Properties

Label 1120.2.x.f.127.10
Level $1120$
Weight $2$
Character 1120.127
Analytic conductor $8.943$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(127,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.x (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,-4,0,0,0,0,0,0,0,-12,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} + 4 x^{18} + 16 x^{17} - 56 x^{16} - 24 x^{15} + 512 x^{14} + 856 x^{13} + 402 x^{12} + \cdots + 5000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 127.10
Root \(0.458613 + 1.10719i\) of defining polynomial
Character \(\chi\) \(=\) 1120.127
Dual form 1120.2.x.f.1023.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.27923 + 2.27923i) q^{3} +(2.07423 - 0.835201i) q^{5} +(-0.707107 + 0.707107i) q^{7} +7.38979i q^{9} +3.68262i q^{11} +(-0.712298 + 0.712298i) q^{13} +(6.63127 + 2.82404i) q^{15} +(-2.90079 - 2.90079i) q^{17} -6.77624 q^{19} -3.22332 q^{21} +(5.17244 + 5.17244i) q^{23} +(3.60488 - 3.46480i) q^{25} +(-10.0053 + 10.0053i) q^{27} -6.87275i q^{29} -5.20801i q^{31} +(-8.39355 + 8.39355i) q^{33} +(-0.876127 + 2.05728i) q^{35} +(2.61952 + 2.61952i) q^{37} -3.24698 q^{39} +3.63583 q^{41} +(5.92367 + 5.92367i) q^{43} +(6.17196 + 15.3281i) q^{45} +(7.11278 - 7.11278i) q^{47} -1.00000i q^{49} -13.2232i q^{51} +(1.56467 - 1.56467i) q^{53} +(3.07573 + 7.63861i) q^{55} +(-15.4446 - 15.4446i) q^{57} +9.98237 q^{59} -2.37399 q^{61} +(-5.22537 - 5.22537i) q^{63} +(-0.882559 + 2.07238i) q^{65} +(3.74159 - 3.74159i) q^{67} +23.5784i q^{69} +1.23688i q^{71} +(4.22679 - 4.22679i) q^{73} +(16.1134 + 0.319262i) q^{75} +(-2.60401 - 2.60401i) q^{77} +6.23911 q^{79} -23.4396 q^{81} +(-4.78446 - 4.78446i) q^{83} +(-8.43966 - 3.59417i) q^{85} +(15.6646 - 15.6646i) q^{87} +11.3619i q^{89} -1.00734i q^{91} +(11.8703 - 11.8703i) q^{93} +(-14.0555 + 5.65952i) q^{95} +(-11.4341 - 11.4341i) q^{97} -27.2138 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{5} - 12 q^{13} + 8 q^{15} - 4 q^{17} - 24 q^{19} + 8 q^{23} + 4 q^{25} - 16 q^{33} - 4 q^{35} + 4 q^{37} + 8 q^{39} + 32 q^{41} - 8 q^{43} + 32 q^{45} + 24 q^{47} + 28 q^{53} + 24 q^{59} + 24 q^{61}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.27923 + 2.27923i 1.31591 + 1.31591i 0.916979 + 0.398936i \(0.130620\pi\)
0.398936 + 0.916979i \(0.369380\pi\)
\(4\) 0 0
\(5\) 2.07423 0.835201i 0.927625 0.373513i
\(6\) 0 0
\(7\) −0.707107 + 0.707107i −0.267261 + 0.267261i
\(8\) 0 0
\(9\) 7.38979i 2.46326i
\(10\) 0 0
\(11\) 3.68262i 1.11035i 0.831733 + 0.555176i \(0.187349\pi\)
−0.831733 + 0.555176i \(0.812651\pi\)
\(12\) 0 0
\(13\) −0.712298 + 0.712298i −0.197556 + 0.197556i −0.798951 0.601396i \(-0.794612\pi\)
0.601396 + 0.798951i \(0.294612\pi\)
\(14\) 0 0
\(15\) 6.63127 + 2.82404i 1.71219 + 0.729163i
\(16\) 0 0
\(17\) −2.90079 2.90079i −0.703546 0.703546i 0.261624 0.965170i \(-0.415742\pi\)
−0.965170 + 0.261624i \(0.915742\pi\)
\(18\) 0 0
\(19\) −6.77624 −1.55458 −0.777288 0.629146i \(-0.783405\pi\)
−0.777288 + 0.629146i \(0.783405\pi\)
\(20\) 0 0
\(21\) −3.22332 −0.703386
\(22\) 0 0
\(23\) 5.17244 + 5.17244i 1.07853 + 1.07853i 0.996642 + 0.0818861i \(0.0260944\pi\)
0.0818861 + 0.996642i \(0.473906\pi\)
\(24\) 0 0
\(25\) 3.60488 3.46480i 0.720975 0.692961i
\(26\) 0 0
\(27\) −10.0053 + 10.0053i −1.92553 + 1.92553i
\(28\) 0 0
\(29\) 6.87275i 1.27624i −0.769938 0.638119i \(-0.779713\pi\)
0.769938 0.638119i \(-0.220287\pi\)
\(30\) 0 0
\(31\) 5.20801i 0.935387i −0.883891 0.467694i \(-0.845085\pi\)
0.883891 0.467694i \(-0.154915\pi\)
\(32\) 0 0
\(33\) −8.39355 + 8.39355i −1.46113 + 1.46113i
\(34\) 0 0
\(35\) −0.876127 + 2.05728i −0.148092 + 0.347744i
\(36\) 0 0
\(37\) 2.61952 + 2.61952i 0.430647 + 0.430647i 0.888848 0.458202i \(-0.151506\pi\)
−0.458202 + 0.888848i \(0.651506\pi\)
\(38\) 0 0
\(39\) −3.24698 −0.519933
\(40\) 0 0
\(41\) 3.63583 0.567821 0.283911 0.958851i \(-0.408368\pi\)
0.283911 + 0.958851i \(0.408368\pi\)
\(42\) 0 0
\(43\) 5.92367 + 5.92367i 0.903351 + 0.903351i 0.995724 0.0923738i \(-0.0294455\pi\)
−0.0923738 + 0.995724i \(0.529445\pi\)
\(44\) 0 0
\(45\) 6.17196 + 15.3281i 0.920062 + 2.28498i
\(46\) 0 0
\(47\) 7.11278 7.11278i 1.03751 1.03751i 0.0382366 0.999269i \(-0.487826\pi\)
0.999269 0.0382366i \(-0.0121741\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 13.2232i 1.85161i
\(52\) 0 0
\(53\) 1.56467 1.56467i 0.214924 0.214924i −0.591431 0.806355i \(-0.701437\pi\)
0.806355 + 0.591431i \(0.201437\pi\)
\(54\) 0 0
\(55\) 3.07573 + 7.63861i 0.414732 + 1.02999i
\(56\) 0 0
\(57\) −15.4446 15.4446i −2.04569 2.04569i
\(58\) 0 0
\(59\) 9.98237 1.29959 0.649797 0.760108i \(-0.274854\pi\)
0.649797 + 0.760108i \(0.274854\pi\)
\(60\) 0 0
\(61\) −2.37399 −0.303958 −0.151979 0.988384i \(-0.548565\pi\)
−0.151979 + 0.988384i \(0.548565\pi\)
\(62\) 0 0
\(63\) −5.22537 5.22537i −0.658335 0.658335i
\(64\) 0 0
\(65\) −0.882559 + 2.07238i −0.109468 + 0.257048i
\(66\) 0 0
\(67\) 3.74159 3.74159i 0.457108 0.457108i −0.440597 0.897705i \(-0.645233\pi\)
0.897705 + 0.440597i \(0.145233\pi\)
\(68\) 0 0
\(69\) 23.5784i 2.83850i
\(70\) 0 0
\(71\) 1.23688i 0.146791i 0.997303 + 0.0733956i \(0.0233836\pi\)
−0.997303 + 0.0733956i \(0.976616\pi\)
\(72\) 0 0
\(73\) 4.22679 4.22679i 0.494708 0.494708i −0.415078 0.909786i \(-0.636246\pi\)
0.909786 + 0.415078i \(0.136246\pi\)
\(74\) 0 0
\(75\) 16.1134 + 0.319262i 1.86062 + 0.0368651i
\(76\) 0 0
\(77\) −2.60401 2.60401i −0.296754 0.296754i
\(78\) 0 0
\(79\) 6.23911 0.701955 0.350978 0.936384i \(-0.385849\pi\)
0.350978 + 0.936384i \(0.385849\pi\)
\(80\) 0 0
\(81\) −23.4396 −2.60440
\(82\) 0 0
\(83\) −4.78446 4.78446i −0.525163 0.525163i 0.393963 0.919126i \(-0.371104\pi\)
−0.919126 + 0.393963i \(0.871104\pi\)
\(84\) 0 0
\(85\) −8.43966 3.59417i −0.915410 0.389843i
\(86\) 0 0
\(87\) 15.6646 15.6646i 1.67942 1.67942i
\(88\) 0 0
\(89\) 11.3619i 1.20436i 0.798359 + 0.602182i \(0.205702\pi\)
−0.798359 + 0.602182i \(0.794298\pi\)
\(90\) 0 0
\(91\) 1.00734i 0.105598i
\(92\) 0 0
\(93\) 11.8703 11.8703i 1.23089 1.23089i
\(94\) 0 0
\(95\) −14.0555 + 5.65952i −1.44206 + 0.580655i
\(96\) 0 0
\(97\) −11.4341 11.4341i −1.16095 1.16095i −0.984267 0.176688i \(-0.943462\pi\)
−0.176688 0.984267i \(-0.556538\pi\)
\(98\) 0 0
\(99\) −27.2138 −2.73509
\(100\) 0 0
\(101\) −4.78624 −0.476249 −0.238124 0.971235i \(-0.576533\pi\)
−0.238124 + 0.971235i \(0.576533\pi\)
\(102\) 0 0
\(103\) −11.3805 11.3805i −1.12135 1.12135i −0.991538 0.129814i \(-0.958562\pi\)
−0.129814 0.991538i \(-0.541438\pi\)
\(104\) 0 0
\(105\) −6.68591 + 2.69212i −0.652478 + 0.262724i
\(106\) 0 0
\(107\) −2.39737 + 2.39737i −0.231763 + 0.231763i −0.813428 0.581665i \(-0.802401\pi\)
0.581665 + 0.813428i \(0.302401\pi\)
\(108\) 0 0
\(109\) 4.04707i 0.387639i −0.981037 0.193820i \(-0.937912\pi\)
0.981037 0.193820i \(-0.0620876\pi\)
\(110\) 0 0
\(111\) 11.9410i 1.13339i
\(112\) 0 0
\(113\) −8.37492 + 8.37492i −0.787846 + 0.787846i −0.981141 0.193295i \(-0.938083\pi\)
0.193295 + 0.981141i \(0.438083\pi\)
\(114\) 0 0
\(115\) 15.0489 + 6.40881i 1.40331 + 0.597625i
\(116\) 0 0
\(117\) −5.26373 5.26373i −0.486632 0.486632i
\(118\) 0 0
\(119\) 4.10234 0.376061
\(120\) 0 0
\(121\) −2.56171 −0.232883
\(122\) 0 0
\(123\) 8.28690 + 8.28690i 0.747204 + 0.747204i
\(124\) 0 0
\(125\) 4.58354 10.1976i 0.409965 0.912101i
\(126\) 0 0
\(127\) −8.03325 + 8.03325i −0.712836 + 0.712836i −0.967128 0.254292i \(-0.918158\pi\)
0.254292 + 0.967128i \(0.418158\pi\)
\(128\) 0 0
\(129\) 27.0028i 2.37746i
\(130\) 0 0
\(131\) 4.17997i 0.365206i 0.983187 + 0.182603i \(0.0584523\pi\)
−0.983187 + 0.182603i \(0.941548\pi\)
\(132\) 0 0
\(133\) 4.79152 4.79152i 0.415478 0.415478i
\(134\) 0 0
\(135\) −12.3969 + 29.1099i −1.06696 + 2.50538i
\(136\) 0 0
\(137\) −7.68028 7.68028i −0.656171 0.656171i 0.298301 0.954472i \(-0.403580\pi\)
−0.954472 + 0.298301i \(0.903580\pi\)
\(138\) 0 0
\(139\) 1.23092 0.104405 0.0522027 0.998637i \(-0.483376\pi\)
0.0522027 + 0.998637i \(0.483376\pi\)
\(140\) 0 0
\(141\) 32.4233 2.73054
\(142\) 0 0
\(143\) −2.62312 2.62312i −0.219357 0.219357i
\(144\) 0 0
\(145\) −5.74013 14.2557i −0.476692 1.18387i
\(146\) 0 0
\(147\) 2.27923 2.27923i 0.187988 0.187988i
\(148\) 0 0
\(149\) 0.759549i 0.0622247i 0.999516 + 0.0311123i \(0.00990497\pi\)
−0.999516 + 0.0311123i \(0.990095\pi\)
\(150\) 0 0
\(151\) 8.03907i 0.654210i −0.944988 0.327105i \(-0.893927\pi\)
0.944988 0.327105i \(-0.106073\pi\)
\(152\) 0 0
\(153\) 21.4362 21.4362i 1.73302 1.73302i
\(154\) 0 0
\(155\) −4.34974 10.8026i −0.349380 0.867688i
\(156\) 0 0
\(157\) 11.2712 + 11.2712i 0.899542 + 0.899542i 0.995395 0.0958535i \(-0.0305580\pi\)
−0.0958535 + 0.995395i \(0.530558\pi\)
\(158\) 0 0
\(159\) 7.13249 0.565643
\(160\) 0 0
\(161\) −7.31493 −0.576497
\(162\) 0 0
\(163\) 8.10511 + 8.10511i 0.634841 + 0.634841i 0.949278 0.314437i \(-0.101816\pi\)
−0.314437 + 0.949278i \(0.601816\pi\)
\(164\) 0 0
\(165\) −10.3999 + 24.4205i −0.809628 + 1.90113i
\(166\) 0 0
\(167\) −2.12870 + 2.12870i −0.164724 + 0.164724i −0.784656 0.619932i \(-0.787160\pi\)
0.619932 + 0.784656i \(0.287160\pi\)
\(168\) 0 0
\(169\) 11.9853i 0.921943i
\(170\) 0 0
\(171\) 50.0749i 3.82933i
\(172\) 0 0
\(173\) 13.0460 13.0460i 0.991869 0.991869i −0.00809802 0.999967i \(-0.502578\pi\)
0.999967 + 0.00809802i \(0.00257771\pi\)
\(174\) 0 0
\(175\) −0.0990474 + 4.99902i −0.00748728 + 0.377890i
\(176\) 0 0
\(177\) 22.7521 + 22.7521i 1.71015 + 1.71015i
\(178\) 0 0
\(179\) 0.810771 0.0605999 0.0302999 0.999541i \(-0.490354\pi\)
0.0302999 + 0.999541i \(0.490354\pi\)
\(180\) 0 0
\(181\) 8.55923 0.636203 0.318101 0.948057i \(-0.396955\pi\)
0.318101 + 0.948057i \(0.396955\pi\)
\(182\) 0 0
\(183\) −5.41087 5.41087i −0.399983 0.399983i
\(184\) 0 0
\(185\) 7.62132 + 3.24567i 0.560331 + 0.238626i
\(186\) 0 0
\(187\) 10.6825 10.6825i 0.781184 0.781184i
\(188\) 0 0
\(189\) 14.1497i 1.02924i
\(190\) 0 0
\(191\) 3.65130i 0.264199i −0.991236 0.132099i \(-0.957828\pi\)
0.991236 0.132099i \(-0.0421718\pi\)
\(192\) 0 0
\(193\) 17.5323 17.5323i 1.26201 1.26201i 0.311886 0.950120i \(-0.399039\pi\)
0.950120 0.311886i \(-0.100961\pi\)
\(194\) 0 0
\(195\) −6.73500 + 2.71189i −0.482303 + 0.194202i
\(196\) 0 0
\(197\) −10.5902 10.5902i −0.754520 0.754520i 0.220799 0.975319i \(-0.429133\pi\)
−0.975319 + 0.220799i \(0.929133\pi\)
\(198\) 0 0
\(199\) −0.686117 −0.0486376 −0.0243188 0.999704i \(-0.507742\pi\)
−0.0243188 + 0.999704i \(0.507742\pi\)
\(200\) 0 0
\(201\) 17.0559 1.20303
\(202\) 0 0
\(203\) 4.85977 + 4.85977i 0.341089 + 0.341089i
\(204\) 0 0
\(205\) 7.54155 3.03665i 0.526725 0.212089i
\(206\) 0 0
\(207\) −38.2232 + 38.2232i −2.65670 + 2.65670i
\(208\) 0 0
\(209\) 24.9543i 1.72613i
\(210\) 0 0
\(211\) 9.42776i 0.649034i 0.945880 + 0.324517i \(0.105202\pi\)
−0.945880 + 0.324517i \(0.894798\pi\)
\(212\) 0 0
\(213\) −2.81914 + 2.81914i −0.193165 + 0.193165i
\(214\) 0 0
\(215\) 17.2345 + 7.33960i 1.17538 + 0.500557i
\(216\) 0 0
\(217\) 3.68262 + 3.68262i 0.249993 + 0.249993i
\(218\) 0 0
\(219\) 19.2677 1.30199
\(220\) 0 0
\(221\) 4.13246 0.277979
\(222\) 0 0
\(223\) −13.9869 13.9869i −0.936632 0.936632i 0.0614768 0.998109i \(-0.480419\pi\)
−0.998109 + 0.0614768i \(0.980419\pi\)
\(224\) 0 0
\(225\) 25.6042 + 26.6393i 1.70694 + 1.77595i
\(226\) 0 0
\(227\) −17.7213 + 17.7213i −1.17621 + 1.17621i −0.195503 + 0.980703i \(0.562634\pi\)
−0.980703 + 0.195503i \(0.937366\pi\)
\(228\) 0 0
\(229\) 17.9700i 1.18749i 0.804653 + 0.593745i \(0.202351\pi\)
−0.804653 + 0.593745i \(0.797649\pi\)
\(230\) 0 0
\(231\) 11.8703i 0.781006i
\(232\) 0 0
\(233\) 10.9130 10.9130i 0.714932 0.714932i −0.252631 0.967563i \(-0.581296\pi\)
0.967563 + 0.252631i \(0.0812958\pi\)
\(234\) 0 0
\(235\) 8.81295 20.6942i 0.574893 1.34994i
\(236\) 0 0
\(237\) 14.2204 + 14.2204i 0.923713 + 0.923713i
\(238\) 0 0
\(239\) −11.5532 −0.747316 −0.373658 0.927567i \(-0.621897\pi\)
−0.373658 + 0.927567i \(0.621897\pi\)
\(240\) 0 0
\(241\) −2.53775 −0.163471 −0.0817355 0.996654i \(-0.526046\pi\)
−0.0817355 + 0.996654i \(0.526046\pi\)
\(242\) 0 0
\(243\) −23.4082 23.4082i −1.50164 1.50164i
\(244\) 0 0
\(245\) −0.835201 2.07423i −0.0533591 0.132518i
\(246\) 0 0
\(247\) 4.82670 4.82670i 0.307116 0.307116i
\(248\) 0 0
\(249\) 21.8098i 1.38214i
\(250\) 0 0
\(251\) 26.5266i 1.67434i 0.546940 + 0.837172i \(0.315792\pi\)
−0.546940 + 0.837172i \(0.684208\pi\)
\(252\) 0 0
\(253\) −19.0481 + 19.0481i −1.19755 + 1.19755i
\(254\) 0 0
\(255\) −11.0440 27.4279i −0.691602 1.71760i
\(256\) 0 0
\(257\) −14.3115 14.3115i −0.892726 0.892726i 0.102053 0.994779i \(-0.467459\pi\)
−0.994779 + 0.102053i \(0.967459\pi\)
\(258\) 0 0
\(259\) −3.70456 −0.230190
\(260\) 0 0
\(261\) 50.7882 3.14371
\(262\) 0 0
\(263\) −17.0790 17.0790i −1.05313 1.05313i −0.998507 0.0546278i \(-0.982603\pi\)
−0.0546278 0.998507i \(-0.517397\pi\)
\(264\) 0 0
\(265\) 1.93867 4.55230i 0.119092 0.279646i
\(266\) 0 0
\(267\) −25.8965 + 25.8965i −1.58484 + 1.58484i
\(268\) 0 0
\(269\) 18.8904i 1.15177i −0.817531 0.575885i \(-0.804658\pi\)
0.817531 0.575885i \(-0.195342\pi\)
\(270\) 0 0
\(271\) 13.3859i 0.813137i 0.913620 + 0.406569i \(0.133275\pi\)
−0.913620 + 0.406569i \(0.866725\pi\)
\(272\) 0 0
\(273\) 2.29596 2.29596i 0.138958 0.138958i
\(274\) 0 0
\(275\) 12.7596 + 13.2754i 0.769431 + 0.800537i
\(276\) 0 0
\(277\) −16.0468 16.0468i −0.964159 0.964159i 0.0352201 0.999380i \(-0.488787\pi\)
−0.999380 + 0.0352201i \(0.988787\pi\)
\(278\) 0 0
\(279\) 38.4861 2.30410
\(280\) 0 0
\(281\) 5.07634 0.302829 0.151415 0.988470i \(-0.451617\pi\)
0.151415 + 0.988470i \(0.451617\pi\)
\(282\) 0 0
\(283\) −4.37366 4.37366i −0.259987 0.259987i 0.565062 0.825049i \(-0.308852\pi\)
−0.825049 + 0.565062i \(0.808852\pi\)
\(284\) 0 0
\(285\) −44.9351 19.1363i −2.66172 1.13354i
\(286\) 0 0
\(287\) −2.57092 + 2.57092i −0.151757 + 0.151757i
\(288\) 0 0
\(289\) 0.170802i 0.0100472i
\(290\) 0 0
\(291\) 52.1218i 3.05543i
\(292\) 0 0
\(293\) −13.5546 + 13.5546i −0.791871 + 0.791871i −0.981798 0.189928i \(-0.939175\pi\)
0.189928 + 0.981798i \(0.439175\pi\)
\(294\) 0 0
\(295\) 20.7058 8.33729i 1.20554 0.485416i
\(296\) 0 0
\(297\) −36.8459 36.8459i −2.13801 2.13801i
\(298\) 0 0
\(299\) −7.36864 −0.426139
\(300\) 0 0
\(301\) −8.37733 −0.482861
\(302\) 0 0
\(303\) −10.9089 10.9089i −0.626702 0.626702i
\(304\) 0 0
\(305\) −4.92421 + 1.98276i −0.281959 + 0.113533i
\(306\) 0 0
\(307\) 9.29603 9.29603i 0.530553 0.530553i −0.390184 0.920737i \(-0.627589\pi\)
0.920737 + 0.390184i \(0.127589\pi\)
\(308\) 0 0
\(309\) 51.8775i 2.95121i
\(310\) 0 0
\(311\) 7.99492i 0.453350i 0.973970 + 0.226675i \(0.0727856\pi\)
−0.973970 + 0.226675i \(0.927214\pi\)
\(312\) 0 0
\(313\) −3.25463 + 3.25463i −0.183963 + 0.183963i −0.793080 0.609117i \(-0.791524\pi\)
0.609117 + 0.793080i \(0.291524\pi\)
\(314\) 0 0
\(315\) −15.2029 6.47439i −0.856584 0.364791i
\(316\) 0 0
\(317\) −6.39843 6.39843i −0.359372 0.359372i 0.504210 0.863581i \(-0.331784\pi\)
−0.863581 + 0.504210i \(0.831784\pi\)
\(318\) 0 0
\(319\) 25.3098 1.41707
\(320\) 0 0
\(321\) −10.9283 −0.609960
\(322\) 0 0
\(323\) 19.6565 + 19.6565i 1.09371 + 1.09371i
\(324\) 0 0
\(325\) −0.0997746 + 5.03572i −0.00553450 + 0.279331i
\(326\) 0 0
\(327\) 9.22421 9.22421i 0.510100 0.510100i
\(328\) 0 0
\(329\) 10.0590i 0.554570i
\(330\) 0 0
\(331\) 27.9861i 1.53826i 0.639094 + 0.769129i \(0.279309\pi\)
−0.639094 + 0.769129i \(0.720691\pi\)
\(332\) 0 0
\(333\) −19.3577 + 19.3577i −1.06080 + 1.06080i
\(334\) 0 0
\(335\) 4.63595 10.8859i 0.253289 0.594761i
\(336\) 0 0
\(337\) 19.1004 + 19.1004i 1.04047 + 1.04047i 0.999146 + 0.0413193i \(0.0131561\pi\)
0.0413193 + 0.999146i \(0.486844\pi\)
\(338\) 0 0
\(339\) −38.1767 −2.07348
\(340\) 0 0
\(341\) 19.1792 1.03861
\(342\) 0 0
\(343\) 0.707107 + 0.707107i 0.0381802 + 0.0381802i
\(344\) 0 0
\(345\) 19.6927 + 48.9070i 1.06022 + 2.63306i
\(346\) 0 0
\(347\) 4.12958 4.12958i 0.221688 0.221688i −0.587521 0.809209i \(-0.699896\pi\)
0.809209 + 0.587521i \(0.199896\pi\)
\(348\) 0 0
\(349\) 7.72536i 0.413529i 0.978391 + 0.206765i \(0.0662934\pi\)
−0.978391 + 0.206765i \(0.933707\pi\)
\(350\) 0 0
\(351\) 14.2536i 0.760799i
\(352\) 0 0
\(353\) −11.8654 + 11.8654i −0.631531 + 0.631531i −0.948452 0.316921i \(-0.897351\pi\)
0.316921 + 0.948452i \(0.397351\pi\)
\(354\) 0 0
\(355\) 1.03305 + 2.56558i 0.0548285 + 0.136167i
\(356\) 0 0
\(357\) 9.35018 + 9.35018i 0.494864 + 0.494864i
\(358\) 0 0
\(359\) −30.5278 −1.61120 −0.805599 0.592462i \(-0.798156\pi\)
−0.805599 + 0.592462i \(0.798156\pi\)
\(360\) 0 0
\(361\) 26.9174 1.41670
\(362\) 0 0
\(363\) −5.83872 5.83872i −0.306454 0.306454i
\(364\) 0 0
\(365\) 5.23712 12.2976i 0.274123 0.643684i
\(366\) 0 0
\(367\) 21.2481 21.2481i 1.10914 1.10914i 0.115876 0.993264i \(-0.463033\pi\)
0.993264 0.115876i \(-0.0369675\pi\)
\(368\) 0 0
\(369\) 26.8680i 1.39869i
\(370\) 0 0
\(371\) 2.21278i 0.114882i
\(372\) 0 0
\(373\) 0.640653 0.640653i 0.0331717 0.0331717i −0.690326 0.723498i \(-0.742533\pi\)
0.723498 + 0.690326i \(0.242533\pi\)
\(374\) 0 0
\(375\) 33.6896 12.7957i 1.73973 0.660769i
\(376\) 0 0
\(377\) 4.89545 + 4.89545i 0.252128 + 0.252128i
\(378\) 0 0
\(379\) 12.4232 0.638135 0.319068 0.947732i \(-0.396630\pi\)
0.319068 + 0.947732i \(0.396630\pi\)
\(380\) 0 0
\(381\) −36.6193 −1.87606
\(382\) 0 0
\(383\) −22.3365 22.3365i −1.14134 1.14134i −0.988205 0.153136i \(-0.951063\pi\)
−0.153136 0.988205i \(-0.548937\pi\)
\(384\) 0 0
\(385\) −7.57619 3.22644i −0.386118 0.164435i
\(386\) 0 0
\(387\) −43.7746 + 43.7746i −2.22519 + 2.22519i
\(388\) 0 0
\(389\) 10.0840i 0.511279i −0.966772 0.255640i \(-0.917714\pi\)
0.966772 0.255640i \(-0.0822861\pi\)
\(390\) 0 0
\(391\) 30.0083i 1.51759i
\(392\) 0 0
\(393\) −9.52712 + 9.52712i −0.480580 + 0.480580i
\(394\) 0 0
\(395\) 12.9414 5.21092i 0.651151 0.262190i
\(396\) 0 0
\(397\) 12.2703 + 12.2703i 0.615830 + 0.615830i 0.944459 0.328629i \(-0.106587\pi\)
−0.328629 + 0.944459i \(0.606587\pi\)
\(398\) 0 0
\(399\) 21.8420 1.09347
\(400\) 0 0
\(401\) −20.6196 −1.02970 −0.514848 0.857282i \(-0.672152\pi\)
−0.514848 + 0.857282i \(0.672152\pi\)
\(402\) 0 0
\(403\) 3.70966 + 3.70966i 0.184791 + 0.184791i
\(404\) 0 0
\(405\) −48.6191 + 19.5768i −2.41590 + 0.972778i
\(406\) 0 0
\(407\) −9.64671 + 9.64671i −0.478170 + 0.478170i
\(408\) 0 0
\(409\) 22.3852i 1.10688i −0.832890 0.553439i \(-0.813315\pi\)
0.832890 0.553439i \(-0.186685\pi\)
\(410\) 0 0
\(411\) 35.0103i 1.72693i
\(412\) 0 0
\(413\) −7.05860 + 7.05860i −0.347331 + 0.347331i
\(414\) 0 0
\(415\) −13.9201 5.92810i −0.683310 0.290999i
\(416\) 0 0
\(417\) 2.80556 + 2.80556i 0.137389 + 0.137389i
\(418\) 0 0
\(419\) −1.08794 −0.0531491 −0.0265746 0.999647i \(-0.508460\pi\)
−0.0265746 + 0.999647i \(0.508460\pi\)
\(420\) 0 0
\(421\) 19.6617 0.958252 0.479126 0.877746i \(-0.340954\pi\)
0.479126 + 0.877746i \(0.340954\pi\)
\(422\) 0 0
\(423\) 52.5619 + 52.5619i 2.55565 + 2.55565i
\(424\) 0 0
\(425\) −20.5077 0.406326i −0.994768 0.0197097i
\(426\) 0 0
\(427\) 1.67866 1.67866i 0.0812363 0.0812363i
\(428\) 0 0
\(429\) 11.9574i 0.577309i
\(430\) 0 0
\(431\) 15.1755i 0.730978i −0.930816 0.365489i \(-0.880902\pi\)
0.930816 0.365489i \(-0.119098\pi\)
\(432\) 0 0
\(433\) 18.4880 18.4880i 0.888474 0.888474i −0.105902 0.994377i \(-0.533773\pi\)
0.994377 + 0.105902i \(0.0337731\pi\)
\(434\) 0 0
\(435\) 19.4089 45.5751i 0.930586 2.18516i
\(436\) 0 0
\(437\) −35.0497 35.0497i −1.67665 1.67665i
\(438\) 0 0
\(439\) −2.24408 −0.107104 −0.0535521 0.998565i \(-0.517054\pi\)
−0.0535521 + 0.998565i \(0.517054\pi\)
\(440\) 0 0
\(441\) 7.38979 0.351895
\(442\) 0 0
\(443\) −4.47050 4.47050i −0.212400 0.212400i 0.592886 0.805286i \(-0.297988\pi\)
−0.805286 + 0.592886i \(0.797988\pi\)
\(444\) 0 0
\(445\) 9.48951 + 23.5673i 0.449846 + 1.11720i
\(446\) 0 0
\(447\) −1.73119 + 1.73119i −0.0818824 + 0.0818824i
\(448\) 0 0
\(449\) 34.7341i 1.63920i −0.572934 0.819602i \(-0.694195\pi\)
0.572934 0.819602i \(-0.305805\pi\)
\(450\) 0 0
\(451\) 13.3894i 0.630482i
\(452\) 0 0
\(453\) 18.3229 18.3229i 0.860884 0.860884i
\(454\) 0 0
\(455\) −0.841333 2.08946i −0.0394423 0.0979554i
\(456\) 0 0
\(457\) 0.136442 + 0.136442i 0.00638250 + 0.00638250i 0.710291 0.703908i \(-0.248563\pi\)
−0.703908 + 0.710291i \(0.748563\pi\)
\(458\) 0 0
\(459\) 58.0468 2.70939
\(460\) 0 0
\(461\) 18.4678 0.860130 0.430065 0.902798i \(-0.358491\pi\)
0.430065 + 0.902798i \(0.358491\pi\)
\(462\) 0 0
\(463\) 4.19082 + 4.19082i 0.194764 + 0.194764i 0.797751 0.602987i \(-0.206023\pi\)
−0.602987 + 0.797751i \(0.706023\pi\)
\(464\) 0 0
\(465\) 14.7076 34.5358i 0.682050 1.60156i
\(466\) 0 0
\(467\) −1.78605 + 1.78605i −0.0826487 + 0.0826487i −0.747223 0.664574i \(-0.768613\pi\)
0.664574 + 0.747223i \(0.268613\pi\)
\(468\) 0 0
\(469\) 5.29141i 0.244335i
\(470\) 0 0
\(471\) 51.3795i 2.36744i
\(472\) 0 0
\(473\) −21.8146 + 21.8146i −1.00304 + 1.00304i
\(474\) 0 0
\(475\) −24.4275 + 23.4783i −1.12081 + 1.07726i
\(476\) 0 0
\(477\) 11.5626 + 11.5626i 0.529414 + 0.529414i
\(478\) 0 0
\(479\) −2.85552 −0.130472 −0.0652360 0.997870i \(-0.520780\pi\)
−0.0652360 + 0.997870i \(0.520780\pi\)
\(480\) 0 0
\(481\) −3.73176 −0.170154
\(482\) 0 0
\(483\) −16.6724 16.6724i −0.758621 0.758621i
\(484\) 0 0
\(485\) −33.2667 14.1672i −1.51056 0.643298i
\(486\) 0 0
\(487\) −6.08351 + 6.08351i −0.275670 + 0.275670i −0.831378 0.555708i \(-0.812447\pi\)
0.555708 + 0.831378i \(0.312447\pi\)
\(488\) 0 0
\(489\) 36.9468i 1.67079i
\(490\) 0 0
\(491\) 27.9165i 1.25985i 0.776654 + 0.629927i \(0.216915\pi\)
−0.776654 + 0.629927i \(0.783085\pi\)
\(492\) 0 0
\(493\) −19.9364 + 19.9364i −0.897892 + 0.897892i
\(494\) 0 0
\(495\) −56.4477 + 22.7290i −2.53714 + 1.02159i
\(496\) 0 0
\(497\) −0.874609 0.874609i −0.0392316 0.0392316i
\(498\) 0 0
\(499\) −4.56538 −0.204375 −0.102187 0.994765i \(-0.532584\pi\)
−0.102187 + 0.994765i \(0.532584\pi\)
\(500\) 0 0
\(501\) −9.70361 −0.433525
\(502\) 0 0
\(503\) −9.55537 9.55537i −0.426053 0.426053i 0.461229 0.887281i \(-0.347409\pi\)
−0.887281 + 0.461229i \(0.847409\pi\)
\(504\) 0 0
\(505\) −9.92777 + 3.99747i −0.441780 + 0.177885i
\(506\) 0 0
\(507\) −27.3172 + 27.3172i −1.21320 + 1.21320i
\(508\) 0 0
\(509\) 6.60247i 0.292649i −0.989237 0.146325i \(-0.953256\pi\)
0.989237 0.146325i \(-0.0467444\pi\)
\(510\) 0 0
\(511\) 5.97758i 0.264433i
\(512\) 0 0
\(513\) 67.7985 67.7985i 2.99338 2.99338i
\(514\) 0 0
\(515\) −33.1108 14.1008i −1.45903 0.621354i
\(516\) 0 0
\(517\) 26.1937 + 26.1937i 1.15200 + 1.15200i
\(518\) 0 0
\(519\) 59.4697 2.61043
\(520\) 0 0
\(521\) 30.3514 1.32972 0.664859 0.746969i \(-0.268491\pi\)
0.664859 + 0.746969i \(0.268491\pi\)
\(522\) 0 0
\(523\) −7.04232 7.04232i −0.307939 0.307939i 0.536171 0.844110i \(-0.319870\pi\)
−0.844110 + 0.536171i \(0.819870\pi\)
\(524\) 0 0
\(525\) −11.6197 + 11.1682i −0.507124 + 0.487419i
\(526\) 0 0
\(527\) −15.1074 + 15.1074i −0.658087 + 0.658087i
\(528\) 0 0
\(529\) 30.5082i 1.32644i
\(530\) 0 0
\(531\) 73.7676i 3.20124i
\(532\) 0 0
\(533\) −2.58979 + 2.58979i −0.112176 + 0.112176i
\(534\) 0 0
\(535\) −2.97042 + 6.97499i −0.128422 + 0.301555i
\(536\) 0 0
\(537\) 1.84794 + 1.84794i 0.0797443 + 0.0797443i
\(538\) 0 0
\(539\) 3.68262 0.158622
\(540\) 0 0
\(541\) 8.36610 0.359687 0.179843 0.983695i \(-0.442441\pi\)
0.179843 + 0.983695i \(0.442441\pi\)
\(542\) 0 0
\(543\) 19.5085 + 19.5085i 0.837189 + 0.837189i
\(544\) 0 0
\(545\) −3.38012 8.39456i −0.144788 0.359584i
\(546\) 0 0
\(547\) 8.80941 8.80941i 0.376663 0.376663i −0.493234 0.869897i \(-0.664185\pi\)
0.869897 + 0.493234i \(0.164185\pi\)
\(548\) 0 0
\(549\) 17.5433i 0.748729i
\(550\) 0 0
\(551\) 46.5714i 1.98401i
\(552\) 0 0
\(553\) −4.41172 + 4.41172i −0.187605 + 0.187605i
\(554\) 0 0
\(555\) 9.97313 + 24.7684i 0.423336 + 1.05136i
\(556\) 0 0
\(557\) 22.9600 + 22.9600i 0.972845 + 0.972845i 0.999641 0.0267960i \(-0.00853044\pi\)
−0.0267960 + 0.999641i \(0.508530\pi\)
\(558\) 0 0
\(559\) −8.43883 −0.356925
\(560\) 0 0
\(561\) 48.6959 2.05594
\(562\) 0 0
\(563\) −22.2509 22.2509i −0.937765 0.937765i 0.0604087 0.998174i \(-0.480760\pi\)
−0.998174 + 0.0604087i \(0.980760\pi\)
\(564\) 0 0
\(565\) −10.3768 + 24.3663i −0.436554 + 1.02510i
\(566\) 0 0
\(567\) 16.5743 16.5743i 0.696055 0.696055i
\(568\) 0 0
\(569\) 37.0951i 1.55511i 0.628817 + 0.777553i \(0.283539\pi\)
−0.628817 + 0.777553i \(0.716461\pi\)
\(570\) 0 0
\(571\) 35.4236i 1.48243i 0.671267 + 0.741216i \(0.265751\pi\)
−0.671267 + 0.741216i \(0.734249\pi\)
\(572\) 0 0
\(573\) 8.32215 8.32215i 0.347663 0.347663i
\(574\) 0 0
\(575\) 36.5675 + 0.724525i 1.52497 + 0.0302148i
\(576\) 0 0
\(577\) −6.41565 6.41565i −0.267087 0.267087i 0.560838 0.827925i \(-0.310479\pi\)
−0.827925 + 0.560838i \(0.810479\pi\)
\(578\) 0 0
\(579\) 79.9205 3.32138
\(580\) 0 0
\(581\) 6.76625 0.280712
\(582\) 0 0
\(583\) 5.76209 + 5.76209i 0.238641 + 0.238641i
\(584\) 0 0
\(585\) −15.3145 6.52192i −0.633176 0.269648i
\(586\) 0 0
\(587\) 11.2565 11.2565i 0.464606 0.464606i −0.435555 0.900162i \(-0.643448\pi\)
0.900162 + 0.435555i \(0.143448\pi\)
\(588\) 0 0
\(589\) 35.2907i 1.45413i
\(590\) 0 0
\(591\) 48.2750i 1.98577i
\(592\) 0 0
\(593\) −15.1597 + 15.1597i −0.622532 + 0.622532i −0.946178 0.323646i \(-0.895091\pi\)
0.323646 + 0.946178i \(0.395091\pi\)
\(594\) 0 0
\(595\) 8.50921 3.42628i 0.348843 0.140464i
\(596\) 0 0
\(597\) −1.56382 1.56382i −0.0640029 0.0640029i
\(598\) 0 0
\(599\) −46.0807 −1.88281 −0.941403 0.337285i \(-0.890492\pi\)
−0.941403 + 0.337285i \(0.890492\pi\)
\(600\) 0 0
\(601\) 10.3744 0.423180 0.211590 0.977358i \(-0.432136\pi\)
0.211590 + 0.977358i \(0.432136\pi\)
\(602\) 0 0
\(603\) 27.6496 + 27.6496i 1.12598 + 1.12598i
\(604\) 0 0
\(605\) −5.31358 + 2.13954i −0.216028 + 0.0869848i
\(606\) 0 0
\(607\) −6.71022 + 6.71022i −0.272360 + 0.272360i −0.830049 0.557690i \(-0.811688\pi\)
0.557690 + 0.830049i \(0.311688\pi\)
\(608\) 0 0
\(609\) 22.1531i 0.897688i
\(610\) 0 0
\(611\) 10.1328i 0.409931i
\(612\) 0 0
\(613\) 9.74236 9.74236i 0.393490 0.393490i −0.482439 0.875929i \(-0.660249\pi\)
0.875929 + 0.482439i \(0.160249\pi\)
\(614\) 0 0
\(615\) 24.1102 + 10.2677i 0.972216 + 0.414034i
\(616\) 0 0
\(617\) 1.08042 + 1.08042i 0.0434961 + 0.0434961i 0.728520 0.685024i \(-0.240208\pi\)
−0.685024 + 0.728520i \(0.740208\pi\)
\(618\) 0 0
\(619\) −11.1417 −0.447823 −0.223912 0.974609i \(-0.571883\pi\)
−0.223912 + 0.974609i \(0.571883\pi\)
\(620\) 0 0
\(621\) −103.504 −4.15347
\(622\) 0 0
\(623\) −8.03410 8.03410i −0.321880 0.321880i
\(624\) 0 0
\(625\) 0.990280 24.9804i 0.0396112 0.999215i
\(626\) 0 0
\(627\) 56.8767 56.8767i 2.27143 2.27143i
\(628\) 0 0
\(629\) 15.1974i 0.605959i
\(630\) 0 0
\(631\) 31.0072i 1.23438i −0.786815 0.617189i \(-0.788271\pi\)
0.786815 0.617189i \(-0.211729\pi\)
\(632\) 0 0
\(633\) −21.4880 + 21.4880i −0.854073 + 0.854073i
\(634\) 0 0
\(635\) −9.95345 + 23.3722i −0.394990 + 0.927498i
\(636\) 0 0
\(637\) 0.712298 + 0.712298i 0.0282223 + 0.0282223i
\(638\) 0 0
\(639\) −9.14031 −0.361585
\(640\) 0 0
\(641\) 41.7539 1.64918 0.824590 0.565731i \(-0.191406\pi\)
0.824590 + 0.565731i \(0.191406\pi\)
\(642\) 0 0
\(643\) −28.9640 28.9640i −1.14223 1.14223i −0.988042 0.154187i \(-0.950724\pi\)
−0.154187 0.988042i \(-0.549276\pi\)
\(644\) 0 0
\(645\) 22.5528 + 56.0101i 0.888015 + 2.20539i
\(646\) 0 0
\(647\) −30.2277 + 30.2277i −1.18837 + 1.18837i −0.210854 + 0.977518i \(0.567625\pi\)
−0.977518 + 0.210854i \(0.932375\pi\)
\(648\) 0 0
\(649\) 36.7613i 1.44301i
\(650\) 0 0
\(651\) 16.7871i 0.657938i
\(652\) 0 0
\(653\) −31.0360 + 31.0360i −1.21453 + 1.21453i −0.245015 + 0.969519i \(0.578793\pi\)
−0.969519 + 0.245015i \(0.921207\pi\)
\(654\) 0 0
\(655\) 3.49112 + 8.67023i 0.136409 + 0.338774i
\(656\) 0 0
\(657\) 31.2351 + 31.2351i 1.21860 + 1.21860i
\(658\) 0 0
\(659\) −22.4635 −0.875054 −0.437527 0.899205i \(-0.644145\pi\)
−0.437527 + 0.899205i \(0.644145\pi\)
\(660\) 0 0
\(661\) −22.8870 −0.890200 −0.445100 0.895481i \(-0.646832\pi\)
−0.445100 + 0.895481i \(0.646832\pi\)
\(662\) 0 0
\(663\) 9.41883 + 9.41883i 0.365797 + 0.365797i
\(664\) 0 0
\(665\) 5.93684 13.9406i 0.230221 0.540594i
\(666\) 0 0
\(667\) 35.5489 35.5489i 1.37646 1.37646i
\(668\) 0 0
\(669\) 63.7587i 2.46505i
\(670\) 0 0
\(671\) 8.74251i 0.337501i
\(672\) 0 0
\(673\) −31.4642 + 31.4642i −1.21285 + 1.21285i −0.242771 + 0.970084i \(0.578057\pi\)
−0.970084 + 0.242771i \(0.921943\pi\)
\(674\) 0 0
\(675\) −1.40149 + 70.7345i −0.0539434 + 2.72257i
\(676\) 0 0
\(677\) −2.66330 2.66330i −0.102359 0.102359i 0.654073 0.756432i \(-0.273059\pi\)
−0.756432 + 0.654073i \(0.773059\pi\)
\(678\) 0 0
\(679\) 16.1702 0.620556
\(680\) 0 0
\(681\) −80.7820 −3.09557
\(682\) 0 0
\(683\) −5.39335 5.39335i −0.206371 0.206371i 0.596352 0.802723i \(-0.296616\pi\)
−0.802723 + 0.596352i \(0.796616\pi\)
\(684\) 0 0
\(685\) −22.3453 9.51611i −0.853769 0.363592i
\(686\) 0 0
\(687\) −40.9578 + 40.9578i −1.56264 + 1.56264i
\(688\) 0 0
\(689\) 2.22902i 0.0849190i
\(690\) 0 0
\(691\) 1.99731i 0.0759811i 0.999278 + 0.0379906i \(0.0120957\pi\)
−0.999278 + 0.0379906i \(0.987904\pi\)
\(692\) 0 0
\(693\) 19.2431 19.2431i 0.730983 0.730983i
\(694\) 0 0
\(695\) 2.55322 1.02807i 0.0968491 0.0389968i
\(696\) 0 0
\(697\) −10.5468 10.5468i −0.399488 0.399488i
\(698\) 0 0
\(699\) 49.7463 1.88158
\(700\) 0 0
\(701\) −26.4607 −0.999408 −0.499704 0.866196i \(-0.666558\pi\)
−0.499704 + 0.866196i \(0.666558\pi\)
\(702\) 0 0
\(703\) −17.7505 17.7505i −0.669473 0.669473i
\(704\) 0 0
\(705\) 67.2535 27.0800i 2.53291 1.01989i
\(706\) 0 0
\(707\) 3.38438 3.38438i 0.127283 0.127283i
\(708\) 0 0
\(709\) 44.4017i 1.66754i 0.552112 + 0.833770i \(0.313822\pi\)
−0.552112 + 0.833770i \(0.686178\pi\)
\(710\) 0 0
\(711\) 46.1057i 1.72910i
\(712\) 0 0
\(713\) 26.9381 26.9381i 1.00884 1.00884i
\(714\) 0 0
\(715\) −7.63181 3.25013i −0.285413 0.121548i
\(716\) 0 0
\(717\) −26.3325 26.3325i −0.983404 0.983404i
\(718\) 0 0
\(719\) −11.5712 −0.431534 −0.215767 0.976445i \(-0.569225\pi\)
−0.215767 + 0.976445i \(0.569225\pi\)
\(720\) 0 0
\(721\) 16.0944 0.599388
\(722\) 0 0
\(723\) −5.78412 5.78412i −0.215114 0.215114i
\(724\) 0 0
\(725\) −23.8127 24.7754i −0.884383 0.920137i
\(726\) 0 0
\(727\) −2.66972 + 2.66972i −0.0990145 + 0.0990145i −0.754879 0.655864i \(-0.772304\pi\)
0.655864 + 0.754879i \(0.272304\pi\)
\(728\) 0 0
\(729\) 36.3867i 1.34766i
\(730\) 0 0
\(731\) 34.3667i 1.27110i
\(732\) 0 0
\(733\) 16.0058 16.0058i 0.591187 0.591187i −0.346765 0.937952i \(-0.612720\pi\)
0.937952 + 0.346765i \(0.112720\pi\)
\(734\) 0 0
\(735\) 2.82404 6.63127i 0.104166 0.244598i
\(736\) 0 0
\(737\) 13.7789 + 13.7789i 0.507551 + 0.507551i
\(738\) 0 0
\(739\) 6.62288 0.243626 0.121813 0.992553i \(-0.461129\pi\)
0.121813 + 0.992553i \(0.461129\pi\)
\(740\) 0 0
\(741\) 22.0023 0.808276
\(742\) 0 0
\(743\) 17.5061 + 17.5061i 0.642235 + 0.642235i 0.951104 0.308869i \(-0.0999506\pi\)
−0.308869 + 0.951104i \(0.599951\pi\)
\(744\) 0 0
\(745\) 0.634376 + 1.57548i 0.0232418 + 0.0577212i
\(746\) 0 0
\(747\) 35.3562 35.3562i 1.29361 1.29361i
\(748\) 0 0
\(749\) 3.39040i 0.123882i
\(750\) 0 0
\(751\) 36.6569i 1.33763i 0.743430 + 0.668814i \(0.233198\pi\)
−0.743430 + 0.668814i \(0.766802\pi\)
\(752\) 0 0
\(753\) −60.4602 + 60.4602i −2.20329 + 2.20329i
\(754\) 0 0
\(755\) −6.71424 16.6749i −0.244356 0.606861i
\(756\) 0 0
\(757\) −12.5751 12.5751i −0.457051 0.457051i 0.440635 0.897686i \(-0.354753\pi\)
−0.897686 + 0.440635i \(0.854753\pi\)
\(758\) 0 0
\(759\) −86.8302 −3.15174
\(760\) 0 0
\(761\) −53.5135 −1.93986 −0.969932 0.243377i \(-0.921745\pi\)
−0.969932 + 0.243377i \(0.921745\pi\)
\(762\) 0 0
\(763\) 2.86171 + 2.86171i 0.103601 + 0.103601i
\(764\) 0 0
\(765\) 26.5602 62.3673i 0.960285 2.25490i
\(766\) 0 0
\(767\) −7.11042 + 7.11042i −0.256743 + 0.256743i
\(768\) 0 0
\(769\) 17.6971i 0.638176i 0.947725 + 0.319088i \(0.103376\pi\)
−0.947725 + 0.319088i \(0.896624\pi\)
\(770\) 0 0
\(771\) 65.2383i 2.34950i
\(772\) 0 0
\(773\) 31.3291 31.3291i 1.12683 1.12683i 0.136140 0.990690i \(-0.456530\pi\)
0.990690 0.136140i \(-0.0434697\pi\)
\(774\) 0 0
\(775\) −18.0447 18.7743i −0.648186 0.674391i
\(776\) 0 0
\(777\) −8.44355 8.44355i −0.302911 0.302911i
\(778\) 0 0
\(779\) −24.6372 −0.882721
\(780\) 0 0
\(781\) −4.55498 −0.162990
\(782\) 0 0
\(783\) 68.7642 + 68.7642i 2.45743 + 2.45743i
\(784\) 0 0
\(785\) 32.7929 + 13.9654i 1.17043 + 0.498446i
\(786\) 0 0
\(787\) −10.6190 + 10.6190i −0.378527 + 0.378527i −0.870571 0.492044i \(-0.836250\pi\)
0.492044 + 0.870571i \(0.336250\pi\)
\(788\) 0 0
\(789\) 77.8538i 2.77167i
\(790\) 0 0
\(791\) 11.8439i 0.421121i
\(792\) 0 0
\(793\) 1.69099 1.69099i 0.0600488 0.0600488i
\(794\) 0 0
\(795\) 14.7944 5.95707i 0.524705 0.211275i
\(796\) 0 0
\(797\) −0.106374 0.106374i −0.00376796 0.00376796i 0.705220 0.708988i \(-0.250848\pi\)
−0.708988 + 0.705220i \(0.750848\pi\)
\(798\) 0 0
\(799\) −41.2654 −1.45986
\(800\) 0 0
\(801\) −83.9623 −2.96666
\(802\) 0 0
\(803\) 15.5657 + 15.5657i 0.549300 + 0.549300i
\(804\) 0 0
\(805\) −15.1729 + 6.10944i −0.534773 + 0.215330i
\(806\) 0 0
\(807\) 43.0556 43.0556i 1.51563 1.51563i
\(808\) 0 0
\(809\) 30.0550i 1.05668i 0.849033 + 0.528339i \(0.177185\pi\)
−0.849033 + 0.528339i \(0.822815\pi\)
\(810\) 0 0
\(811\) 46.8320i 1.64449i −0.569131 0.822247i \(-0.692720\pi\)
0.569131 0.822247i \(-0.307280\pi\)
\(812\) 0 0
\(813\) −30.5096 + 30.5096i −1.07002 + 1.07002i
\(814\) 0 0
\(815\) 23.5813 + 10.0425i 0.826016 + 0.351773i
\(816\) 0 0
\(817\) −40.1402 40.1402i −1.40433 1.40433i
\(818\) 0 0
\(819\) 7.44404 0.260116
\(820\) 0 0
\(821\) 5.48543 0.191443 0.0957214 0.995408i \(-0.469484\pi\)
0.0957214 + 0.995408i \(0.469484\pi\)
\(822\) 0 0
\(823\) −13.8581 13.8581i −0.483063 0.483063i 0.423046 0.906108i \(-0.360961\pi\)
−0.906108 + 0.423046i \(0.860961\pi\)
\(824\) 0 0
\(825\) −1.17572 + 59.3397i −0.0409333 + 2.06594i
\(826\) 0 0
\(827\) −12.9702 + 12.9702i −0.451019 + 0.451019i −0.895693 0.444673i \(-0.853320\pi\)
0.444673 + 0.895693i \(0.353320\pi\)
\(828\) 0 0
\(829\) 18.8729i 0.655484i 0.944767 + 0.327742i \(0.106288\pi\)
−0.944767 + 0.327742i \(0.893712\pi\)
\(830\) 0 0
\(831\) 73.1488i 2.53750i
\(832\) 0 0
\(833\) −2.90079 + 2.90079i −0.100507 + 0.100507i
\(834\) 0 0
\(835\) −2.63753 + 6.19332i −0.0912754 + 0.214329i
\(836\) 0 0
\(837\) 52.1079 + 52.1079i 1.80111 + 1.80111i
\(838\) 0 0
\(839\) −1.87606 −0.0647687 −0.0323844 0.999475i \(-0.510310\pi\)
−0.0323844 + 0.999475i \(0.510310\pi\)
\(840\) 0 0
\(841\) −18.2348 −0.628785
\(842\) 0 0
\(843\) 11.5702 + 11.5702i 0.398497 + 0.398497i
\(844\) 0 0
\(845\) 10.0101 + 24.8602i 0.344358 + 0.855217i
\(846\) 0 0
\(847\) 1.81140 1.81140i 0.0622405 0.0622405i
\(848\) 0 0
\(849\) 19.9372i 0.684242i
\(850\) 0 0
\(851\) 27.0986i 0.928929i
\(852\) 0 0
\(853\) 15.7976 15.7976i 0.540899 0.540899i −0.382893 0.923793i \(-0.625072\pi\)
0.923793 + 0.382893i \(0.125072\pi\)
\(854\) 0 0
\(855\) −41.8227 103.867i −1.43030 3.55218i
\(856\) 0 0
\(857\) −21.8544 21.8544i −0.746531 0.746531i 0.227295 0.973826i \(-0.427012\pi\)
−0.973826 + 0.227295i \(0.927012\pi\)
\(858\) 0 0
\(859\) 19.0170 0.648850 0.324425 0.945911i \(-0.394829\pi\)
0.324425 + 0.945911i \(0.394829\pi\)
\(860\) 0 0
\(861\) −11.7194 −0.399397
\(862\) 0 0
\(863\) 23.1915 + 23.1915i 0.789449 + 0.789449i 0.981404 0.191955i \(-0.0614826\pi\)
−0.191955 + 0.981404i \(0.561483\pi\)
\(864\) 0 0
\(865\) 16.1644 37.9565i 0.549606 1.29056i
\(866\) 0 0
\(867\) 0.389296 0.389296i 0.0132212 0.0132212i
\(868\) 0 0
\(869\) 22.9763i 0.779418i
\(870\) 0 0
\(871\) 5.33026i 0.180609i
\(872\) 0 0
\(873\) 84.4954 84.4954i 2.85974 2.85974i
\(874\) 0 0
\(875\) 3.96974 + 10.4518i 0.134202 + 0.353337i
\(876\) 0 0
\(877\) −9.38349 9.38349i −0.316858 0.316858i 0.530701 0.847559i \(-0.321929\pi\)
−0.847559 + 0.530701i \(0.821929\pi\)
\(878\) 0 0
\(879\) −61.7883 −2.08407
\(880\) 0 0
\(881\) −22.3516 −0.753044 −0.376522 0.926408i \(-0.622880\pi\)
−0.376522 + 0.926408i \(0.622880\pi\)
\(882\) 0 0
\(883\) −15.8373 15.8373i −0.532967 0.532967i 0.388487 0.921454i \(-0.372998\pi\)
−0.921454 + 0.388487i \(0.872998\pi\)
\(884\) 0 0
\(885\) 66.1958 + 28.1906i 2.22515 + 0.947616i
\(886\) 0 0
\(887\) −16.9639 + 16.9639i −0.569593 + 0.569593i −0.932014 0.362421i \(-0.881950\pi\)
0.362421 + 0.932014i \(0.381950\pi\)
\(888\) 0 0
\(889\) 11.3607i 0.381027i
\(890\) 0 0
\(891\) 86.3192i 2.89180i
\(892\) 0 0
\(893\) −48.1979 + 48.1979i −1.61288 + 1.61288i
\(894\) 0 0
\(895\) 1.68173 0.677157i 0.0562140 0.0226349i
\(896\) 0 0
\(897\) −16.7948 16.7948i −0.560763 0.560763i
\(898\) 0 0
\(899\) −35.7934 −1.19378
\(900\) 0 0
\(901\) −9.07757 −0.302418
\(902\) 0 0
\(903\) −19.0939 19.0939i −0.635404 0.635404i
\(904\) 0 0
\(905\) 17.7538 7.14868i 0.590158 0.237630i
\(906\) 0 0
\(907\) 6.71530 6.71530i 0.222978 0.222978i −0.586773 0.809751i \(-0.699602\pi\)
0.809751 + 0.586773i \(0.199602\pi\)
\(908\) 0 0
\(909\) 35.3693i 1.17313i
\(910\) 0 0
\(911\) 12.9346i 0.428541i −0.976774 0.214271i \(-0.931263\pi\)
0.976774 0.214271i \(-0.0687374\pi\)
\(912\) 0 0
\(913\) 17.6194 17.6194i 0.583116 0.583116i
\(914\) 0 0
\(915\) −15.7426 6.70424i −0.520433 0.221635i
\(916\) 0 0
\(917\) −2.95569 2.95569i −0.0976053 0.0976053i
\(918\) 0 0
\(919\) 59.0749 1.94870 0.974350 0.225039i \(-0.0722509\pi\)
0.974350 + 0.225039i \(0.0722509\pi\)
\(920\) 0 0
\(921\) 42.3756 1.39632
\(922\) 0 0
\(923\) −0.881030 0.881030i −0.0289995 0.0289995i
\(924\) 0 0
\(925\) 18.5192 + 0.366927i 0.608907 + 0.0120645i
\(926\) 0 0
\(927\) 84.0994 84.0994i 2.76219 2.76219i
\(928\) 0 0
\(929\) 21.2077i 0.695801i −0.937531 0.347901i \(-0.886895\pi\)
0.937531 0.347901i \(-0.113105\pi\)
\(930\) 0 0
\(931\) 6.77624i 0.222082i
\(932\) 0 0
\(933\) −18.2223 + 18.2223i −0.596570 + 0.596570i
\(934\) 0 0
\(935\) 13.2360 31.0801i 0.432863 1.01643i
\(936\) 0 0
\(937\) 25.8581 + 25.8581i 0.844746 + 0.844746i 0.989472 0.144726i \(-0.0462300\pi\)
−0.144726 + 0.989472i \(0.546230\pi\)
\(938\) 0 0
\(939\) −14.8361 −0.484158
\(940\) 0 0
\(941\) 47.5143 1.54892 0.774460 0.632622i \(-0.218021\pi\)
0.774460 + 0.632622i \(0.218021\pi\)
\(942\) 0 0
\(943\) 18.8061 + 18.8061i 0.612411 + 0.612411i
\(944\) 0 0
\(945\) −11.8178 29.3497i −0.384434 0.954747i
\(946\) 0 0
\(947\) 19.1768 19.1768i 0.623161 0.623161i −0.323177 0.946338i \(-0.604751\pi\)
0.946338 + 0.323177i \(0.104751\pi\)
\(948\) 0 0
\(949\) 6.02147i 0.195465i
\(950\) 0 0
\(951\) 29.1670i 0.945805i
\(952\) 0 0
\(953\) −7.21221 + 7.21221i −0.233626 + 0.233626i −0.814205 0.580578i \(-0.802827\pi\)
0.580578 + 0.814205i \(0.302827\pi\)
\(954\) 0 0
\(955\) −3.04957 7.57364i −0.0986818 0.245077i
\(956\) 0 0
\(957\) 57.6868 + 57.6868i 1.86475 + 1.86475i
\(958\) 0 0
\(959\) 10.8616 0.350738
\(960\) 0 0
\(961\) 3.87658 0.125051
\(962\) 0 0
\(963\) −17.7161 17.7161i −0.570892 0.570892i
\(964\) 0 0
\(965\) 21.7231 51.0092i 0.699291 1.64204i
\(966\) 0 0
\(967\) 12.3264 12.3264i 0.396390 0.396390i −0.480567 0.876958i \(-0.659569\pi\)
0.876958 + 0.480567i \(0.159569\pi\)
\(968\) 0 0
\(969\) 89.6032i 2.87847i
\(970\) 0 0
\(971\) 20.4678i 0.656842i −0.944531 0.328421i \(-0.893484\pi\)
0.944531 0.328421i \(-0.106516\pi\)
\(972\) 0 0
\(973\) −0.870394 + 0.870394i −0.0279035 + 0.0279035i
\(974\) 0 0
\(975\) −11.7050 + 11.2502i −0.374859 + 0.360293i
\(976\) 0 0
\(977\) −2.67796 2.67796i −0.0856756 0.0856756i 0.662970 0.748646i \(-0.269296\pi\)
−0.748646 + 0.662970i \(0.769296\pi\)
\(978\) 0 0
\(979\) −41.8417 −1.33727
\(980\) 0 0
\(981\) 29.9070 0.954857
\(982\) 0 0
\(983\) 25.4156 + 25.4156i 0.810633 + 0.810633i 0.984729 0.174096i \(-0.0557003\pi\)
−0.174096 + 0.984729i \(0.555700\pi\)
\(984\) 0 0
\(985\) −30.8115 13.1216i −0.981735 0.418088i
\(986\) 0 0
\(987\) −22.9268 + 22.9268i −0.729767 + 0.729767i
\(988\) 0 0
\(989\) 61.2796i 1.94858i
\(990\) 0 0
\(991\) 9.43569i 0.299734i 0.988706 + 0.149867i \(0.0478846\pi\)
−0.988706 + 0.149867i \(0.952115\pi\)
\(992\) 0 0
\(993\) −63.7869 + 63.7869i −2.02421 + 2.02421i
\(994\) 0 0
\(995\) −1.42317 + 0.573046i −0.0451174 + 0.0181668i
\(996\) 0 0
\(997\) 18.2530 + 18.2530i 0.578078 + 0.578078i 0.934373 0.356295i \(-0.115960\pi\)
−0.356295 + 0.934373i \(0.615960\pi\)
\(998\) 0 0
\(999\) −52.4184 −1.65844
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.x.f.127.10 yes 20
4.3 odd 2 1120.2.x.e.127.1 20
5.3 odd 4 1120.2.x.e.1023.1 yes 20
20.3 even 4 inner 1120.2.x.f.1023.10 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1120.2.x.e.127.1 20 4.3 odd 2
1120.2.x.e.1023.1 yes 20 5.3 odd 4
1120.2.x.f.127.10 yes 20 1.1 even 1 trivial
1120.2.x.f.1023.10 yes 20 20.3 even 4 inner