.320577i −0.848989 0.528411i \(-0.822788\pi\)
0.528411 + 0.848989i \(0.322788\pi\)
\(374\) 0 0
\(375\) 3.99658 + 0.427752i 0.206383 + 0.0220890i
\(376\) 0 0
\(377\) 11.0090 + 11.0090i 0.566993 + 0.566993i
\(378\) 0 0
\(379\) 22.1164 1.13604 0.568021 0.823014i \(-0.307709\pi\)
0.568021 + 0.823014i \(0.307709\pi\)
\(380\) 0 0
\(381\) 4.05774 0.207885
\(382\) 0 0
\(383\) −8.15912 8.15912i −0.416911 0.416911i 0.467226 0.884138i \(-0.345253\pi\)
−0.884138 + 0.467226i \(0.845253\pi\)
\(384\) 0 0
\(385\) −6.55409 + 3.47954i −0.334027 + 0.177334i
\(386\) 0 0
\(387\) 14.3673 14.3673i 0.730329 0.730329i
\(388\) 0 0
\(389\) 33.6009i 1.70363i −0.523841 0.851816i \(-0.675501\pi\)
0.523841 0.851816i \(-0.324499\pi\)
\(390\) 0 0
\(391\) 7.92862i 0.400968i
\(392\) 0 0
\(393\) 0.395377 0.395377i 0.0199441 0.0199441i
\(394\) 0 0
\(395\) −2.49811 + 8.15243i −0.125693 + 0.410193i
\(396\) 0 0
\(397\) −10.3392 10.3392i −0.518909 0.518909i 0.398332 0.917241i \(-0.369589\pi\)
−0.917241 + 0.398332i \(0.869589\pi\)
\(398\) 0 0
\(399\) −1.99774 −0.100012
\(400\) 0 0
\(401\) −28.8499 −1.44069 −0.720347 0.693613i \(-0.756018\pi\)
−0.720347 + 0.693613i \(0.756018\pi\)
\(402\) 0 0
\(403\) −21.0823 21.0823i −1.05019 1.05019i
\(404\) 0 0
\(405\) 5.14498 16.7904i 0.255656 0.834320i
\(406\) 0 0
\(407\) 5.00130 5.00130i 0.247905 0.247905i
\(408\) 0 0
\(409\) 23.8384i 1.17873i 0.807866 + 0.589366i \(0.200623\pi\)
−0.807866 + 0.589366i \(0.799377\pi\)
\(410\) 0 0
\(411\) 8.07884i 0.398500i
\(412\) 0 0
\(413\) −2.97853 + 2.97853i −0.146564 + 0.146564i
\(414\) 0 0
\(415\) 15.3606 8.15485i 0.754020 0.400306i
\(416\) 0 0
\(417\) 5.47662 + 5.47662i 0.268191 + 0.268191i
\(418\) 0 0
\(419\) 16.3859 0.800503 0.400251 0.916405i \(-0.368923\pi\)
0.400251 + 0.916405i \(0.368923\pi\)
\(420\) 0 0
\(421\) −18.0450 −0.879459 −0.439730 0.898130i \(-0.644926\pi\)
−0.439730 + 0.898130i \(0.644926\pi\)
\(422\) 0 0
\(423\) 11.8269 + 11.8269i 0.575042 + 0.575042i
\(424\) 0 0
\(425\) 1.55862 + 8.07309i 0.0756042 + 0.391603i
\(426\) 0 0
\(427\) −4.39868 + 4.39868i −0.212867 + 0.212867i
\(428\) 0 0
\(429\) 7.57924i 0.365929i
\(430\) 0 0
\(431\) 33.9777i 1.63665i 0.574757 + 0.818324i \(0.305097\pi\)
−0.574757 + 0.818324i \(0.694903\pi\)
\(432\) 0 0
\(433\) 4.14241 4.14241i 0.199071 0.199071i −0.600530 0.799602i \(-0.705044\pi\)
0.799602 + 0.600530i \(0.205044\pi\)
\(434\) 0 0
\(435\) 0.923791 + 1.74006i 0.0442924 + 0.0834296i
\(436\) 0 0
\(437\) −18.9451 18.9451i −0.906268 0.906268i
\(438\) 0 0
\(439\) 20.1293 0.960720 0.480360 0.877071i \(-0.340506\pi\)
0.480360 + 0.877071i \(0.340506\pi\)
\(440\) 0 0
\(441\) −2.87075 −0.136703
\(442\) 0 0
\(443\) −2.24706 2.24706i −0.106761 0.106761i 0.651709 0.758469i \(-0.274053\pi\)
−0.758469 + 0.651709i \(0.774053\pi\)
\(444\) 0 0
\(445\) 23.4685 + 7.19134i 1.11252 + 0.340902i
\(446\) 0 0
\(447\) 1.30906 1.30906i 0.0619163 0.0619163i
\(448\) 0 0
\(449\) 12.9572i 0.611489i −0.952114 0.305744i \(-0.901095\pi\)
0.952114 0.305744i \(-0.0989053\pi\)
\(450\) 0 0
\(451\) 17.4367i 0.821062i
\(452\) 0 0
\(453\) −2.40323 + 2.40323i −0.112914 + 0.112914i
\(454\) 0 0
\(455\) −13.5822 4.16191i −0.636742 0.195114i
\(456\) 0 0
\(457\) 2.31835 + 2.31835i 0.108448 + 0.108448i 0.759249 0.650801i \(-0.225567\pi\)
−0.650801 + 0.759249i \(0.725567\pi\)
\(458\) 0 0
\(459\) −3.47071 −0.161999
\(460\) 0 0
\(461\) −24.5541 −1.14360 −0.571800 0.820393i \(-0.693755\pi\)
−0.571800 + 0.820393i \(0.693755\pi\)
\(462\) 0 0
\(463\) −13.9838 13.9838i −0.649882 0.649882i 0.303083 0.952964i \(-0.401984\pi\)
−0.952964 + 0.303083i \(0.901984\pi\)
\(464\) 0 0
\(465\) −1.76907 3.33223i −0.0820385 0.154528i
\(466\) 0 0
\(467\) −5.95676 + 5.95676i −0.275646 + 0.275646i −0.831368 0.555722i \(-0.812442\pi\)
0.555722 + 0.831368i \(0.312442\pi\)
\(468\) 0 0
\(469\) 8.83732i 0.408070i
\(470\) 0 0
\(471\) 3.95839i 0.182393i
\(472\) 0 0
\(473\) −16.6083 + 16.6083i −0.763649 + 0.763649i
\(474\) 0 0
\(475\) 23.0146 + 15.5661i 1.05598 + 0.714220i
\(476\) 0 0
\(477\) −5.86066 5.86066i −0.268341 0.268341i
\(478\) 0 0
\(479\) −38.9952 −1.78174 −0.890869 0.454260i \(-0.849904\pi\)
−0.890869 + 0.454260i \(0.849904\pi\)
\(480\) 0 0
\(481\) 13.5402 0.617378
\(482\) 0 0
\(483\) 1.22567 + 1.22567i 0.0557699 + 0.0557699i
\(484\) 0 0
\(485\) 15.5695 8.26580i 0.706977 0.375331i
\(486\) 0 0
\(487\) −13.2329 + 13.2329i −0.599639 + 0.599639i −0.940216 0.340578i \(-0.889377\pi\)
0.340578 + 0.940216i \(0.389377\pi\)
\(488\) 0 0
\(489\) 3.11258i 0.140756i
\(490\) 0 0
\(491\) 22.7401i 1.02625i 0.858315 + 0.513123i \(0.171512\pi\)
−0.858315 + 0.513123i \(0.828488\pi\)
\(492\) 0 0
\(493\) −2.84966 + 2.84966i −0.128342 + 0.128342i
\(494\) 0 0
\(495\) −6.24113 + 20.3676i −0.280518 + 0.915454i
\(496\) 0 0
\(497\) 6.76295 + 6.76295i 0.303360 + 0.303360i
\(498\) 0 0
\(499\) −30.0436 −1.34494 −0.672468 0.740126i \(-0.734766\pi\)
−0.672468 + 0.740126i \(0.734766\pi\)
\(500\) 0 0
\(501\) 0.158473 0.00708006
\(502\) 0 0
\(503\) −2.00745 2.00745i −0.0895080 0.0895080i 0.660935 0.750443i \(-0.270160\pi\)
−0.750443 + 0.660935i \(0.770160\pi\)
\(504\) 0 0
\(505\) 5.00403 16.3304i 0.222677 0.726693i
\(506\) 0 0
\(507\) 6.95503 6.95503i 0.308884 0.308884i
\(508\) 0 0
\(509\) 8.34006i 0.369667i 0.982770 + 0.184833i \(0.0591745\pi\)
−0.982770 + 0.184833i \(0.940825\pi\)
\(510\) 0 0
\(511\) 4.45001i 0.196857i
\(512\) 0 0
\(513\) −8.29310 + 8.29310i −0.366150 + 0.366150i
\(514\) 0 0
\(515\) −35.3872 + 18.7869i −1.55935 + 0.827850i
\(516\) 0 0
\(517\) −13.6716 13.6716i −0.601277 0.601277i
\(518\) 0 0
\(519\) 6.84146 0.300307
\(520\) 0 0
\(521\) −12.2561 −0.536948 −0.268474 0.963287i \(-0.586519\pi\)
−0.268474 + 0.963287i \(0.586519\pi\)
\(522\) 0 0
\(523\) 3.94245 + 3.94245i 0.172391 + 0.172391i 0.788029 0.615638i \(-0.211102\pi\)
−0.615638 + 0.788029i \(0.711102\pi\)
\(524\) 0 0
\(525\) −1.48895 1.00706i −0.0649829 0.0439517i
\(526\) 0 0
\(527\) 5.45711 5.45711i 0.237716 0.237716i
\(528\) 0 0
\(529\) 0.246744i 0.0107280i
\(530\) 0 0
\(531\) 12.0924i 0.524767i
\(532\) 0 0
\(533\) 23.6035 23.6035i 1.02238 1.02238i
\(534\) 0 0
\(535\) 13.7733 + 25.9434i 0.595470 + 1.12163i
\(536\) 0 0
\(537\) −4.41390 4.41390i −0.190474 0.190474i
\(538\) 0 0
\(539\) 3.31853 0.142939
\(540\) 0 0
\(541\) −43.8017 −1.88318 −0.941591 0.336758i \(-0.890670\pi\)
−0.941591 + 0.336758i \(0.890670\pi\)
\(542\) 0 0
\(543\) −1.45517 1.45517i −0.0624474 0.0624474i
\(544\) 0 0
\(545\) −41.1935 12.6227i −1.76454 0.540698i
\(546\) 0 0
\(547\) −27.8081 + 27.8081i −1.18899 + 1.18899i −0.211640 + 0.977348i \(0.567880\pi\)
−0.977348 + 0.211640i \(0.932120\pi\)
\(548\) 0 0
\(549\) 17.8580i 0.762162i
\(550\) 0 0
\(551\) 13.6183i 0.580158i
\(552\) 0 0
\(553\) 2.69634 2.69634i 0.114660 0.114660i
\(554\) 0 0
\(555\) 1.63816 + 0.501972i 0.0695359 + 0.0213075i
\(556\) 0 0
\(557\) −3.94318 3.94318i −0.167078 0.167078i 0.618616 0.785694i \(-0.287694\pi\)
−0.785694 + 0.618616i \(0.787694\pi\)
\(558\) 0 0
\(559\) −44.9641 −1.90178
\(560\) 0 0
\(561\) 1.96187 0.0828302
\(562\) 0 0
\(563\) 13.3253 + 13.3253i 0.561593 + 0.561593i 0.929760 0.368167i \(-0.120015\pi\)
−0.368167 + 0.929760i \(0.620015\pi\)
\(564\) 0 0
\(565\) −6.86725 12.9352i −0.288908 0.544189i
\(566\) 0 0
\(567\) −5.55326 + 5.55326i −0.233215 + 0.233215i
\(568\) 0 0
\(569\) 16.5792i 0.695037i −0.937673 0.347519i \(-0.887024\pi\)
0.937673 0.347519i \(-0.112976\pi\)
\(570\) 0 0
\(571\) 1.75641i 0.0735033i −0.999324 0.0367516i \(-0.988299\pi\)
0.999324 0.0367516i \(-0.0117010\pi\)
\(572\) 0 0
\(573\) 5.24972 5.24972i 0.219310 0.219310i
\(574\) 0 0
\(575\) −4.56988 23.6703i −0.190577 0.987121i
\(576\) 0 0
\(577\) 22.6219 + 22.6219i 0.941760 + 0.941760i 0.998395 0.0566345i \(-0.0180370\pi\)
−0.0566345 + 0.998395i \(0.518037\pi\)
\(578\) 0 0
\(579\) −0.212498 −0.00883110
\(580\) 0 0
\(581\) −7.77751 −0.322666
\(582\) 0 0
\(583\) 6.77481 + 6.77481i 0.280584 + 0.280584i
\(584\) 0 0
\(585\) −36.0193 + 19.1225i −1.48921 + 0.790617i
\(586\) 0 0
\(587\) 1.89960 1.89960i 0.0784051 0.0784051i −0.666817 0.745222i \(-0.732344\pi\)
0.745222 + 0.666817i \(0.232344\pi\)
\(588\) 0 0
\(589\) 26.0791i 1.07457i
\(590\) 0 0
\(591\) 2.36823i 0.0974161i
\(592\) 0 0
\(593\) 4.90801 4.90801i 0.201548 0.201548i −0.599115 0.800663i \(-0.704481\pi\)
0.800663 + 0.599115i \(0.204481\pi\)
\(594\) 0 0
\(595\) 1.07730 3.51571i 0.0441651 0.144130i
\(596\) 0 0
\(597\) −5.69262 5.69262i −0.232983 0.232983i
\(598\) 0 0
\(599\) 41.9543 1.71421 0.857104 0.515144i \(-0.172261\pi\)
0.857104 + 0.515144i \(0.172261\pi\)
\(600\) 0 0
\(601\) 8.00006 0.326329 0.163165 0.986599i \(-0.447830\pi\)
0.163165 + 0.986599i \(0.447830\pi\)
\(602\) 0 0
\(603\) 17.9392 + 17.9392i 0.730539 + 0.730539i
\(604\) 0 0
\(605\) 0.00829725 0.0270776i 0.000337331 0.00110086i
\(606\) 0 0
\(607\) 26.8075 26.8075i 1.08808 1.08808i 0.0923578 0.995726i \(-0.470560\pi\)
0.995726 0.0923578i \(-0.0294404\pi\)
\(608\) 0 0
\(609\) 0.881045i 0.0357018i
\(610\) 0 0
\(611\) 37.0136i 1.49741i
\(612\) 0 0
\(613\) −26.2065 + 26.2065i −1.05847 + 1.05847i −0.0602885 + 0.998181i \(0.519202\pi\)
−0.998181 + 0.0602885i \(0.980798\pi\)
\(614\) 0 0
\(615\) 3.73071 1.98062i 0.150437 0.0798662i
\(616\) 0 0
\(617\) −5.79622 5.79622i −0.233347 0.233347i 0.580741 0.814088i \(-0.302763\pi\)
−0.814088 + 0.580741i \(0.802763\pi\)
\(618\) 0 0
\(619\) −27.3240 −1.09825 −0.549123 0.835742i \(-0.685038\pi\)
−0.549123 + 0.835742i \(0.685038\pi\)
\(620\) 0 0
\(621\) 10.1761 0.408354
\(622\) 0 0
\(623\) −7.76201 7.76201i −0.310978 0.310978i
\(624\) 0 0
\(625\) 9.30630 + 23.2033i 0.372252 + 0.928132i
\(626\) 0 0
\(627\) 4.68780 4.68780i 0.187213 0.187213i
\(628\) 0 0
\(629\) 3.50484i 0.139747i
\(630\) 0 0
\(631\) 9.21022i 0.366653i 0.983052 + 0.183326i \(0.0586865\pi\)
−0.983052 + 0.183326i \(0.941313\pi\)
\(632\) 0 0
\(633\) 7.28720 7.28720i 0.289640 0.289640i
\(634\) 0 0
\(635\) 11.8346 + 22.2917i 0.469641 + 0.884621i
\(636\) 0 0
\(637\) 4.49218 + 4.49218i 0.177987 + 0.177987i
\(638\) 0 0
\(639\) 27.4566 1.08617
\(640\) 0 0
\(641\) 39.9767 1.57898 0.789491 0.613761i \(-0.210344\pi\)
0.789491 + 0.613761i \(0.210344\pi\)
\(642\) 0 0
\(643\) 25.2629 + 25.2629i 0.996271 + 0.996271i 0.999993 0.00372195i \(-0.00118474\pi\)
−0.00372195 + 0.999993i \(0.501185\pi\)
\(644\) 0 0
\(645\) −5.43998 1.66694i −0.214199 0.0656358i
\(646\) 0 0
\(647\) −21.8082 + 21.8082i −0.857370 + 0.857370i −0.991028 0.133657i \(-0.957328\pi\)
0.133657 + 0.991028i \(0.457328\pi\)
\(648\) 0 0
\(649\) 13.9786i 0.548708i
\(650\) 0 0
\(651\) 1.68721i 0.0661269i
\(652\) 0 0
\(653\) 26.1270 26.1270i 1.02243 1.02243i 0.0226855 0.999743i \(-0.492778\pi\)
0.999743 0.0226855i \(-0.00722165\pi\)
\(654\) 0 0
\(655\) 3.32519 + 1.01892i 0.129926 + 0.0398125i
\(656\) 0 0
\(657\) 9.03321 + 9.03321i 0.352419 + 0.352419i
\(658\) 0 0
\(659\) 5.98250 0.233045 0.116523 0.993188i \(-0.462825\pi\)
0.116523 + 0.993188i \(0.462825\pi\)
\(660\) 0 0
\(661\) −36.5857 −1.42302 −0.711509 0.702677i \(-0.751988\pi\)
−0.711509 + 0.702677i \(0.751988\pi\)
\(662\) 0 0
\(663\) 2.65571 + 2.65571i 0.103139 + 0.103139i
\(664\) 0 0
\(665\) −5.82649 10.9748i −0.225941 0.425585i
\(666\) 0 0
\(667\) 8.35521 8.35521i 0.323515 0.323515i
\(668\) 0 0
\(669\) 3.41767i 0.132135i
\(670\) 0 0
\(671\) 20.6435i 0.796934i
\(672\) 0 0
\(673\) −19.2576 + 19.2576i −0.742327 + 0.742327i −0.973025 0.230698i \(-0.925899\pi\)
0.230698 + 0.973025i \(0.425899\pi\)
\(674\) 0 0
\(675\) −10.3615 + 2.00044i −0.398816 + 0.0769968i
\(676\) 0 0
\(677\) −2.98190 2.98190i −0.114604 0.114604i 0.647479 0.762083i \(-0.275823\pi\)
−0.762083 + 0.647479i \(0.775823\pi\)
\(678\) 0 0
\(679\) −7.88333 −0.302534
\(680\) 0 0
\(681\) 6.21995 0.238349
\(682\) 0 0
\(683\) −35.3071 35.3071i −1.35099 1.35099i −0.884558 0.466430i \(-0.845540\pi\)
−0.466430 0.884558i \(-0.654460\pi\)
\(684\) 0 0
\(685\) −44.3821 + 23.5623i −1.69575 + 0.900269i
\(686\) 0 0
\(687\) −5.68442 + 5.68442i −0.216874 + 0.216874i
\(688\) 0 0
\(689\) 18.3416i 0.698761i
\(690\) 0 0
\(691\) 18.0502i 0.686662i 0.939214 + 0.343331i \(0.111555\pi\)
−0.939214 + 0.343331i \(0.888445\pi\)
\(692\) 0 0
\(693\) 6.73639 6.73639i 0.255894 0.255894i
\(694\) 0 0
\(695\) −14.1137 + 46.0593i −0.535363 + 1.74713i
\(696\) 0 0
\(697\) 6.10970 + 6.10970i 0.231421 + 0.231421i
\(698\) 0 0
\(699\) 2.92361 0.110581
\(700\) 0 0
\(701\) −1.96936 −0.0743819 −0.0371909 0.999308i \(-0.511841\pi\)
−0.0371909 + 0.999308i \(0.511841\pi\)
\(702\) 0 0
\(703\) 8.37467 + 8.37467i 0.315857 + 0.315857i
\(704\) 0 0
\(705\) 1.37220 4.47809i 0.0516800 0.168655i
\(706\) 0 0
\(707\) −5.40113 + 5.40113i −0.203130 + 0.203130i
\(708\) 0 0
\(709\) 31.1106i 1.16838i 0.811616 + 0.584191i \(0.198588\pi\)
−0.811616 + 0.584191i \(0.801412\pi\)
\(710\) 0 0
\(711\) 10.9468i 0.410536i
\(712\) 0 0
\(713\) −16.0003 + 16.0003i −0.599215 + 0.599215i
\(714\) 0 0
\(715\) 41.6375 22.1052i 1.55716 0.826687i
\(716\) 0 0
\(717\) −3.96609 3.96609i −0.148117 0.148117i
\(718\) 0 0
\(719\) 0.367206 0.0136945 0.00684724 0.999977i \(-0.497820\pi\)
0.00684724 + 0.999977i \(0.497820\pi\)
\(720\) 0 0
\(721\) 17.9176 0.667286
\(722\) 0 0
\(723\) 3.98649 + 3.98649i 0.148259 + 0.148259i
\(724\) 0 0
\(725\) −6.86497 + 10.1499i −0.254959 + 0.376959i
\(726\) 0 0
\(727\) −21.4892 + 21.4892i −0.796991 + 0.796991i −0.982620 0.185629i \(-0.940568\pi\)
0.185629 + 0.982620i \(0.440568\pi\)
\(728\) 0 0
\(729\) 20.2692i 0.750710i
\(730\) 0 0
\(731\) 11.6388i 0.430478i
\(732\) 0 0
\(733\) −7.63767 + 7.63767i −0.282104 + 0.282104i −0.833947 0.551844i \(-0.813924\pi\)
0.551844 + 0.833947i \(0.313924\pi\)
\(734\) 0 0
\(735\) 0.376949 + 0.710025i 0.0139040 + 0.0261897i
\(736\) 0 0
\(737\) −20.7373 20.7373i −0.763868 0.763868i
\(738\) 0 0
\(739\) 4.12185 0.151625 0.0758123 0.997122i \(-0.475845\pi\)
0.0758123 + 0.997122i \(0.475845\pi\)
\(740\) 0 0
\(741\) 12.6914 0.466231
\(742\) 0 0
\(743\) −15.2432 15.2432i −0.559217 0.559217i 0.369867 0.929085i \(-0.379403\pi\)
−0.929085 + 0.369867i \(0.879403\pi\)
\(744\) 0 0
\(745\) 11.0094 + 3.37355i 0.403353 + 0.123597i
\(746\) 0 0
\(747\) −15.7878 + 15.7878i −0.577646 + 0.577646i
\(748\) 0 0
\(749\) 13.1359i 0.479977i
\(750\) 0 0
\(751\) 33.0872i 1.20737i 0.797223 + 0.603685i \(0.206301\pi\)
−0.797223 + 0.603685i \(0.793699\pi\)
\(752\) 0 0
\(753\) −4.53623 + 4.53623i −0.165309 + 0.165309i
\(754\) 0 0
\(755\) −20.2116 6.19332i −0.735574 0.225398i
\(756\) 0 0
\(757\) −6.89322 6.89322i −0.250539 0.250539i 0.570653 0.821191i \(-0.306690\pi\)
−0.821191 + 0.570653i \(0.806690\pi\)
\(758\) 0 0
\(759\) −5.75221 −0.208792
\(760\) 0 0
\(761\) 28.8931 1.04737 0.523687 0.851911i \(-0.324556\pi\)
0.523687 + 0.851911i \(0.324556\pi\)
\(762\) 0 0
\(763\) 13.6244 + 13.6244i 0.493236 + 0.493236i
\(764\) 0 0
\(765\) −4.94981 9.32350i −0.178961 0.337092i
\(766\) 0 0
\(767\) 18.9223 18.9223i 0.683246 0.683246i
\(768\) 0 0
\(769\) 50.7158i 1.82886i −0.404745 0.914429i \(-0.632640\pi\)
0.404745 0.914429i \(-0.367360\pi\)
\(770\) 0 0
\(771\) 10.3508i 0.372773i
\(772\) 0 0
\(773\) 16.8457 16.8457i 0.605899 0.605899i −0.335973 0.941872i \(-0.609065\pi\)
0.941872 + 0.335973i \(0.109065\pi\)
\(774\) 0 0
\(775\) 13.1465 19.4372i 0.472235 0.698204i
\(776\) 0 0
\(777\) −0.541806 0.541806i −0.0194372 0.0194372i
\(778\) 0 0
\(779\) 29.1977 1.04612
\(780\) 0 0
\(781\) −31.7393 −1.13572
\(782\) 0 0
\(783\) −3.65744 3.65744i −0.130706 0.130706i
\(784\) 0 0
\(785\) −21.7459 + 11.5448i −0.776146 + 0.412053i
\(786\) 0 0
\(787\) 11.9165 11.9165i 0.424776 0.424776i −0.462068 0.886844i \(-0.652892\pi\)
0.886844 + 0.462068i \(0.152892\pi\)
\(788\) 0 0
\(789\) 10.7013i 0.380977i
\(790\) 0 0
\(791\) 6.54949i 0.232873i
\(792\) 0 0
\(793\) 27.9444 27.9444i 0.992335 0.992335i
\(794\) 0 0
\(795\) −0.679976 + 2.21906i −0.0241163 + 0.0787021i
\(796\) 0 0
\(797\) 14.5745 + 14.5745i 0.516254 + 0.516254i 0.916436 0.400182i \(-0.131053\pi\)
−0.400182 + 0.916436i \(0.631053\pi\)
\(798\) 0 0
\(799\) 9.58088 0.338947
\(800\) 0 0
\(801\) −31.5127 −1.11345
\(802\) 0 0
\(803\) −10.4422 10.4422i −0.368498 0.368498i
\(804\) 0 0
\(805\) −3.15865 + 10.3081i −0.111328 + 0.363312i
\(806\) 0 0
\(807\) −4.99284 + 4.99284i −0.175756 + 0.175756i
\(808\) 0 0
\(809\) 43.7779i 1.53915i −0.638556 0.769575i \(-0.720468\pi\)
0.638556 0.769575i \(-0.279532\pi\)
\(810\) 0 0
\(811\) 8.35872i 0.293514i −0.989173 0.146757i \(-0.953116\pi\)
0.989173 0.146757i \(-0.0468836\pi\)
\(812\) 0 0
\(813\) 1.64667 1.64667i 0.0577511 0.0577511i
\(814\) 0 0
\(815\) −17.0993 + 9.07797i −0.598964 + 0.317987i
\(816\) 0 0
\(817\) −27.8105 27.8105i −0.972967 0.972967i
\(818\) 0 0
\(819\) 18.2376 0.637275
\(820\) 0 0
\(821\) 35.0507 1.22328 0.611638 0.791137i \(-0.290511\pi\)
0.611638 + 0.791137i \(0.290511\pi\)
\(822\) 0 0
\(823\) 14.2699 + 14.2699i 0.497416 + 0.497416i 0.910633 0.413217i \(-0.135595\pi\)
−0.413217 + 0.910633i \(0.635595\pi\)
\(824\) 0 0
\(825\) 5.85702 1.13078i 0.203915 0.0393686i
\(826\) 0 0
\(827\) −3.39513 + 3.39513i −0.118060 + 0.118060i −0.763669 0.645608i \(-0.776604\pi\)
0.645608 + 0.763669i \(0.276604\pi\)
\(828\) 0 0
\(829\) 26.0300i 0.904058i 0.892003 + 0.452029i \(0.149300\pi\)
−0.892003 + 0.452029i \(0.850700\pi\)
\(830\) 0 0
\(831\) 0.180196i 0.00625092i
\(832\) 0 0
\(833\) −1.16279 + 1.16279i −0.0402883 + 0.0402883i
\(834\) 0 0
\(835\) 0.462194 + 0.870593i 0.0159949 + 0.0301281i
\(836\) 0 0
\(837\) 7.00402 + 7.00402i 0.242094 + 0.242094i
\(838\) 0 0
\(839\) −32.4541 −1.12044 −0.560220 0.828344i \(-0.689284\pi\)
−0.560220 + 0.828344i \(0.689284\pi\)
\(840\) 0 0
\(841\) 22.9940 0.792898
\(842\) 0 0
\(843\) 1.02219 + 1.02219i 0.0352062 + 0.0352062i
\(844\) 0 0
\(845\) 58.4930 + 17.9237i 2.01222 + 0.616594i
\(846\) 0 0
\(847\) −0.00895568 + 0.00895568i −0.000307721 + 0.000307721i
\(848\) 0 0
\(849\) 9.53497i 0.327239i
\(850\) 0 0
\(851\) 10.2762i 0.352264i
\(852\) 0 0
\(853\) −1.65477 + 1.65477i −0.0566581 + 0.0566581i −0.734868 0.678210i \(-0.762756\pi\)
0.678210 + 0.734868i \(0.262756\pi\)
\(854\) 0 0
\(855\) −34.1055 10.4508i −1.16638 0.357409i
\(856\) 0 0
\(857\) −29.3328 29.3328i −1.00199 1.00199i −0.999998 0.00199077i \(-0.999366\pi\)
−0.00199077 0.999998i \(-0.500634\pi\)
\(858\) 0 0
\(859\) −23.2213 −0.792300 −0.396150 0.918186i \(-0.629654\pi\)
−0.396150 + 0.918186i \(0.629654\pi\)
\(860\) 0 0
\(861\) −1.88897 −0.0643760
\(862\) 0 0
\(863\) 1.92038 + 1.92038i 0.0653705 + 0.0653705i 0.739036 0.673666i \(-0.235281\pi\)
−0.673666 + 0.739036i \(0.735281\pi\)
\(864\) 0 0
\(865\) 19.9534 + 37.5844i 0.678436 + 1.27791i
\(866\) 0 0
\(867\) 3.63414 3.63414i 0.123422 0.123422i
\(868\) 0 0
\(869\) 12.6543i 0.429266i
\(870\) 0 0
\(871\) 56.1427i 1.90232i
\(872\) 0 0
\(873\) −16.0026 + 16.0026i −0.541606 + 0.541606i
\(874\) 0 0
\(875\) 1.18983 11.1168i 0.0402236 0.375818i
\(876\) 0 0
\(877\) −26.3659 26.3659i −0.890313 0.890313i 0.104239 0.994552i \(-0.466759\pi\)
−0.994552 + 0.104239i \(0.966759\pi\)
\(878\) 0 0
\(879\) 7.20826 0.243129
\(880\) 0 0
\(881\) 4.76864 0.160660 0.0803298 0.996768i \(-0.474403\pi\)
0.0803298 + 0.996768i \(0.474403\pi\)
\(882\) 0 0
\(883\) 2.15889 + 2.15889i 0.0726524 + 0.0726524i 0.742499 0.669847i \(-0.233640\pi\)
−0.669847 + 0.742499i \(0.733640\pi\)
\(884\) 0 0
\(885\) 2.99083 1.58782i 0.100536 0.0533739i
\(886\) 0 0
\(887\) 5.11095 5.11095i 0.171609 0.171609i −0.616077 0.787686i \(-0.711279\pi\)
0.787686 + 0.616077i \(0.211279\pi\)
\(888\) 0 0
\(889\) 11.2870i 0.378553i
\(890\) 0 0
\(891\) 26.0621i 0.873113i
\(892\) 0 0
\(893\) 22.8931 22.8931i 0.766089 0.766089i
\(894\) 0 0
\(895\) 11.3750 37.1216i 0.380224 1.24084i
\(896\) 0 0
\(897\) −7.78656 7.78656i −0.259986 0.259986i
\(898\) 0 0
\(899\) 11.5014 0.383595
\(900\) 0 0
\(901\) −4.74769 −0.158168
\(902\) 0 0
\(903\) 1.79922 + 1.79922i 0.0598744 + 0.0598744i
\(904\) 0 0
\(905\) 3.75010 12.2382i 0.124658 0.406813i
\(906\) 0 0
\(907\) −26.3613 + 26.3613i −0.875314 + 0.875314i −0.993045 0.117731i \(-0.962438\pi\)
0.117731 + 0.993045i \(0.462438\pi\)
\(908\) 0 0
\(909\) 21.9278i 0.727300i
\(910\) 0 0
\(911\) 18.5614i 0.614965i −0.951554 0.307482i \(-0.900513\pi\)
0.951554 0.307482i \(-0.0994865\pi\)
\(912\) 0 0
\(913\) 18.2504 18.2504i 0.603999 0.603999i
\(914\) 0 0
\(915\) 4.41683 2.34488i 0.146016 0.0775193i
\(916\) 0 0
\(917\) −1.09978 1.09978i −0.0363178 0.0363178i
\(918\) 0 0
\(919\) 32.3872 1.06836 0.534178 0.845372i \(-0.320621\pi\)
0.534178 + 0.845372i \(0.320621\pi\)
\(920\) 0 0
\(921\) 9.16482 0.301991
\(922\) 0 0
\(923\) −42.9644 42.9644i −1.41419 1.41419i
\(924\) 0 0
\(925\) 2.02011 + 10.4634i 0.0664208 + 0.344036i
\(926\) 0 0
\(927\) 36.3715 36.3715i 1.19460 1.19460i
\(928\) 0 0
\(929\) 21.0620i 0.691023i 0.938415 + 0.345511i \(0.112295\pi\)
−0.938415 + 0.345511i \(0.887705\pi\)
\(930\) 0 0
\(931\) 5.55688i 0.182119i
\(932\) 0 0
\(933\) 2.69134 2.69134i 0.0881105 0.0881105i
\(934\) 0 0
\(935\) 5.72188 + 10.7778i 0.187125 + 0.352471i
\(936\) 0 0
\(937\) 17.4722 + 17.4722i 0.570793 + 0.570793i 0.932350 0.361557i \(-0.117755\pi\)
−0.361557 + 0.932350i \(0.617755\pi\)
\(938\) 0 0
\(939\) −7.33031 −0.239215
\(940\) 0 0
\(941\) 17.3939 0.567025 0.283512 0.958969i \(-0.408500\pi\)
0.283512 + 0.958969i \(0.408500\pi\)
\(942\) 0 0
\(943\) −17.9137 17.9137i −0.583349 0.583349i
\(944\) 0 0
\(945\) 4.51230 + 1.38268i 0.146785 + 0.0449786i
\(946\) 0 0
\(947\) −30.2742 + 30.2742i −0.983778 + 0.983778i −0.999871 0.0160928i \(-0.994877\pi\)
0.0160928 + 0.999871i \(0.494877\pi\)
\(948\) 0 0
\(949\) 28.2705i 0.917699i
\(950\) 0 0
\(951\) 11.5388i 0.374170i
\(952\) 0 0
\(953\) −16.0684 + 16.0684i −0.520506 + 0.520506i −0.917724 0.397218i \(-0.869976\pi\)
0.397218 + 0.917724i \(0.369976\pi\)
\(954\) 0 0
\(955\) 44.1511 + 13.5290i 1.42870 + 0.437787i
\(956\) 0 0
\(957\) 2.06742 + 2.06742i 0.0668303 + 0.0668303i
\(958\) 0 0
\(959\) 22.4720 0.725659
\(960\) 0 0
\(961\) 8.97467 0.289505
\(962\) 0 0
\(963\) −26.6650 26.6650i −0.859269 0.859269i
\(964\) 0 0
\(965\) −0.619759 1.16738i −0.0199507 0.0375794i
\(966\) 0 0
\(967\) −37.0970 + 37.0970i −1.19296 + 1.19296i −0.216727 + 0.976232i \(0.569538\pi\)
−0.976232 + 0.216727i \(0.930462\pi\)
\(968\) 0 0
\(969\) 3.28515i 0.105534i
\(970\) 0 0
\(971\) 6.28649i 0.201743i 0.994899 + 0.100872i \(0.0321631\pi\)
−0.994899 + 0.100872i \(0.967837\pi\)
\(972\) 0 0
\(973\) 15.2337 15.2337i 0.488370 0.488370i
\(974\) 0 0
\(975\) 9.45914 + 6.39775i 0.302935 + 0.204892i
\(976\) 0 0
\(977\) −27.1175 27.1175i −0.867565 0.867565i 0.124637 0.992202i \(-0.460223\pi\)
−0.992202 + 0.124637i \(0.960223\pi\)
\(978\) 0 0
\(979\) 36.4280 1.16424
\(980\) 0 0
\(981\) 55.3131 1.76601
\(982\) 0 0
\(983\) −12.4725 12.4725i −0.397810 0.397810i 0.479650 0.877460i \(-0.340764\pi\)
−0.877460 + 0.479650i \(0.840764\pi\)
\(984\) 0 0
\(985\) −13.0102 + 6.90706i −0.414539 + 0.220077i
\(986\) 0 0
\(987\) −1.48109 + 1.48109i −0.0471436 + 0.0471436i
\(988\) 0 0
\(989\) 34.1251i 1.08512i
\(990\) 0 0
\(991\) 3.78381i 0.120197i −0.998192 0.0600984i \(-0.980859\pi\)
0.998192 0.0600984i \(-0.0191414\pi\)
\(992\) 0 0
\(993\) −4.53051 + 4.53051i −0.143771 + 0.143771i
\(994\) 0 0
\(995\) 14.6704 47.8759i 0.465082 1.51777i
\(996\) 0 0
\(997\) −11.1149 11.1149i −0.352012 0.352012i 0.508846 0.860858i \(-0.330072\pi\)
−0.860858 + 0.508846i \(0.830072\pi\)
\(998\) 0 0
\(999\) −4.49834 −0.142321
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.x.f.127.6 yes 20
4.3 odd 2 1120.2.x.e.127.5 20
5.3 odd 4 1120.2.x.e.1023.5 yes 20
20.3 even 4 inner 1120.2.x.f.1023.6 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1120.2.x.e.127.5 20 4.3 odd 2
1120.2.x.e.1023.5 yes 20 5.3 odd 4
1120.2.x.f.127.6 yes 20 1.1 even 1 trivial
1120.2.x.f.1023.6 yes 20 20.3 even 4 inner